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Abstract

We show that every continuous self-adjoint functional on the noncommutative Schwartz space can be
decomposed into a difference of two positive functionals. Moreover, this decomposition is minimal in the
natural sense.
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1. Introduction

The aim of this paper is to investigate one concrete object, the so-called
noncommutative Schwartz space—denoted by S. We describe this Fréchet *-algebra
in the next section. This object has been studied in several contexts and received
reasonable attention, so far. It appears, for instance, in K-theory (see [3, 9]) and in
cyclic cohomology for crossed products [6, 12]. Investigation of this object continues.
Recently, Ciaś and the present author have obtained several further results. Ciaś, using
purely Fréchet space tools, showed in [2] that the noncommutative Schwartz space
admits a functional calculus and characterised closed, commutative *-subalgebras
of S. In [11], the present author showed that every positive linear functional on S
as well as every derivation from S into any S-bimodule is automatically continuous.
This paper deals also with amenability properties of the noncommutative Schwartz
space. Although S is not amenable (see [10, Theorem 9.7] and [11, Proposition 2]),
it turns out that it is approximately amenable [11, Theorem 21]. The present paper
is a continuation of this research. The aim is to provide a way of decomposing a
continuous and self-adjoint functional on the noncommutative Schwartz space into a
difference of two positive functionals.

The paper is divided into four parts. In Section 2, we recall the definition of the
noncommutative Schwartz space and give basic notation. Section 3 deals with the
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dual of the noncommutative Schwartz space. Section 4 provides a construction of the
above-mentioned decomposition.

For unexplained details we refer the reader to [8] for the structure theory of Fréchet
spaces and to [4] for the ‘algebraic-in-flavour’ aspects of the paper.

2. Preliminaries

Throughout the paper we denote N := {1, 2, 3, . . .} and N0 := N ∪ {0}. Next we
recall that

s =

{
ξ = (ξ j) j∈N ⊂ C

N : |ξ|2k :=
+∞∑
j=1

|ξ j|
2 j2k < +∞ for all k ∈ N0

}
and its topological dual

s′ =

{
η = (η j) j∈N ⊂ C

N : |η|′2k :=
+∞∑
j=1

|η j|
2 j−2k < +∞ for some k ∈ N0

}
are the so-called spaces of rapidly decreasing and slowly increasing sequences,
respectively. We consider the space S := L(s′, s) of linear and continuous operators
from the dual of s into s with the topology of uniform convergence on bounded sets.
It is possible to turn this space into a locally multiplicatively convex (LMC for short)
Fréchet ∗-algebra by the use of the isomorphism

S ' K∞ :=
{
x = (xi, j)i, j∈N : ‖x‖2n :=

∞∑
i, j=1

|xi, j|
2(i j)2n < +∞ for all n ∈ N0

}
.

The algebra S will be called the noncommutative Schwartz space and we refer the
reader to [11] for more information on the properties of this algebra.

3. Dual of the noncommutative Schwartz space

The topological dual of S has several natural representations. Observe first that by
[8, Proposition 28.16], s is nuclear and so by [7, 21.2.2] it has the approximation
property. Consequently, finite-rank operators are dense in L(s′, s). Therefore, by
[7, 15.3.4 and 16.1.4] the map

x ⊗ y 7→
(
x′ 7→ 〈x, x′〉y

)
extends to a topological isomorphism

χ : s ⊗ s→ S.

Now, applying [7, 16.1.7], we can observe that

S′ = L(s′, s)′ = (s ⊗ s)′ = s′ ⊗ s′ = L(s, s′).
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We can also view S′ as the space of matrices. Recall that S ' K∞ consists of the
so-called rapidly decreasing matrices, that is an infinite matrix x = (xi j)i, j∈N belongs
to S if and only if sup{|xi j|(i j)k : i, j ∈ N} is finite for every k ∈ N0. Since, by
[8, definition on page 326], S is a Köthe sequence space, we can use [8, Lemma
27.11] to observe that S′ is again a space of matrices, the so-called slowly increasing
ones. More precisely,

S′ =
{
φ = (φi j)i, j∈N | sup{|φi j|(i j)−k : i, j ∈ N} < +∞ for some k ∈ N0

}
.

The duality in the matrix language is given by the trace, that is, if x ∈ S, φ ∈ S′,
then

φ(x) := 〈〈x, φ〉〉 =

+∞∑
i, j=1

xi jφi j.

Analogously to the continuous inclusion s ↪→ s′, also for matrices we easily observe
that S ↪→ S′ continuously. This shows in particular that every rapidly decreasing
matrix is a functional on S.

Observe now that the order in S is inherited from B(`2). This is a consequence of
a continuous inclusion S ↪→ B(`2) and [1, Proposition A.2.8] (see [5, Corollary 2.5]).
Therefore, we can use this order to define positive functionals on the noncommutative
Schwartz space. To this end, let φ ∈ S′. We say that it is positive if it maps positive
elements into nonnegative numbers, that is, φ(x) ≥ 0 for every x ≥ 0 in S. By S′+,
we denote the cone of positive functionals on the noncommutative Schwartz space.
We can also define self-adjoint functionals in the usual manner. First we define

φ∗(x) := φ(x∗), x ∈ S

and we say that φ is self adjoint if φ = φ∗. As in the C∗-algebra case, we can easily
show that φ is self adjoint if and only if φ(x) is real for any self-adjoint x ∈ S. If
we represent φ ∈ S′ as a matrix, then φ∗ is represented by the transposed complex-
conjugate matrix. Self adjointness of φ ∈ S′ means that the representing matrix is self
adjoint.

Let us now give several ‘easy-to-obtain’ consequences of the above definition. In
what follows, un stands for the infinite matrix

(In 0
0 0

)
with In being the n × n identity

map. Consequently, unφun (being the matrix multiplication) is the nth truncation of φ.

Proposition 3.1. Let φ be a functional on the noncommutative Schwartz space.

(i) If φ is a rapidly decreasing matrix, then φ ≥ 0 in S′ if and only if φ ≥ 0 in S.
(ii) φ ≥ 0 if and only if unφun ≥ 0 for every n ∈ N.

Proof. (i) Suppose that φ ≥ 0 in S and take a positive y ∈ S. By [11, Proposition 3(ii)],
y = xx∗ for some x ∈ S. Since xx∗ = (

∑
k xik x jk)i, j,

φ(xx∗) =

+∞∑
i, j=1

φi j

+∞∑
k=1

xik x jk =

+∞∑
k=1

〈ξk, φξk〉,
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where ξk = (x jk) j∈N ∈ s′. By [11, Proposition 3(viii)], 〈ξ, φξ〉 ≥ 0 for every ξ ∈ s′ and,
finally, φ ≥ 0 in S′.

Let now φ ≥ 0 in S′ and take an arbitrary ξ ∈ s′. Then

〈φξ, ξ〉 = lim
n→+∞

〈φunξ, unξ〉.

Now, for every n ∈ N, define the infinite matrix xn ∈ S by

xn :=

ξ1 . . . ξn 0 0 . . .
0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . .

 .
By assumption, φ ≥ 0 in S′ and therefore φ(x∗nxn) ≥ 0 for every n ∈ N. Since φ(x∗nxn) =

〈φunξ, unξ〉, we obtain 〈φξ, ξ〉 ≥ 0. Consequently, by [11, Proposition 3(viii)], φ ≥ 0
in S.

(ii) Suppose that φ ≥ 0. Then, for any n ∈ N, unφun and arbitrary x ≥ 0 in S,

〈〈unφun, x〉〉 = 〈〈φ, unxun〉〉.

By [11, Proposition 3(viii)], x ≥ 0 if and only if unxun ≥ 0 for all n ∈ N and,
consequently, unφun ≥ 0 in S′. Suppose now that the converse holds. Then for any
x ∈ S we have

〈〈φ, x〉〉 = lim
n→+∞

〈〈unφun, x〉〉.

Applying this to x ≥ 0, we get the conclusion. �

Recall that an infinite matrix φ ∈ S′ if and only if

‖φ‖∗k := sup{|φi j|(i j)−k : i, j ∈ N} < +∞

for some k ∈ N0. Repeating the proof of [11, Lemma 5], we get the following result.

Proposition 3.2. Suppose that φ = (φi j)i, j∈N is a positive functional on the
noncommutative Schwartz space. Then

‖φ‖∗k = sup{φ j j j−2k : j ∈ N}.

4. Construction

In this final section we provide a way of decomposing a self-adjoint functional
on the noncommutative Schwartz space into a difference of two positive functionals.
We will also show that it is minimal in the following, natural sense. Suppose that
φ = φ+ − φ− is such a decomposition. We will say that it is minimal if any other
decomposition φ = φ1 − φ2 of a self-adjoint φ ∈ S′ into a difference of two positive
functionals φ1, φ2 ∈ S

′ with the additional property φ1 ≤ φ+, φ2 ≤ φ− implies that φ1 =
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φ+, φ2 = φ−. For the purpose of this construction, we denote by 0m,n, 1 ≤ m, n ≤ ∞, the
m × n matrix of zeros. An element φ ∈ S′ of the form

0k−1,k−1 0k−1,∞

ξkk ξk,k+1 ξk,k+2 . . .
0∞,k−1 ξk+1,k

ξk+2,k 0∞,∞
...


,

where nonzero elements run east and south of the (k, k)th entry, will be called a corner
matrix.

Step 1. Particular case. We start our construction with a self-adjoint corner matrix

φ =


ξ1 ξ2 ξ3 . . .

ξ2

ξ3 0∞,∞
...


for some ξ ∈ s′. Now we define

ψ := (ψi j)i, j∈N =


max{1, ξ2

1} ξ2 ξ3 . . .

ξ2

ξ3 (ξiξ j)i, j>1
...

 .
Obviously, ψ ∈ S′, since

‖ψ‖∗k ≤ max{|ξ|′k, |ξ|
′2
k }

and ξ ∈ s′. Let now ψn ∈ S be the nth truncation of ψ and take an arbitrary η ∈ s′. Then

〈ψnη, η〉 ≥
∣∣∣∣ n∑

j=1

ψ1 jη j

∣∣∣∣2 ≥ 0.

Therefore, ψn = unψun ≥ 0 for every n ∈ N (as an element of S). Consequently, by
Proposition 3.1, ψ ≥ 0. Similarly, we can show that ψ − φ ≥ 0. Finally,

φ = ψ − (ψ − φ)

is a decomposition of a corner matrix into a difference of two positive functionals.

Step 2. General case. Let now φ = (φi j)i, j∈N be an arbitrary self-adjoint functional on
the noncommutative Schwartz space and denote by (ei j)i, j∈N the sequence of matrix
units. That is, ei j is an infinite matrix with one in the (i, j)th entry and zeros elsewhere.
We now represent φ as an infinite sum of self-adjoint corner matrices. More precisely,

φ =

+∞∑
k=1

(
φkkekk +

+∞∑
j=k+1

(φk jek j + φ jke jk)
)

=:
+∞∑
k=1

φk,
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where each φk is a corner matrix. We now apply to those corner matrices the procedure
from Step 1. This leads to

φk
+ =



0k−1,k−1 0k−1,∞

max{1, φ2
kk} φk,k+1 φk,k+2 . . .

0∞,k−1 φk+1,k
φk+2,k (φikφk j)i, j>k
...


and

φk
− =



0k−1,k−1 0k−1,∞

max{1, φ2
kk} − φkk 0 0 . . .

0∞,k−1 0
0 (φikφk j)i, j>k
...


,

where, for all k ∈ N, we have φk
+, φ

k
− ≥ 0 and φk = φk

+ − φ
k
−. Finally, we define

φ+ :=
+∞∑
k=1

φk
+ and φ− :=

+∞∑
k=1

φk
−.

Obviously, φ+ and φ− are positive, as sums of positive functionals. If we show
that these two matrices are slowly increasing, then we will obtain a decomposition
φ = φ+ − φ− into a difference of two positive functionals. To this end, we rewrite
φ+ = (ψi j)i, j∈N in the following form:

ψi j =



φ1 j if i = 1,
φi1 if j = 1,

max{1, φ2
j j} +

j−1∑
k=1

|φ jk|
2 if i = j > 1,

φi j +

min{i, j}−1∑
k=1

φikφk j if i, j > 1, i , j.

Since φ ∈ S′, there is an m ∈ N such that

‖φ‖∗m = sup
i, j∈N
{|φi j|(i j)−m} < +∞.

Equivalently, there exist m ∈ N and a constant C ≥ 1 such that, for all i, j ∈ N,

|φi j| ≤ C(i j)m.

We divide the calculations into three cases:

(i) i = 1 or j = 1:
|ψ1 j| = |φ1 j| ≤ C jm, |ψi1| = |φi1| ≤ Cim;
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(ii) i = j > 1:

|ψ j j| ≤ max{1, φ2
j j} + C2

j−1∑
k=1

( jk)m ≤ C2( j4m + j4m+1) ≤ 2C2 j 4m+1;

(iii) i , j, i, j > 1:

|ψi j| ≤ |φi j| + C2
min{i, j}∑

k=1

(ik)m(k j)m ≤ C2((i j)m + ii2m j2m) ≤ 2C2(i j)2m+1.

In all cases we get |ψi j| ≤ 2C2(i j)2m+1. Therefore, ‖φ+‖
∗
2m+1 < +∞ and, consequently,

φ+ ∈ S
′. Finally, φ− = φ+ − φ ∈ S

′ and we get the desired decomposition.

Step 3. Minimality. Let φ ∈ S′ be a self-adjoint functional on the noncommutative
Schwartz space and define

Zφ := {(φ1, φ2) : φ1, φ2 ∈ S
′
+, φ = φ1 − φ2}.

By Step 2 of the above construction, Zφ is nonempty for every φ ∈ S′. We define in Zφ
a partial order relation as follows:

(φ1, φ2) ≤ (ψ1, ψ2)⇔ φ1 ≤ ψ1 ∧ φ2 ≤ ψ2.

Let now (ψα, ψα)α be a chain in Zφ. For every x ∈ S+, the net (φα(x))α is nonincreasing
and bounded from below (by zero). Consequently, limα φα(x) exists for every positive
element x in the noncommutative Schwartz space. By [11, Proposition 3(v)], positive
elements span the whole of S and therefore we may define

φ+(y) := lim
α
φα(y), y ∈ S.

Similarly,
φ−(y) := lim

α
ψα(y), y ∈ S.

Obviously, φ = φ+ − φ− and φ+, φ− ≥ 0. It is also not difficult to see that (φ+, φ−) ∈ Zφ
is an upper bound for the chain (ψα, ψα)α. Now an application of the Kuratowski–Zorn
lemma gives us a minimal element in Zφ.

We may now state the main result of this section.

Theorem 4.1. Every continuous, linear and self-adjoint functional on the non-
commutative Schwartz space admits a minimal decomposition into a difference of two
positive functionals.

Remark. The above construction can by no means be thought of as unique. For, if we
take an n × n matrix

φ :=


0 1 1 . . . 1
1 0 0 . . . 0

. . .
1 0 0 . . . 0

 ,
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then Step 2 of our construction leads to

φ =


1 . . . 1
...

. . .
...

1 . . . 1

 −

1 0 0 . . . 0
0 1 1 . . . 1

. . .
0 1 1 . . . 1

 .
This decomposition is not minimal, since we also have

φ =


1
2 . . . 1

2
...

. . .
...

1
2 . . . 1

2

 −


1
2 − 1

2 − 1
2 . . . − 1

2

− 1
2

1
2

1
2 . . . 1

2
. . .

− 1
2

1
2

1
2 . . . 1

2

 .
Some easy (but tedious) calculations show that this last decomposition is minimal.
However, the spectral decomposition (which is also minimal) gives us

φ =



√
n − 1
2

1
2

1
2

. . .
1
2

1
2

1

2
√

n − 1

1

2
√

n − 1
. . .

1

2
√

n − 1
. . .

1
2

1

2
√

n − 1

1

2
√

n − 1
. . .

1

2
√

n − 1



−



√
n − 1
2

−
1
2

−
1
2

. . . −
1
2

−
1
2

1

2
√

n − 1

1

2
√

n − 1
. . .

1

2
√

n − 1
. . .

−
1
2

1

2
√

n − 1

1

2
√

n − 1
. . .

1

2
√

n − 1


.
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