A JORDAN-LIKE DECOMPOSITION IN THE NONCOMMUTATIVE SCHWARTZ SPACE

KRZYSZTOF PISZCZEK

(Received 16 April 2014; accepted 30 October 2014; first published online 15 December 2014)

Abstract

We show that every continuous self-adjoint functional on the noncommutative Schwartz space can be decomposed into a difference of two positive functionals. Moreover, this decomposition is minimal in the natural sense.

2010 Mathematics subject classification: primary 46K05; secondary 46H05, 46H35.
Keywords and phrases: Fréchet space, (Fréchet) LMC-algebra, positive functional, self-adjoint functional, Jordan decomposition.

1. Introduction

The aim of this paper is to investigate one concrete object, the so-called noncommutative Schwartz space-denoted by \mathcal{S}. We describe this Fréchet *-algebra in the next section. This object has been studied in several contexts and received reasonable attention, so far. It appears, for instance, in K-theory (see [3, 9]) and in cyclic cohomology for crossed products [6,12]. Investigation of this object continues. Recently, Ciaś and the present author have obtained several further results. Ciaś, using purely Fréchet space tools, showed in [2] that the noncommutative Schwartz space admits a functional calculus and characterised closed, commutative ${ }^{*}$-subalgebras of \mathcal{S}. In [11], the present author showed that every positive linear functional on \mathcal{S} as well as every derivation from \mathcal{S} into any \mathcal{S}-bimodule is automatically continuous. This paper deals also with amenability properties of the noncommutative Schwartz space. Although \mathcal{S} is not amenable (see [10, Theorem 9.7] and [11, Proposition 2]), it turns out that it is approximately amenable [11, Theorem 21]. The present paper is a continuation of this research. The aim is to provide a way of decomposing a continuous and self-adjoint functional on the noncommutative Schwartz space into a difference of two positive functionals.

The paper is divided into four parts. In Section 2, we recall the definition of the noncommutative Schwartz space and give basic notation. Section 3 deals with the

[^0]dual of the noncommutative Schwartz space. Section 4 provides a construction of the above-mentioned decomposition.

For unexplained details we refer the reader to [8] for the structure theory of Fréchet spaces and to [4] for the 'algebraic-in-flavour' aspects of the paper.

2. Preliminaries

Throughout the paper we denote $\mathbb{N}:=\{1,2,3, \ldots\}$ and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Next we recall that

$$
s=\left\{\xi=\left(\xi_{j}\right)_{j \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}:|\xi|_{k}^{2}:=\sum_{j=1}^{+\infty}\left|\xi_{j}\right|^{2} j^{2 k}<+\infty \text { for all } k \in \mathbb{N}_{0}\right\}
$$

and its topological dual

$$
s^{\prime}=\left\{\eta=\left(\eta_{j}\right)_{j \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}:|\eta|_{k}^{\prime 2}:=\sum_{j=1}^{+\infty}\left|\eta_{j}\right|^{2} j^{-2 k}<+\infty \text { for some } k \in \mathbb{N}_{0}\right\}
$$

are the so-called spaces of rapidly decreasing and slowly increasing sequences, respectively. We consider the space $\mathcal{S}:=L\left(s^{\prime}, s\right)$ of linear and continuous operators from the dual of s into s with the topology of uniform convergence on bounded sets. It is possible to turn this space into a locally multiplicatively convex (LMC for short) Fréchet $*$-algebra by the use of the isomorphism

$$
\mathcal{S} \simeq \mathcal{K}^{\infty}:=\left\{x=\left(x_{i, j}\right)_{i, j \in \mathbb{N}}:\|x\|_{n}^{2}:=\sum_{i, j=1}^{\infty}\left|x_{i, j}\right|^{2}(i j)^{2 n}<+\infty \text { for all } n \in \mathbb{N}_{0}\right\}
$$

The algebra \mathcal{S} will be called the noncommutative Schwartz space and we refer the reader to [11] for more information on the properties of this algebra.

3. Dual of the noncommutative Schwartz space

The topological dual of \mathcal{S} has several natural representations. Observe first that by [8, Proposition 28.16], s is nuclear and so by [7, 21.2.2] it has the approximation property. Consequently, finite-rank operators are dense in $L\left(s^{\prime}, s\right)$. Therefore, by [7, 15.3.4 and 16.1.4] the map

$$
x \otimes y \mapsto\left(x^{\prime} \mapsto\left\langle x, x^{\prime}\right\rangle y\right)
$$

extends to a topological isomorphism

$$
\chi: s \otimes s \rightarrow \mathcal{S} .
$$

Now, applying [7, 16.1.7], we can observe that

$$
\mathcal{S}^{\prime}=L\left(s^{\prime}, s\right)^{\prime}=(s \otimes s)^{\prime}=s^{\prime} \otimes s^{\prime}=L\left(s, s^{\prime}\right)
$$

We can also view \mathcal{S}^{\prime} as the space of matrices. Recall that $\mathcal{S} \simeq \mathcal{K}^{\infty}$ consists of the so-called rapidly decreasing matrices, that is an infinite matrix $x=\left(x_{i j}\right)_{i, j \in \mathbb{N}}$ belongs to \mathcal{S} if and only if $\sup \left\{\left|x_{i j}\right|(i j)^{k}: i, j \in \mathbb{N}\right\}$ is finite for every $k \in \mathbb{N}_{0}$. Since, by [8, definition on page 326], \mathcal{S} is a Köthe sequence space, we can use [8, Lemma 27.11] to observe that \mathcal{S}^{\prime} is again a space of matrices, the so-called slowly increasing ones. More precisely,

$$
\mathcal{S}^{\prime}=\left\{\phi=\left(\phi_{i j}\right)_{i, j \in \mathbb{N}} \mid \sup \left\{\left|\phi_{i j}\right|(i j)^{-k}: i, j \in \mathbb{N}\right\}<+\infty \text { for some } k \in \mathbb{N}_{0}\right\}
$$

The duality in the matrix language is given by the trace, that is, if $x \in \mathcal{S}, \phi \in \mathcal{S}^{\prime}$, then

$$
\phi(x):=\langle\langle x, \phi\rangle\rangle=\sum_{i, j=1}^{+\infty} x_{i j} \bar{\phi}_{i j} .
$$

Analogously to the continuous inclusion $s \hookrightarrow s^{\prime}$, also for matrices we easily observe that $\mathcal{S} \hookrightarrow \mathcal{S}^{\prime}$ continuously. This shows in particular that every rapidly decreasing matrix is a functional on \mathcal{S}.

Observe now that the order in \mathcal{S} is inherited from $B\left(\ell_{2}\right)$. This is a consequence of a continuous inclusion $\mathcal{S} \hookrightarrow B\left(\ell_{2}\right)$ and [1, Proposition A.2.8] (see [5, Corollary 2.5]). Therefore, we can use this order to define positive functionals on the noncommutative Schwartz space. To this end, let $\phi \in \mathcal{S}^{\prime}$. We say that it is positive if it maps positive elements into nonnegative numbers, that is, $\phi(x) \geq 0$ for every $x \geq 0$ in \mathcal{S}. By \mathcal{S}_{+}^{\prime}, we denote the cone of positive functionals on the noncommutative Schwartz space. We can also define self-adjoint functionals in the usual manner. First we define

$$
\phi^{*}(x):=\overline{\phi\left(x^{*}\right)}, \quad x \in \mathcal{S}
$$

and we say that ϕ is self adjoint if $\phi=\phi^{*}$. As in the C^{*}-algebra case, we can easily show that ϕ is self adjoint if and only if $\phi(x)$ is real for any self-adjoint $x \in \mathcal{S}$. If we represent $\phi \in \mathcal{S}^{\prime}$ as a matrix, then ϕ^{*} is represented by the transposed complexconjugate matrix. Self adjointness of $\phi \in \mathcal{S}^{\prime}$ means that the representing matrix is self adjoint.

Let us now give several 'easy-to-obtain' consequences of the above definition. In what follows, u_{n} stands for the infinite matrix $\left(\begin{array}{cc}I_{n} & 0 \\ 0 & 0\end{array}\right)$ with I_{n} being the $n \times n$ identity map. Consequently, $u_{n} \phi u_{n}$ (being the matrix multiplication) is the nth truncation of ϕ.

Proposition 3.1. Let ϕ be a functional on the noncommutative Schwartz space.
(i) If ϕ is a rapidly decreasing matrix, then $\phi \geq 0$ in \mathcal{S}^{\prime} if and only if $\phi \geq 0$ in \mathcal{S}.
(ii) $\phi \geq 0$ if and only if $u_{n} \phi u_{n} \geq 0$ for every $n \in \mathbb{N}$.

Proof. (i) Suppose that $\phi \geq 0$ in \mathcal{S} and take a positive $y \in \mathcal{S}$. By [11, Proposition 3(ii)], $y=x x^{*}$ for some $x \in \mathcal{S}$. Since $x x^{*}=\left(\sum_{k} x_{i k} \bar{x}_{j k}\right)_{i, j}$,

$$
\phi\left(x x^{*}\right)=\sum_{i, j=1}^{+\infty} \bar{\phi}_{i j} \sum_{k=1}^{+\infty} x_{i k} \bar{x}_{j k}=\sum_{k=1}^{+\infty}\left\langle\xi^{k}, \phi \xi^{k}\right\rangle
$$

where $\xi^{k}=\left(x_{j k}\right)_{j \in \mathbb{N}} \in s^{\prime}$. By [11, Proposition 3(viii)], $\langle\xi, \phi \xi\rangle \geq 0$ for every $\xi \in s^{\prime}$ and, finally, $\phi \geq 0$ in \mathcal{S}^{\prime}.

Let now $\phi \geq 0$ in \mathcal{S}^{\prime} and take an arbitrary $\xi \in s^{\prime}$. Then

$$
\langle\phi \xi, \xi\rangle=\lim _{n \rightarrow+\infty}\left\langle\phi u_{n} \xi, u_{n} \xi\right\rangle .
$$

Now, for every $n \in \mathbb{N}$, define the infinite matrix $x_{n} \in \mathcal{S}$ by

$$
x_{n}:=\left(\begin{array}{cccccc}
\xi_{1} & \ldots & \xi_{n} & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) .
$$

By assumption, $\phi \geq 0$ in \mathcal{S}^{\prime} and therefore $\phi\left(x_{n}^{*} x_{n}\right) \geq 0$ for every $n \in \mathbb{N}$. Since $\phi\left(x_{n}^{*} x_{n}\right)=$ $\left\langle\phi u_{n} \xi, u_{n} \xi\right\rangle$, we obtain $\langle\phi \xi, \xi\rangle \geq 0$. Consequently, by [11, Proposition 3(viii)], $\phi \geq 0$ in \mathcal{S}.
(ii) Suppose that $\phi \geq 0$. Then, for any $n \in \mathbb{N}, u_{n} \phi u_{n}$ and arbitrary $x \geq 0$ in \mathcal{S},

$$
\left\langle\left\langle u_{n} \phi u_{n}, x\right\rangle\right\rangle=\left\langle\left\langle\phi, u_{n} x u_{n}\right\rangle\right\rangle .
$$

By [11, Proposition 3(viii)], $x \geq 0$ if and only if $u_{n} x u_{n} \geq 0$ for all $n \in \mathbb{N}$ and, consequently, $u_{n} \phi u_{n} \geq 0$ in \mathcal{S}^{\prime}. Suppose now that the converse holds. Then for any $x \in \mathcal{S}$ we have

$$
\langle\langle\phi, x\rangle\rangle=\lim _{n \rightarrow+\infty}\left\langle\left\langle u_{n} \phi u_{n}, x\right\rangle\right\rangle .
$$

Applying this to $x \geq 0$, we get the conclusion.
Recall that an infinite matrix $\phi \in \mathcal{S}^{\prime}$ if and only if

$$
\|\phi\|_{k}^{*}:=\sup \left\{\left|\phi_{i j}\right|(i j)^{-k}: i, j \in \mathbb{N}\right\}<+\infty
$$

for some $k \in \mathbb{N}_{0}$. Repeating the proof of [11, Lemma 5], we get the following result.
Proposition 3.2. Suppose that $\phi=\left(\phi_{i j}\right)_{i, j \in \mathbb{N}}$ is a positive functional on the noncommutative Schwartz space. Then

$$
\|\phi\|_{k}^{*}=\sup \left\{\phi_{j j} j^{-2 k}: j \in \mathbb{N}\right\} .
$$

4. Construction

In this final section we provide a way of decomposing a self-adjoint functional on the noncommutative Schwartz space into a difference of two positive functionals. We will also show that it is minimal in the following, natural sense. Suppose that $\phi=\phi_{+}-\phi_{-}$is such a decomposition. We will say that it is minimal if any other decomposition $\phi=\phi_{1}-\phi_{2}$ of a self-adjoint $\phi \in \mathcal{S}^{\prime}$ into a difference of two positive functionals $\phi_{1}, \phi_{2} \in \mathcal{S}^{\prime}$ with the additional property $\phi_{1} \leq \phi_{+}, \phi_{2} \leq \phi_{-}$implies that $\phi_{1}=$
$\phi_{+}, \phi_{2}=\phi_{-}$. For the purpose of this construction, we denote by $\mathbf{0}_{m, n}, 1 \leq m, n \leq \infty$, the $m \times n$ matrix of zeros. An element $\phi \in \mathcal{S}^{\prime}$ of the form

$$
\left(\right)
$$

where nonzero elements run east and south of the (k, k) th entry, will be called a corner matrix.

Step 1. Particular case. We start our construction with a self-adjoint corner matrix

$$
\phi=\left(\begin{array}{cccc}
\xi_{1} & \xi_{2} & \xi_{3} & \cdots \\
\bar{\xi}_{2} & & & \\
\bar{\xi}_{3} & & \mathbf{0}_{\infty, \infty} & \\
\vdots & & &
\end{array}\right)
$$

for some $\xi \in s^{\prime}$. Now we define

$$
\psi:=\left(\psi_{i j}\right)_{i, j \in \mathbb{N}}=\left(\begin{array}{cccc}
\max \left\{1, \xi_{1}^{2}\right\} & \xi_{2} & \xi_{3} & \cdots \\
\bar{\xi}_{2} & & & \\
\bar{\xi}_{3} & \left(\bar{\xi}_{i} \xi_{j}\right)_{i, j>1} & & \\
\vdots & & &
\end{array}\right) .
$$

Obviously, $\psi \in \mathcal{S}^{\prime}$, since

$$
\|\psi\|_{k}^{*} \leq \max \left\{|\xi|_{k}^{\prime},|\xi|_{k}^{\prime 2}\right\}
$$

and $\xi \in s^{\prime}$. Let now $\psi^{n} \in \mathcal{S}$ be the nth truncation of ψ and take an arbitrary $\eta \in s^{\prime}$. Then

$$
\left\langle\psi^{n} \eta, \eta\right\rangle \geq\left|\sum_{j=1}^{n} \psi_{1 j} \eta_{j}\right|^{2} \geq 0
$$

Therefore, $\psi^{n}=u_{n} \psi u_{n} \geq 0$ for every $n \in \mathbb{N}$ (as an element of \mathcal{S}). Consequently, by Proposition 3.1, $\psi \geq 0$. Similarly, we can show that $\psi-\phi \geq 0$. Finally,

$$
\phi=\psi-(\psi-\phi)
$$

is a decomposition of a corner matrix into a difference of two positive functionals.
Step 2. General case. Let now $\phi=\left(\phi_{i j}\right)_{i, j \in \mathbb{N}}$ be an arbitrary self-adjoint functional on the noncommutative Schwartz space and denote by $\left(e_{i j}\right)_{i, j \in \mathbb{N}}$ the sequence of matrix units. That is, $e_{i j}$ is an infinite matrix with one in the (i, j) th entry and zeros elsewhere. We now represent ϕ as an infinite sum of self-adjoint corner matrices. More precisely,

$$
\phi=\sum_{k=1}^{+\infty}\left(\phi_{k k} e_{k k}+\sum_{j=k+1}^{+\infty}\left(\phi_{k j} e_{k j}+\phi_{j k} e_{j k}\right)\right)=: \sum_{k=1}^{+\infty} \phi^{k},
$$

where each ϕ^{k} is a corner matrix. We now apply to those corner matrices the procedure from Step 1. This leads to

$$
\phi_{+}^{k}=\left(\right)
$$

and

$$
\phi_{-}^{k}=\left(\right) \text {, }
$$

where, for all $k \in \mathbb{N}$, we have $\phi_{+}^{k}, \phi_{-}^{k} \geq 0$ and $\phi^{k}=\phi_{+}^{k}-\phi_{-}^{k}$. Finally, we define

$$
\phi_{+}:=\sum_{k=1}^{+\infty} \phi_{+}^{k} \quad \text { and } \quad \phi_{-}:=\sum_{k=1}^{+\infty} \phi_{-}^{k} .
$$

Obviously, ϕ_{+}and ϕ_{-}are positive, as sums of positive functionals. If we show that these two matrices are slowly increasing, then we will obtain a decomposition $\phi=\phi_{+}-\phi_{-}$into a difference of two positive functionals. To this end, we rewrite $\phi_{+}=\left(\psi_{i j}\right)_{i, j \in \mathbb{N}}$ in the following form:

$$
\psi_{i j}= \begin{cases}\phi_{1 j} & \text { if } i=1, \\ \phi_{i 1} & \text { if } j=1, \\ \max \left\{1, \phi_{j j}^{2}\right\}+\sum_{k=1}^{j-1}\left|\phi_{j k}\right|^{2} & \text { if } i=j>1, \\ \phi_{i j}+\sum_{k=1}^{\min \{i, j\}-1} \phi_{i k} \phi_{k j} & \text { if } i, j>1, i \neq j\end{cases}
$$

Since $\phi \in \mathcal{S}^{\prime}$, there is an $m \in \mathbb{N}$ such that

$$
\|\phi\|_{m}^{*}=\sup _{i, j \in \mathbb{N}}\left\{\left|\phi_{i j}\right|(i j)^{-m}\right\}<+\infty .
$$

Equivalently, there exist $m \in \mathbb{N}$ and a constant $C \geq 1$ such that, for all $i, j \in \mathbb{N}$,

$$
\left|\phi_{i j}\right| \leq C(i j)^{m} .
$$

We divide the calculations into three cases:
(i) $\quad i=1$ or $j=1$:

$$
\left|\psi_{1 j}\right|=\left|\phi_{1 j}\right| \leq C j^{m}, \quad\left|\psi_{i 1}\right|=\left|\phi_{i 1}\right| \leq C i^{m} ;
$$

(ii) $i=j>1$:

$$
\left|\psi_{j j}\right| \leq \max \left\{1, \phi_{j j}^{2}\right\}+C^{2} \sum_{k=1}^{j-1}(j k)^{m} \leq C^{2}\left(j^{4 m}+j^{4 m+1}\right) \leq 2 C^{2} j^{4 m+1}
$$

(iii) $i \neq j, i, j>1$:

$$
\left|\psi_{i j}\right| \leq\left|\phi_{i j}\right|+C^{2} \sum_{k=1}^{\min \{i, j\}}(i k)^{m}(k j)^{m} \leq C^{2}\left((i j)^{m}+i i^{2 m} j^{2 m}\right) \leq 2 C^{2}(i j)^{2 m+1}
$$

In all cases we get $\left|\psi_{i j}\right| \leq 2 C^{2}(i j)^{2 m+1}$. Therefore, $\left\|\phi_{+}\right\|_{2 m+1}^{*}<+\infty$ and, consequently, $\phi_{+} \in \mathcal{S}^{\prime}$. Finally, $\phi_{-}=\phi_{+}-\phi \in \mathcal{S}^{\prime}$ and we get the desired decomposition.

Step 3. Minimality. Let $\phi \in \mathcal{S}^{\prime}$ be a self-adjoint functional on the noncommutative Schwartz space and define

$$
Z_{\phi}:=\left\{\left(\phi_{1}, \phi_{2}\right): \phi_{1}, \phi_{2} \in \mathcal{S}_{+}^{\prime}, \phi=\phi_{1}-\phi_{2}\right\} .
$$

By Step 2 of the above construction, Z_{ϕ} is nonempty for every $\phi \in \mathcal{S}^{\prime}$. We define in Z_{ϕ} a partial order relation as follows:

$$
\left(\phi_{1}, \phi_{2}\right) \leq\left(\psi_{1}, \psi_{2}\right) \Leftrightarrow \phi_{1} \leq \psi_{1} \wedge \phi_{2} \leq \psi_{2} .
$$

Let now $\left(\psi_{\alpha}, \psi_{\alpha}\right)_{\alpha}$ be a chain in Z_{ϕ}. For every $x \in \mathcal{S}_{+}$, the net $\left(\phi_{\alpha}(x)\right)_{\alpha}$ is nonincreasing and bounded from below (by zero). Consequently, $\lim _{\alpha} \phi_{\alpha}(x)$ exists for every positive element x in the noncommutative Schwartz space. By [11, Proposition 3(v)], positive elements span the whole of \mathcal{S} and therefore we may define

$$
\phi_{+}(y):=\lim _{\alpha} \phi_{\alpha}(y), \quad y \in \mathcal{S} .
$$

Similarly,

$$
\phi_{-}(y):=\lim _{\alpha} \psi_{\alpha}(y), \quad y \in \mathcal{S} .
$$

Obviously, $\phi=\phi_{+}-\phi_{-}$and $\phi_{+}, \phi_{-} \geq 0$. It is also not difficult to see that $\left(\phi_{+}, \phi_{-}\right) \in Z_{\phi}$ is an upper bound for the chain $\left(\psi_{\alpha}, \psi_{\alpha}\right)_{\alpha}$. Now an application of the Kuratowski-Zorn lemma gives us a minimal element in Z_{ϕ}.

We may now state the main result of this section.
Theorem 4.1. Every continuous, linear and self-adjoint functional on the noncommutative Schwartz space admits a minimal decomposition into a difference of two positive functionals.

Remark. The above construction can by no means be thought of as unique. For, if we take an $n \times n$ matrix

$$
\phi:=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0 \\
& & \ldots & & \\
1 & 0 & 0 & \ldots & 0
\end{array}\right),
$$

then Step 2 of our construction leads to

$$
\phi=\left(\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & \ddots & \vdots \\
1 & \ldots & 1
\end{array}\right)-\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ldots & 1 \\
& & \ldots & & \\
0 & 1 & 1 & \ldots & 1
\end{array}\right)
$$

This decomposition is not minimal, since we also have

$$
\phi=\left(\begin{array}{ccc}
\frac{1}{2} & \ldots & \frac{1}{2} \\
\vdots & \ddots & \vdots \\
\frac{1}{2} & \ldots & \frac{1}{2}
\end{array}\right)-\left(\begin{array}{ccccc}
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \ldots & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \ldots & \frac{1}{2} \\
& & \ldots & & \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \ldots & \frac{1}{2}
\end{array}\right) .
$$

Some easy (but tedious) calculations show that this last decomposition is minimal. However, the spectral decomposition (which is also minimal) gives us

$$
\begin{aligned}
\phi & =\left(\begin{array}{ccccc}
\frac{\sqrt{n-1}}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2 \sqrt{n-1}} & \frac{1}{2 \sqrt{n-1}} & \cdots & \frac{1}{2 \sqrt{n-1}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{n-1}} & \frac{1}{2 \sqrt{n-1}} & \cdots & \frac{1}{2 \sqrt{n-1}}
\end{array}\right) \\
& -\left(\begin{array}{ccccc}
\frac{\sqrt{n-1}}{2} & -\frac{1}{2} & -\frac{1}{2} & \cdots & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2 \sqrt{n-1}} & \frac{1}{2 \sqrt{n-1}} & \cdots & \frac{1}{2 \sqrt{n-1}} \\
-\frac{1}{2} & \frac{1}{2 \sqrt{n-1}} & \frac{1}{2 \sqrt{n-1}} & \cdots & \frac{1}{2 \sqrt{n-1}}
\end{array}\right) .
\end{aligned}
$$

References

[1] J.-B. Bost, 'Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs', Invent. Math. 101(2) (1990), 261-333.
[2] T. Ciaś, 'On the algebra of smooth operators', Studia Math. 218(2) (2013), 145-166.
[3] J. Cuntz, 'Cyclic theory and the bivariant Chern-Connes character', in: Noncommutative Geometry, Lecture Notes in Mathematics, 1831 (Springer, Berlin, 2004), 73-135.
[4] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24 (Clarendon Press and Oxford University Press, New York, 2000), Oxford Science.
[5] P. Domański, 'Algebra of smooth operators', http://main3.amu.edu.pl/~domanski/salgebra1.pdf.
[6] G. A. Elliott, T. Natsume and R. Nest, 'Cyclic cohomology for one-parameter smooth crossed products', Acta Math. 160(3-4) (1988), 285-305.
[7] H. Jarchow, Locally Convex Spaces, Mathematische Leitfäden [Mathematical Textbooks] (Teubner, Stuttgart, 1981).
[8] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, 2 (Clarendon Press and Oxford University Press, New York, 1997), translated from the German by M. S. Ramanujan and revised by the authors.
[9] N. C. Phillips, 'K-theory for Fréchet algebras', Internat. J. Math. 2(1) (1991), 77-129.
[10] A. Yu. Pirkovskii, 'Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities', Homology Homotopy Appl. 11(1) (2009), 81-114.
[11] K. Piszczek, 'Automatic continuity and amenability in the noncommutative Schwartz space', submitted.
[12] L. B. Schweitzer, 'Spectral invariance of dense subalgebras of operator algebras', Internat. J. Math. 4(2) (1993), 289-317.

KRZYSZTOF PISZCZEK, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, ul. Umultowska 87, 61-614 Poznań, Poland e-mail: kpk@amu.edu.pl

[^0]: The research of the author has been supported in the years 2011-2014 by the National Center of Science, Poland, grant no. N N201 605340.
 (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

