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A variational theory of lift
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In this paper we revive a special, less-common, variational principle in analytical
mechanics (Hertz’ principle of least curvature) to develop a novel variational analogue
of Euler’s equations for the dynamics of an ideal fluid. The new variational formulation
is fundamentally different from those formulations based on Hamilton’s principle of least
action. Using this new variational formulation, we generalize the century-old problem of
the flow over a two-dimensional body; we developed a variational closure condition that
is, unlike the Kutta condition, derived from first principles. The developed variational
principle reduces to the classical Kutta–Zhukovsky condition in the special case of a
sharp-edged airfoil, which challenges the accepted wisdom about the Kutta condition
being a manifestation of viscous effects. Rather, we found that it represents conservation
of momentum. Moreover, the developed variational principle provides, for the first
time, a theoretical model for lift over smooth shapes without sharp edges where the
Kutta condition is not applicable. We discuss how this fundamental divergence from
current theory can explain discrepancies in computational studies and experiments with
superfluids.

Key words: general fluid mechanics, variational methods

1. Introduction: meager state of theoretical modelling of aerodynamics

The problem of the flow over a lifting airfoil is a century-old, classical textbook problem in
aerodynamics and fluid mechanics (Karamcheti 1966; Schlichting & Truckenbrodt 1979;
Milne-Thomson 1996). The problem is analytically solvable thanks to three elements. First,
the potential flow around a circular cylinder is readily known since the 1877 seminal
paper of Lord Rayleigh (1877). Second, the Riemann mapping theorem (dating back to
Riemann’s PhD dissertation 1851) ensures that any simply connected domain can be
(biholomorphically) mapped to the open disc. So, the flow around any two-dimensional
shape can be easily constructed from the cylinder flow via conformal mapping between the
cylinder and the shape of interest. However, this solution is not unique. One can always add
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a circulation of arbitrary strength at the centre of the cylinder, which does not affect the
no-penetration boundary condition at all. Interestingly, this circulation is of paramount
importance for lift production; in fact, it solely dictates the amount of lift generated.
Therefore, the potential-flow theory alone cannot predict the generated lift force; a closure
condition must be provided to fix the dynamically correct amount of circulation. The
third element is the Kutta–Zhukovsky condition, which has traditionally provided such
a closure.

The Kutta condition is quite intuitive: if the body has a sharp trailing edge leading to a
singularity, then the circulation must be set to remove such a singularity; it is a singularity
removal condition (Crighton 1985). It is quite accurate for a steady flow (at a high Reynolds
number and a small angle of attack); indeed, it is a paradigm for engineering ingenuity
where an enabling mathematical condition is inferred from physical observations.

Interestingly, if one wishes to consider a smooth trailing edge, however small the trailing
radius (i.e. however close to a sharp trailing edge), the classical aerodynamic theory
collapses; there are no theoretical models that can predict lift on a two-dimensional smooth
body without sharp edges! (Only a few ad-hoc methods with no theoretical basis.) In fact,
some authors even consider the sharp edge as a lifting mechanism; i.e. an airfoil must have
a sharp trailing edge to generate lift (Hoffman, Jansson & Johnson 2016).

For unsteady flows, the status of current aerodynamic theory is even worse. Kutta never
claimed that his condition works for unsteady flows; in fact, for an unsteady case, it is
already known that, in the early transient period after an impulsive start, the flow goes
around the trailing edge from the lower surface to the upper surface (see Tietjens & Prandtl
(1934), pp. 158–168; Goldstein (1938), pp. 26–36; Schlichting & Truckenbrodt (1979),
pp. 33–35). That is, since more than a century, it is known that the Kutta condition is not
generally applicable to unsteady flows (even for airfoils with sharp trailing edges at small
angles of attack). This is why numerous research reports have criticized the application
of the Kutta condition to unsteady flows (Woolston & Castile 1951; Rott & George 1955;
Abramson & Chu 1959; Chu & Abramson 1959; Chu 1961; Henry 1961; Shen & Crimi
1965; Abramson, Chu & Irick 1967; Orszag & Crow 1970; Basu & Hancock 1978; Daniels
1978; Satyanarayana & Davis 1978; Savage, Newman & Wong 1979; Bass, Johnson &
Unruh 1982; Crighton 1985), including the recent efforts of Xia & Mohseni (2017), Taha
& Rezaei (2019) and Zhu et al. (2020) among others. Nevertheless, almost all unsteady
models, starting with the pioneering efforts in the 1920s and 1930s of Wagner (1925),
Theodorsen (1935) and Von Kármán & Sears (1938) until the recent work of Baddoo,
Hajian & Jaworski (2021), adopted the Kutta condition. There is no legitimate alternative!
So, what we have is a meager state of knowledge and a very confined capability of
aerodynamic theoretical modelling: we can only analyse steady flow at a small angle on
a body with a sharp trailing edge! Basically, the aerodynamic theory is encumbered with
the Kutta condition; it is applicable whenever the latter is befitting. It is clear that we lack
a general theory for lift computation – equivalently a general closure principle, alternative
to Kutta’s, for potential flow.

The above discussion is intimately related to the lifting mechanism. The accepted
wisdom by the fluid mechanics community asserts that the Kutta condition is a
manifestation of viscous effects – it implicitly accounts for viscous effects in a
potential-flow formulation. In fact, this view has been challenged by several authors
(Hoffren 2000; Hoffman et al. 2016), but without providing a mathematical proof or
theoretical basis. It may be the right time to recall Chang’s 2003 New York Times
article: What Does Keep Them Up There? (Chang 2003): ‘To those who fear flying, it is
probably disconcerting that physicists and aeronautical engineers still passionately debate
the fundamental issue underlying this endeavour: what keeps planes in the air?’.
941 A58-2
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In this paper we revive a special variational principle from the history of analytical
mechanics: Hertz’ principle of least curvature. Exploiting such a variational principle,
we develop a novel variational formulation of Euler’s equations for the dynamics of
ideal fluids where the Appellian (integral of squared acceleration) is minimized. The new
variational formulation is fundamentally different from the several developments based on
Hamilton’s principle of least action (Hargreaves 1908; Bateman 1929; Herivel 1955; Serrin
1959; Penfield 1966; Luke 1967; Seliger & Whitham 1968; Bretherton 1970; Salmon 1988;
Loffredo 1989). It even transcends Euler’s equation in some singular cases where the latter
does not provide a unique solution, such as the airfoil problem.

Applying the developed variational formulation to the century-old problem of the flow
over an airfoil, we develop a new variational theory of lift that dispenses with the Kutta
condition. The Hertz principle of least curvature is used, as a first principle, to develop,
for the first time, a closure condition alternative to Kutta’s for the potential flow over
an airfoil. In contrast to the Kutta condition, the developed closure condition is derived
from first principles. The new variational condition reduces to the Kutta condition in
the special case of a sharp-edged airfoil, which challenges the accepted wisdom about
the Kutta condition being a manifestation of viscous effects. Rather, it is found that the
Kutta condition is a momentum conservation mechanism for the inviscid flow over a
sharp-edged airfoil. Moreover, the developed theory, unlike the classical theory, allows
treatment of smooth, singularity-free shapes. Using this new theory, we resolve the
seeming contradiction between various results in literature about the lifting capability
of superfluids. We provide conditions on the geometry of the body to generate lift in a
superfluid.

2. Lack of dynamical features in the current theory of aerodynamics: variational
formulation is the panacea

To solve for the flow field of an incompressible fluid, both the continuity (kinematics) and
momentum (dynamics) equations must be solved simultaneously. However, in potential
flow the governing equation is the Laplacian in the velocity potential (∇2φ = 0), which is
obtained by combining the continuity equation (a divergence-free constraint: ∇ · u = 0)
with an irrotational-flow assumption (a curl-free constraint: ∇ × u = 0). These are
kinematic constraints on the velocity field u. Then, the momentum equation (Bernoulli’s
in this case) is considered next to solve for the pressure field. That is, in potential flow the
flow kinematics is decoupled from the flow dynamics; the velocity field is determined from
purely kinematic analysis without any consideration for dynamical aspects. Therefore,
it is fair to expect that such a pure kinematic analysis is not sufficient to uniquely
determine the flow field. Hence, the fix must come from a dynamical consideration.
Note that this is not the case for three-dimensional flows because the domain enclosing a
three-dimensional surface is simply connected while that around a two-dimensional object
is doubly connected: a closed circuit around the three-dimensional surface is a reducible
circuit while that around a two-dimensional object is irreducible; there is no means to
determine the circulation of an irrotational flow around an irreducible circuit in a doubly
connected region (Karamcheti 1966, pp. 259–260).

It may be interesting to point out that the circulation is actually a dynamical quantity; it is
directly related to the lift force (i.e. pressure distribution). This is consistent with the recent
effort of Hemati, Eldredge & Speyer (2014) who showed that when a potential-flow solver
is fed with measurements of the total lift force, the resulting potential-flow field is quite
close to the actual flow field even at unsteady high-angle-of-attack situations. However, the
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(a) (b)
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Figure 1. A schematic diagram for 100 particles in the plane that are rigidly connected such that only three
degrees of freedom q1, q2, q3 are left, along with the free body diagram of the ith particle. Here F i is an
applied/impressed force whereas Ri is a constraint force whose sole role is to maintain kinematic constraints.
(a) Schematic of 100 rigidly connected particles, (b) free body diagram of the ith particle.

generated lift forces are essentially unknowns, in fact, the primary unknowns of interest to
an aerodynamicist.

Based on the above discussion, a proper closure condition (i.e. a condition that provides
circulation dynamics) in potential flow must come from dynamical considerations. The
challenge is: Can we project Euler’s dynamical equations on a one-dimensional manifold
to extract the dynamics of circulation alone?

Dynamical equations of motion can be determined either from a Newtonian mechanics
perspective or an analytical mechanics one. The former stipulates isolating fluid particles
and writing equations of motion for each individual particle even if the free variables
in the system are significantly fewer than the total number of spatial coordinates of all
individual particles due to kinematic or geometric constraints. For example, let us assume
a simple mechanics problem of 100 particles in the plane (i.e. 200 degrees of freedom for
the particles), but are rigidly connected (i.e. subject to kinematic constraints) in some
way that leaves only three free variables (q1, q2, q3), as shown in the schematic of
figure 1(a). That is, given these three variables at any time instant, one can construct the
motion of all 100 particles. The Newtonian approach requires writing down 200 equations
of motion (miai = F i + Ri, i = 1, . . . , 100) even though only three are relevant for the
motion. In addition, because the Newtonian approach requires separating each particle
from the surrounding, as shown in the free body diagram in figure 1(b), the unknown
constraint forces Ri appear, which compels the dynamicist to explicitly consider the 197
constraint forces Ri (i.e. forces that maintain the kinematical constraints) even though
these forces are workless (i.e. do not contribute to the motion per se). On the other
hand, the analytical (Lagrangian or variational) mechanics approach allows accepting
the kinematical constraints, ignoring the unknown forces that maintain them, and hence
focusing on the relevant equations of motion; it provides directly the relevant equations of
motion for the free variables by minimizing a certain objective function, called the action
A. That is, the first derivative of the action with respect to each variable must vanish;
i.e. we have ∂A/∂qj = 0, j = 1, 2, 3, in the considered example.

Projecting this discussion on the potential-flow case, one finds that the kinematical
constraints of potential flow allow construction of the entire flow field u from the
circulation free variable Γ only: u = u(x;Γ ). That is, while there are infinite degrees
of freedom for the infinite fluid particles, there is only one free variable (the circulation)
which, via the potential-flow kinematical constraints, can be used to recover the motion
of these infinite degrees of freedom. Hence, the analytical/variational mechanics appears
to be specially well suited for this problem; it will provide a single equation for the
unknown circulation without paying attention to the irrelevant degrees of freedom of the
fluid particles or the unknown forces that maintain kinematical constraints. Simply, the
first variation of the action with respect to circulation must vanish – and this necessary
condition should provide a single dynamical equation in the unknown circulation:
∂A/∂Γ = 0.
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Based on the above discussion, two important conclusions are drawn: (i) a true
closure/auxiliary condition for potential flow must come from dynamical considerations,
and (ii) variational principles would be particularly useful to derive such dynamics. Insofar
as this story looks appealing, the questions have always been as follows. What is a suitable
variational principle for the airfoil problem? What is the special quantity that is being
minimized in every attached flow over a body?

3. Theoretical mechanics approach: Gauss’ principle of least constraint and Hertz’
principle of least curvature

There have been several variational formulations of Euler’s equations; almost all of
them are based on Hamilton’s principle of least action (Hargreaves 1908; Bateman
1929; Herivel 1955; Serrin 1959; Penfield 1966; Luke 1967; Seliger & Whitham 1968;
Bretherton 1970; Salmon 1988; Loffredo 1989). However, Hamilton’s principle suffers
from some drawbacks that precludes its applicability to the airfoil problem. In particular,
Hamilton’s principle is a time-integral variational principle. That is, the quantity that is
being extremized is an integral over time; hence, it may not be applicable to a steady
snapshot of a flow field without the need to trace the evolution of the flow during its
transient towards the steady equilibrium. Also, Hamilton’s principle is exactly equivalent
to Lagrange’s (and Newton’s) equations, so it does not provide more information in the
singular cases where Lagrangian (and Newtonian) mechanics fail to determine a unique
solution.

In fact, the search for a suitable variational formulation for the airfoil problem is
challenging. For example, minimizing the kinetic energy over the field yields trivial (zero
circulation) at any angle of attack. We found that the deserted principle of least constraint
by Gauss provides a felicitous formulation for the current problem. In fact, Gauss’
principle seems to have gone into oblivion in the history of mechanics. Papastavridis
wrote: ‘In most of the 20th century English literature, GP [Gauss Principle] has been
barely tolerated as a clever but essentially useless academic curiosity, when it was
mentioned at all’ (Papastavridis 2014, p. 924).

Consider the dynamics of N particles, each of mass mi, which are governed by Newton’s
equations

miai = F i + Ri ∀ i ∈ {1, . . . , N}, (3.1)

where ai is the inertial acceleration of the ith particle, and the right-hand side represents
the total force acting on the particle, which is typically decomposed in analytical
mechanics into (i) impressed forces F i, which are the directly applied (driving) forces
(e.g. gravity, elastic, viscous); and (ii) constraint forces Ri whose raison d’etre is to
maintain/satisfy kinematical/geometrical constraints; they are passive or workless forces
(Lanczos 1970). (For time-varying constraints, only the virtual work of the constraint
forces vanishes, but not necessarily their actual work (Papastavridis 2014, pp. 382–383).)
That is, constraint forces do not contribute to the motion abiding by the constraint; their
sole role is to preserve the constraint (i.e. prevent any deviation from it).

Inspired by his method of least squares, Gauss (1829) asserted that the deviation of the
actual motion a from the impressed one F/m is minimum. That is, the quantity

A =
N∑

i=1

1
2

mi

(
F i

mi
− ai

)2

(3.2)
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is minimum (Papastavridis 2014, pp. 911–912). Several points are worthy of clarification
here. First, Gauss’ principle is equivalent to (derivable from) Lagrange’s equations of
motion (Papastavridis 2014, pp. 913–925), so we emphasize that it bears the same truth and
status of first principles (Newton’s equations). Second, in Gauss’ principle, A is actually
minimum, not just stationary. Third, unlike the time-integral principle of least action,
Gauss’ principle is applied instantaneously (at each point in time). So, it can be applied
to a particular snapshot. Fourth, in some of the singular cases (when the dimension of the
tangent space changes), Newtonian and Lagrangian mechanics (as well as the principle
of least action) may fail to determine a unique solution. In contrast, Gauss’ principle is
capable of providing a unique solution (see Papastavridis (2014), p. 923; and Golomb
(1961), pp. 71–72).

In the case of no impressed forces

miai = Ri ∀ i ∈ {1, . . . , N}, (3.3)

Gauss’ principle reduces to Hertz’ principle of least curvature, which states that the
Appellian

S =
N∑

i=1

1
2

mia2
i (3.4)

is minimum, where a2
i = ai · ai is a scalar product. In this case, because kinetic energy

is conserved, it can be shown that the system curvature (i.e. the instantaneous sum of
curvatures of particles’ trajectories) is minimum (Papastavridis 2014, pp. 930–932). That
is, a free (unforced) particle moves along a straight line. However, if it is a constrained
motion, it will deviate from a straight line to satisfy the constraint, but the deviation from
the straight line path (i.e. curvature) would be minimum.

4. Novel variational formulation of the dynamics of ideal fluids

Recall the Euler equations for incompressible flows

ρa = −∇p, in Ω, (4.1)

subject to continuity
∇ · u = 0, in Ω, (4.2)

and the no-penetration boundary condition

u · n = 0, on ∂Ω, (4.3)

where Ω is the spatial domain, ∂Ω is its boundary, n is normal to the boundary, and
a = ∂u/∂t + u · ∇u is the total acceleration of a fluid particle.

Equation (4.1) presents Newton’s equations of motion for the fluid parcels. For inviscid
flows, neglecting gravity, the only acting force on a fluid parcel is the pressure force ∇p. In
order to apply Gauss’ principle, we must determine whether this force is an impressed force
or a constraint force. Interestingly, for incompressible flows, it is the latter. The sole role
of the pressure force in incompressible flows is to maintain the continuity constraint: the
divergence-free kinematic constraint on the velocity field (∇ · u = 0). It is straightforward
to show that if u satisfies (4.2), (4.3), then (Kambe 2002, p. 261)∫

Ω

(∇p · u) dx = 0 (4.4)

for any scalar p, which indicates that pressure forces are workless through divergence-free
velocity fields that are parallel to the surface; i.e. satisfying (4.3). That is, if a velocity
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field satisfies continuity (i.e. divergence free) and the no-penetration boundary condition
(4.3), the pressure force would not contribute to the dynamics of such a field. This fact is
the main reason behind vanishing the pressure force in the first step in Chorin’s standard
projection method for incompressible flows (Chorin 1968); when the equation of motion is
projected onto divergence-free fields, the pressure term disappears, which is based on the
Helmholtz–Hodge decomposition (e.g. Kambe 2002; Wu, Ma & Zhou 2007): a vector v ∈
R

3 can be decomposed into a divergence-free component u that is parallel to the surface;
i.e. satisfying (4.3), and a curl-free component ∇f for some scalar function f (i.e. v =
u + ∇f ). These two components are orthogonal as shown in (4.4).

From the above discussion, it is clear that the pressure force is a constraint force and the
dynamics of ideal fluid parcels are subject to no impressed forces. (This will not be the
case for a non-homogeneous, normal flow boundary condition.) Hence, Gauss’ principle
of least constraint reduces to Hertz’ principle of least curvature in this case.

Considering the dynamics of an ideal fluid (4.1), and labelling fluid parcels with their
Lagrangian coordinates ξ (initial positions), we write the Appellian as

S =
∫

1
2
ρ0a2 dξ , (4.5)

where ρ0 = ρ0(ξ) is the initial density. Realizing that ρJ = ρ0, where J is the Jacobian of
the flow map (Bateman 1929), the Appellian is rewritten in Eulerian coordinates as

S =
∫

Ω

1
2
ρa2 dx, (4.6)

which must be minimum according to Hertz’ principle. As such, the dynamics of an ideal
fluid can be represented in the Newtonian mechanics formulation by (4.1), (4.2), (4.3).
Equivalently, we present an analytical mechanics (variational) formulation of the dynamics
of ideal fluids as

min S = 1
2
ρ

∫
Ω

a2 dx, (4.7)

subject to continuity
∇ · u = 0, in Ω, (4.8)

and the no-penetration boundary condition

u · n = 0, on ∂Ω. (4.9)

As such, one can solve for the ideal flow over an arbitrary shape by either one of two
ways. The Newtonian mechanics approach requires solving Euler’s partial differential
equation (4.1) simultaneously with the continuity equation (4.2) and satisfying the normal
flow condition (4.3). Alternatively, the developed analytical mechanics approach allows
parameterizing (modelling) the flow field with any suitable parameterization that satisfies
continuity and the normal flow boundary condition, and instead of solving Euler’s partial
differential equation, one only needs to minimize the Appellian (4.7) with respect to the
free parameters in the model. Such a minimization will naturally provide the dynamics
of these free parameters: a projection of Euler’s equations on the space/manifold of
these parameters. In Appendix A we provide a theorem that rigorously establishes
this equivalence between Euler’s partial differential equation and minimization of the
Appellian. We prove that Euler’s equation (4.1) is the necessary condition of minimization
of the Appellian. That is, a solution that minimizes the Appellian S subject to the
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continuity constraint must satisfy Euler’s equation (4.1). While these two approaches are
equivalent, in some singular cases (such as a two-dimensional flow in a multiply connected
domain), Euler’s formulation as well as its variational formulations based on the principle
of least action may not provide a unique solution, whereas the new variational formulation
may do (see Papastavridis (2014), p. 923; and Golomb (1961), pp. 71–72).

5. A variational theory of lift: dynamical closure condition

Consider a stream of an ideal fluid of density ρ with a free-stream velocity U at an angle of
attack α flowing over an arbitrary two-dimensional shape in the z-domain whose conformal
mapping to a circular cylinder in the ζ -domain is given by z(ζ ). Let us show how the
developed theory allows computing the lift over such a given shape without resorting to
the Kutta condition. Recall that the steady lift over any two-dimensional shape is simply
due to the bound circulation over the body according to the Kutta–Zhukovsky lift theorem
L = ρUΓ . So, it suffices to compute the circulation Γ .

The complex potential F0(ζ ) of the flow over a circular cylinder of radius b is written as
(Karamcheti 1966)

F0(ζ ) = U
[

e−iαζ + eiα b2

ζ

]
. (5.1)

It is a classical result that such a flow field is non-lifting. So, adding a vortex of
strength Γ at the centre of the cylinder, the total complex potential F is written as
F = F0 + Γ F1, where F1(ζ ) = (i/2π) log ζ. However, the value of Γ , which represents
the bound circulation over the given body (which dictates the amount of the generated lift),
is unknown.

The constructed velocity field u0 = dF0/dζ/dz/dζ is (i) divergence free, (ii) irrotational
and (iii) satisfies the no-penetration boundary condition. Therefore, this flow field is
a solution of Euler’s equation (4.1). Also, the velocity field u1 = dF1/dζ/dz/dζ is (i)
divergence free, (ii) irrotational and (iii) satisfies a homogeneous no-penetration boundary
condition (4.9). Then, for any arbitrary Γ , the flow field u(x;Γ ) = u0(x) + Γ u1(x) is
also a legitimate Euler’s solution for the problem: it satisfies continuity, Euler’s equation
(4.1) and the given no-penetration boundary condition. That is, Euler’s equation does not
possess a unique solution for this problem (it is a singular case where Newtonian and
Lagrangian mechanics fail to determine a unique solution). In contrast, the developed
variational principle is capable of providing a unique solution. In fact, the dynamics of
the free field Γ u1 is exactly amenable to the developed variational principle since it is (i)
divergence free, and (ii) satisfies a homogeneous no-penetration boundary condition (4.9);
that is, the pressure force is indeed orthogonal (in the sense of function spaces) to this
field, as shown in (4.4), and, hence, it evolves freely (under no forces) with a minimum
curvature according to Hertz’ principle.

Considering a steady snapshot (i.e. a = u · ∇u), we write the Appellian from (4.6) as

S(Γ ) = 1
2
ρ

∫
Ω

[u(x;Γ ) · ∇u(x;Γ )]2 dx. (5.2)

Since the velocity field u(x;Γ ) is known except for the unknown parameter Γ , given
an assumed value of Γ , one can compute the flow field and, consequently, the scalar
Appellian integral S in (5.2). That is, one can construct S as a function of Γ . Hence,
the minimization principle (4.7), derived from Hertz’ principle of least curvature, yields
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the circulation over the airfoil as

Γ ∗ = argmin
1
2
ρ

∫
Ω

[u(x;Γ ) · ∇u(x;Γ )]2 dx. (5.3)

Equation (5.3) provides a generalization of the Kutta–Zhukovsky condition that is, unlike
the latter, derived from first principles: Hertz’ principle of least curvature. That is, the
proposed theory asserts that the right Γ is the one that minimizes the function S(Γ ).
So, the condition (5.3) is equivalent to dS/dΓ = 0; since u is linear in Γ , the convective
acceleration u · ∇u is quadratic in Γ , the Appellian S is quartic in Γ , and the condition
(5.3) is a third-order equation in Γ whose real solution results in the dynamically correct
circulation and consequently the lift. So, while the Kutta–Zhukosky lift theory suggests
that the circulation is computed so as to remove the singularity at the trailing edge,
the proposed theory asserts that the circulation is computed such that it minimizes the
Appellian. In contrast to the classical theory, the current one is not confined to sharp-edged
airfoils.

5.1. Non-lifting circular cylinder
We first demonstrate the mathematical application of the developed theory – the proposed
variational closure condition (5.3) – on a circular cylinder. It is a well-known, classical
result that a circular cylinder is non-lifting in an ideal fluid. However, airfoils are also
non-lifting unless we deliberately add a vortex at the centre of the cylinder; the Kutta
condition suggests a unique value for such a circulation in the case of a sharp-edged
airfoil. Nevertheless, for a circular cylinder (void of sharp edges), there is no mathematical
proof/argument that yields a zero value for such a vortex, unless we rely on a symmetry
argument. Here, we use the developed theory to prove that the dynamically correct
circulation over the circular cylinder in an ideal fluid must be zero; i.e. the Appellian
is minimum only at Γ ∗ = 0.

The complex velocity W = dF/dζ = u − iv of an angled flow over a circular cylinder
with a vortex Γ located at the centre is given by

W (ζ ) = U e−iα − U eiα b2

ζ 2 + iΓ
2πζ

, (5.4)

which yields the convective acceleration a = u · ∇u in complex notation as

a(ζ ) = W (ζ )

(
dW
dζ

)
, (5.5)

where the overbar indicates a complex conjugate. As such, the Appellian S is given by

Ŝ(Γ̂ ) = I4Γ̂
4 − I3Γ̂

3 + I2Γ̂
2 − I1Γ̂ + I0, (5.6)

where Ŝ = S/ρU4, Γ̂ = Γ/4πUb are the normalized Appellian and circulation,
respectively, and I1,. . . , I4 are integrals over the domain

I4 = 8
∫ 2π

0

∫ ∞

1

dr̂ dθ

r̂5 , I3 = 8
∫ 2π

0

∫ ∞

1

(
r̂2 + 3

)
sin(α − θ) dr̂ dθ

r̂6 , (5.7)
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Figure 2. A spectrum of modified Zhukovksy profiles, parameterized by the shape-control parameter D: D = 0
results in a Zhukovsky airfoil with a sharp trailing edge; the larger the D, the smoother the trailing edge; and
D = 1 results in a smooth circular cylinder.

I2 = 2
∫ 2π

0

∫ ∞

1

r̂4 + 4r̂2 + 9 − (6r̂2 + 4) cos(2α − 2θ)

r̂7 dr̂ dθ, (5.8)

I1 =
∫ 2π

0

∫ ∞

1

(
r̂4 + 3r̂2 + 3

)
sin(α − θ) − r̂2 sin(3α − 3θ)

4r̂8 dr̂ dθ and (5.9)

I0 = 2
∫ 2π

0

∫ ∞

1

r̂4 − 2r̂2 cos(2α − 2θ) + 1
r̂9 dr̂ dθ. (5.10)

It is noteworthy to mention that, while the velocity field W goes to a constant value (U) at
infinity, the convective accelerations go to zero rapidly enough for square integrability; the
above integrands all decay at least as rapid as 1/r3, ensuring integrability over the infinite
domain. Moreover, due to symmetry, I3 and I1 vanish. As such, the necessary condition of
minimization of Ŝ yields

dŜ

dΓ̂
= 16πΓ̂

(
Γ̂ 2 + 3

2

)
= 0, (5.11)

which has only one real root at Γ̂ = 0.

5.2. Lifting bodies
Consider a modified Zhukovsky airfoil in the z-domain whose mapping from a circular
cylinder in the ζ -domain is given by the non-traditional conformal mapping

z = ζ + μ + 1 − D
1 + D

C2

ζ + μ
, (5.12)

where μ is the offset of the centre of the cylinder from the origin in the complex plane
(to allow for camber and thickness, see Karamcheti 1966), C is a constant that depends on
the airfoil geometry (maximum thickness and camber) as well as the parameter D, which
controls smoothness of the trailing edge: D = 0 results in the classical Zhukovsky airfoil
with a sharp trailing edge, and D = 1 results in an identity map (i.e. the body is a circular
cylinder), as shown in figure 2.
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Figure 3. Convergence of the numerical computation of S as a larger domain is considered in the ζ -plane.
For the whole D-spectrum, truncation after seven cylinder radii is found to be sufficient to compute S with a
satisfactory accuracy.

The complex velocity and acceleration in the cylinder domain are already known from
(5.4), (5.5). Hence, for any shape defined by a conformal map z(ζ ) from a cylinder of
radius b, the Appellian can be written in terms of the velocity W (ζ ) and acceleration a(ζ )

in the cylinder domain as

S(Γ ) = 1
2
ρ

∫ 2π

0

∫ ∞

b
|G(ζ )|2

∣∣∣∣∣Ḡ(ζ )a(ζ ) + |W (ζ )|2
(

dG
dζ

)∣∣∣∣∣
2

rd r dθ, (5.13)

where G = 1/dz/dζ is the reciprocal of the scaling factor of the conformal map z(ζ ). The
Appellian is still a fourth-order polynomial in Γ , as shown in (5.6). Moreover, if z(ζ ) is
expanded in Laurent series as (Karamcheti 1966, p. 460)

z(ζ ) = ζ +
∞∑

n=1

Cn

ζ n (5.14)

for some coefficients Cn, then G → 1 as ζ → ∞; the first term in (5.13) will remain
integrable over the infinite domain due to the rapid decay of a as ζ → ∞. In addition, even
if W goes to a constant as ζ → ∞, |dG/dζ |2 will behave as 1/ζ 6, ensuring integrability
over the infinite domain. As such, the integral S(Γ ) in (5.13) is finite for any conformal
z(ζ ) that maps ζ = ∞ to z = ∞; i.e. in the form (5.14). Nevertheless, unlike the cylinder
case, the integrals I1, . . . , I4 cannot be determined analytically, in general. To perform
numerical evaluation, the field is truncated after two chord lengths in the actual domain
(or after seven radii in the cylinder domain). Due to the rapid decay of the integrands
as discussed above, the calculations are fairly insensitive to the extent of the domain, as
shown in figure 3, which presents the convergence of S-computation as a larger domain
in the ζ -plane is considered at different D-values. The finite domain was discretized into
1201 azimuthal points and 400 radial points in a logarithmic scale. In fact, no considerable
difference was observed in the resulting S when increasing the mesh points from 401 × 100
to 1201 × 400. One caveat though is the computation of S in the case of a sharp-edged
(i.e. singular) airfoil (i.e. D = 0) at an arbitrary value of Γ (not necessarily Γ ∗). In this
case, the integrals are not finite and S → ∞ because of the singularity at the edge. It is
recommended that this case is considered as a limiting case of a very small but non-zero
D.

Figure 4 shows the variation of the Appellian as given by (5.2) or (5.13) and normalized
by ρU4 vs the normalized circulation Γ̂ ◦ = (180/π)Γ̂ = (180/π)(Γ/4πUb) (i.e. the free
parameter) at various angles of attack for the flow over a modified Zhukovsky airfoil with
a trailing edge radius of 0.1 % chord length (D = 0.05). The figure also shows Kutta’s
circulation ΓK = 4πbU sin α (i.e. Γ̂ ◦

K 	 α◦ for small angles). Note that Kutta’s solution is
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Figure 4. Variation of the normalized Appellian Ŝ = S/ρU4 with the normalized circulation Γ̂ ◦ =
(180/π)(Γ/4πUb) at different angles of attack for the flow over a modified Zhukovsky airfoil with a smooth
trailing edge (D = 0.05). For each angle of attack, there is a unique value Γ ∗ of circulation that minimizes
the Appellian: the dynamically correct circulation according to Hertz’ principle of least curvature. Although
Kutta’s circulation ΓK = 4πbU sin α is not relevant in this case of a smooth trailing edge, it is shown for
comparison.

not really applicable here. The figure shows that at a given angle of attack, the Appellian
possesses a unique minimum at a specific value of the circulation – the dynamically correct
circulation according to Hertz’ principle.

Figure 5 shows contours of the normalized Appellian (in logarithmic scale) in the D–Γ

space at α = 5◦ (the picture is qualitatively similar at other angles of attack). Each point in
the D–Γ plane represents a flow field, not necessarily a physical flow field; Nature selects a
unique flow field for each geometry (i.e. for each D): the one with the minimum curvature
(minimum Appellian). The figure also shows the locus of such minimum-curvature choices
(i.e. the variation of Γ 
 with D). Interestingly, for a sharp-edged airfoil (D → 0), the
minimizing circulation coincides with Kutta’s circulation (i.e. Γ 
 → ΓK), which implies
that the developed minimization principle (5.3) reduces to the Kutta condition in the
special case of a sharp-edged airfoil. Also, the figure shows that the smoother the trailing
edge, the smaller the circulation (and lift); i.e. an airfoil with a sharp trailing edge generates
larger lift than an airfoil with a smooth trailing edge at the same conditions. In fact, the
figure presents the other limiting case (a circular cylinder: D = 1) where the classical result
of the non-lifting nature of a circular cylinder in an inviscid fluid is recovered. It should
be noted that in all the considered cases, S was convex in Γ , yielding a unique minimum,
as shown in figure 4. However, a rigorous proof of this property should be considered in a
future work.

It is important to note that the proposed variational theory is not confined to the
steady flow past an airfoil with the free parameter being the bound circulation. In fact,
the theorem provided in Appendix A rigorously establishes the connection/equivalence
between minimization of the Appellian and Euler’s partial differential equation with its
vast generality, governing the dynamics of three-dimensional unsteady, but inviscid, flow
fields. So, the current formulation is expected to be suitable for many other problems
(e.g. Föppl 1983) where the flow field is parameterized in a more complicated way than
just a single parameter (e.g. vortex patches). Then, minimizing the Appellian with respect
to the free (undetermined) parameters in the model will provide equations governing the
dynamics of these parameters; i.e. it will provide a rigorous way of projecting Euler’s
equation on the manifold of these parameters.

For example, the current formulation can be extended to determine the individual
circulations over an array of airfoils. Crowdy (2006) developed an analytical solution for
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1.0
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Γ/ΓK

Γ�/ΓK

Figure 5. Contour plots of the Appellian vs the shape-control parameter D and the circulation (normalized by
Kutta’s). The yellow curve presents the locus of the minimizing circulation Γ 
. For D = 0 (i.e. a sharp-edged
airfoil), the minimizing circulation Γ ∗ coincides with Kutta’s ΓK ; and for D = 1 (circular cylinder), the
minimizing circulation vanishes, implying no inviscid lifting capability of this purely symmetric shape. That
is, the developed theory could capture the spectrum between the two extremes: from a zero lift over a circular
cylinder to the Kutta–Zhukovsky lift over a sharp-edged airfoil. And the fact that the Kutta condition is a special
case of the developed inviscid theory challenges the accepted wisdom about the viscous nature of the Kutta
condition. It is not a manifestation of viscous effects, but rather momentum conservation.

the flow field over a finite stack of airfoils using his prime function approach (Crowdy
2020) when the strength of the bound circulation over each airfoil is known. So, the
current formulation can be used complementarily with his effort to write the Appellian
as a function of these circulations; i.e. S = S(Γ0, . . . ΓM), where M + 1 is the number of
airfoils. Then, minimization of the Appellian with respect to the M + 1 parameters will
yield the dynamically correct circulations and flow field. Adding free vortices in the wake
(Bai, Li & Wu 2014) should also be straightforward.

6. Discussion

The last section presents a new theory of lift based on Hertz’ variational principle of
least curvature. In particular, (5.3) presents the sought general fundamental principle
that provides closure in potential flow based on first principles (Hertz’ principle of least
curvature), thereby generalizing the century-old theory of Kutta and Zhukovsky. This
principle allows, for the first time, computation of lift over smooth shapes without sharp
edges where the Kutta condition fails, which confirms that a sharp trailing edge is not a
necessary condition for lift generation (Stack & Lindsey 1938; Herrig, Emery & Erwin
1956). The new variational theory, unlike the classical one, is capable of capturing the
whole spectrum between the two extremes: from zero lift over a circular cylinder to the
Kutta–Zhukovsky lift over an airfoil with a sharp trailing edge, as shown in figure 5(d).
This behaviour provides credibility to the developed theory.

The fact that the minimization principle (5.3) reduces to the Kutta condition in the
special case of a sharp-edged airfoil, wedded to the fact that this principle is an inviscid
principle imply that the classical Kutta–Zhukovky lift over an airfoil with a sharp edge
is both computed and explained from inviscid considerations. This finding challenges
the accepted wisdom about the Kutta condition being a manifestation of viscous effects.
Rather, it represents inviscid momentum conservation. That is, the circulation (and
lift) is the one that satisfies momentum conservation – equivalently, it is the one that
minimizes the Appellian in the language of Hertz. This result explains the several inviscid
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computations that converged to the Kutta–Zhukovky lift without viscosity (Rizzi 1982;
Yoshihara et al. 1985; Hoffman et al. 2016; Musser et al. 2019).

It should be noted that the prevalent attribution and association between viscosity
and the origins of lift and the Kutta condition have not been gratuitous. A
high-Reynolds-number flow over an airfoil at a small angle of attack is a singular
perturbation problem where the small parameter is multiplying the highest derivative term
(i.e. the viscous term; see Nayfeh 1973). Indeed, if this term is retained and the no-slip
boundary condition is applied, there will be no ambiguity or a closure problem; the viscous
solution will capture the right amount of lift and circulation. It is only when we neglect
such a viscous term and ignore the no-slip boundary condition that a closure problem
emerges. This singular behaviour is misleading and has shaped the common understanding
of the viscous origin of lift and Kutta condition over the years. To dissect the physics of
this problem, we simply need to remove viscosity altogether and solve the purely inviscid
flow dynamics without any ad-hoc closure conditions (e.g. the Kutta condition) that may
contaminate the inviscid nature of the solution; permitting a solution which emerges solely
from physical principles. This is precisely what is enabled by the developed theory, which
results in an inviscid lifting capability, driven by a necessary condition of momentum
conservation.

We emphasize that the current result does not imply no role of viscosity in the picture.
Rather, we argue that vorticity is a reaction, not the action; it is not the cause for circulation
development. The vorticity in the boundary layer is a reaction to the outer inviscid flow.
The main role of the boundary layer is to match the surface tangential velocity (for no slip)
with the outer inviscid edge velocity; the latter is dictated by the inviscid fluid dynamics.
This concept is not any different from Prandtl’s classical formulation (Prandtl 1904).
However, the new contribution here asserts that the inviscid fluid dynamics is sufficient
to determine the outer inviscid flow field (ignoring the secondary effects of interaction
between the outer and inner solutions through modifying the effective shape of the body:
body plus boundary layer). That is, the inviscid fluid dynamics is sufficient (and actually
necessary too) to determine lift and circulation over the airfoil. In other words, in the
current formulation, the integral of vorticity in the boundary layer would still sum up to
the circulation around the airfoil, but the latter is dictated by inviscid fluid dynamics, and
the former is developed as a reaction to this inviscid mechanism. Note that for a purely
inviscid two-dimensional flow, the circulation around an irreducible circuit in a doubly
connected domain is not the integral of vorticity over the area enclosed by the circuit
(Karamcheti 1966).

The developed theory and obtained results are intimately related to the ability of an
ideal fluid (superfluid) to generate lift. So, it may be prudent to discuss the seeming
contradiction between Craig and Pellam’s experimental result (Craig & Pellam 1957) and
the recent computations by Musser et al. (2019), in the light of the developed theory. Craig
and Pellam have experimentally studied the flow of an ideal fluid (superfluid helium II)
over a flat plate and an ellipse and found a vanishingly small lift force over these objects at
non-zero angles of attack. Hence, they concluded that superfluids are non-lifting and that
‘the classical viscosity boundary condition at the trailing edge (the Kutta condition) does
not apply’ (Craig 1959) – the last part of this statement about the viscous nature of the
Kutta condition is refuted above.

Note that it is already known that the smaller the viscosity (i.e. the larger the Reynolds
number), the larger the lift. So, as viscosity is decreased, lift either increases or remains
constant. That is, the lift value in the limit to a vanishingly small viscosity is finite:
the Kutta–Zhukovsky lift. Therefore, the above question about the non-lifting nature of
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superfluids is interesting from a physics perspective because if the hypothesis were true,
it would represent one example in nature where the physics is not continuous in the limit;
the limit of lift as viscosity approaches zero is different from the lift value at strictly zero
viscosity (i.e. inviscid).

In contrast to the above hypothesis, Musser et al. (2019) recently performed quantum
simulations of the Gross–Pitaevskii equation governing the flow dynamics over an airfoil
in a superfluid. Their simulations show a quantized version of the Kutta–Zhukovsky lift
despite the lack of viscosity in their simulations. However, the continuum hypothesis may
not be applicable in their ultra-small-scale simulations.

From the above discussion, there seems to be a contradiction between Craig and
Pellam’s experiment (Craig & Pellam 1957) and the computations of Musser et al. (2019):
the former may be misleading, implying that superfluids are non-lifting and the Kutta
condition is a viscous condition (i.e. the physics is discontinuous in the limit), while the
latter shows the ability of a superfluid to generate the Kutta–Zhukovsky lift similar to a
viscous flow of a vanishingly small viscosity (i.e. the physics is continuous in the limit).
In the light of the developed theory, we find no contradiction between the two results. In
fact, Craig and Pellam conducted their experiment on symmetric shapes (a flat plate and
an ellipse) for which the current theory predicts no lift, which confirms their experimental
findings (but not their conclusions). Also, the current theory predicts Kutta–Zhukovsky
lift over an airfoil with a sharp trailing edge; and a smaller but non-zero lift over a
smooth airfoil (or asymmetric shape), which confirms Musser et al. (2019) computational
simulations. Therefore, it is concluded that a purely symmetric (for-aft and top-bottom)
shape in a superfluid is non-lifting; however, any asymmetry would grant some lifting
capability. The current theory, as well as Musser et al. (2019) quantum simulations, invoke
an experimental study of the flow of a superfluid (helium II), similar to Craig and Pellam’s
(Craig & Pellam 1957), but over a traditional airfoil shape (i.e. asymmetric shape). It is
perhaps noteworthy to mention that superfluids are not exactly ideal fluids; however, from
a continuum fluid mechanics perspective, they can be made to behave like ideal fluids, as
demonstrated in Craig and Pellam’s experiment.

The fact that purely symmetric shapes are non-lifting in an ideal (non-dissipative) fluid
is physically plausible, as shown in figure 6(a) presenting the flow of an ideal fluid over
a flat plate as predicted by the current theory. These flows must be reversible to conserve
entropy in the dissipation-free environment. Therefore, for reversibility and because of
symmetry, one should not be able to tell whether the flow field, shown in figure 6(a), is for
a free stream coming from the left at a positive α or from the right at a negative α. Clearly,
this symmetric solution is non-lifting.

For these symmetric shapes, viscosity is important to enable the weak lift over these
bodies: the slight change of the effective body shape due to boundary layer destroys
symmetry; the outer inviscid flow over the modified asymmetric body is now lifting. The
flat plate represents an extreme case in this regard: the effect of viscosity is significant due
to the singular nature of the corresponding ideal flow field. Viscosity leads to separation
at the leading edge even at small angles of attack, as shown in the zoomed picture in
figure 6(b), which presents our detached eddy simulation (DES) of the flow over a flat plate
at a Reynolds number of 500 000 and α = 2◦ (also see Van Dyke’s album of fluid motion
Van Dyke 1982 for a similar picture at α = 2.5◦). A leading-edge separation bubble is
clearly seen on the top of the flat plate in the immediate vicinity of the leading edge. The
outer inviscid flow field outside the separation bubble (i.e. over the modified flat plate:
a flat plate with a naturally rounded nose) is lifting; the minimization principle (5.3),
which is equivalent to the Kutta condition in this case of a sharp trailing edge, results in a
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Figure 6. Flow velocity, u/U, of a superfluid (using the current theory) and a real fluid (using DES) over a flat
plate at α = 2◦. Black and yellow lines are streamlines. (a) Current theory, (b) real fluid (DES computation).

circulation Γ 
 that is close to Kutta’s. For a more detailed presentation on this topic, the
reader is referred to the recent effort by Taha & Gonzalez (2022a).

The developed theory is expected to deepen our understanding of one of the most
fundamental concepts in aerodynamics: lift generation over an airfoil. It should open the
doors for theoretical modelling of aerodynamics, as the developed variational principle,
unlike the Kutta condition, is derived from first principles, allowing extensions of the
aerodynamic theory to more challenging problems. In fact, we should emphasize that
the variational principle (4.7) is also valid for unsteady problems; the unsteady term
∂u/∂t will have to be accounted for in the acceleration a, which will be tackled
in the future to determine the unsteady evolution of circulation (and lift) dynamics;
i.e. the Wagner’s problem (Wagner 1925; Chow & Huang 1982; Graham 1983; Li
& Wu 2015). In this case, the rate of change of circulation dΓ /dt will be the free
parameter at each instant that is obtained by minimizing the instantaneous unsteady
Appellian.

Finally, it may be prudent to provide a simple explanation for lift generation in the
light of the obtained results and presented discussion – an explanation that does not
invoke complex unsteady phenomena to illustrate how/why a particular steady lift value is
attained. It is found that lift can be computed and explained using the triplet (4.7), (4.8),
(4.9). In words, lift is due to (i) momentum conservation, (ii) continuity (the fluid has to fill
the given space), and (iii) the body’s hard constraint (i.e. presence of the body inside the
fluid), which forces the flow to move around the body without creating void to maintain
(ii). That is, lift is due to conservation of momentum between the two equilibrium states
of the free stream and the curved flow around the body. In layman terms, the presence of
the body inside the fluid forces fluid particles to go along a curved path; i.e. it provides
the necessary centripetal force for the curved path. And the fluid responds back by an
equal amount of force in the opposite direction according to Newton’s third law – this
reaction is the lift force. This explanation is similar to Hoffren’s (Hoffren 2000) and
to some extent to Babinsky’s (Babinsky 2003); the current paper provides the sought
mathematical framework. Inventors and analysts alike may find it intriguing that a dry
water model (Feynman 1964) provides the main physical mechanism behind one of most
fundamental problems in fluid mechanics.
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7. Conclusion

We revived the deserted variational principle of least curvature by Hertz’ to develop a
novel variational principle for the dynamics of ideal fluids. The developed variational
principle is fundamentally different from the previous variational formulations based
on Hamilton’s principle of least action. It provides unique solutions in some of the
singular cases where Lagrangian (and Newtonian) mechanics fail. In particular, it provides
a unique solution for the circulation over an airfoil where Euler’s equation requires a
closure condition to determine the value of circulation – aka the Kutta condition. That
is, the developed variational principle provides a general dynamical closure condition
for the airfoil problem that is, unlike the Kutta condition, derived from first principles:
Hertz’ principle of least curvature. As such, the developed variational principle is not
confined to sharp-edged airfoils, in contrast to the classical theory. That is, it allows,
for the first time, computation of lift over smooth cylindrical shapes (without sharp
edges). The (inviscid) variational principle reduces to the Kutta condition in the special
case of a sharp-edge airfoil, which challenges the accepted wisdom about the Kutta
condition being a manifestation of viscous effects; it has long been thought that the Kutta
condition implicitly accounts for viscous effects within the potential-flow formulation.
In contrast, it is found to be a condition for momentum conservation in ideal fluids.
This conclusion sheds some light on the ability of a superfluid to generate lift. The
developed variational principle provides conditions on the geometry of a given shape
to generate lift in an inviscid fluid. The shape must have some fore-aft asymmetry to
generate an increasing lift with the angle of attack. That is, a purely symmetric shape
(e.g. flat plate, ellipse, circular cylinder) is non-lifting in a purely inviscid medium. In
reality, viscosity is essential to enable the weak lift over these shapes with the flat plate
being a special case where viscosity plays a significant role; it triggers separation at the
leading edge (even at small angles of attack), which destroys the symmetry, enabling
the Kutta–Zhukovsky lift.

Acknowledgements. The authors are grateful for the many fruitful discussions with Profs S. Ragab, J.
Loviscach, N. Nguyen, P. Baddoo, K. McKee, W. Sirignano, T. Georgiou, M. Zakaria and Y. Aboelkassem.

Funding. This work was partially supported by the National Aeronautics and Space Administration
Fellowship 80NSSC20K1474 that supported the PhD of C. G. Otherwise, this research received no specific
grant from any funding agency, commercial or not-for-profit sectors.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Cody Gonzalez https://orcid.org/0000-0003-3158-4304;
Haithem E. Taha https://orcid.org/0000-0002-9242-2045.

Author contributions. H.T. introduced the use of variational principles in the airfoil problem; C.G.
hypothesized the minimality of curvature and total acceleration; developed the analytical framework to
determine circulation on arbitrary cylinders, recovering Kutta’s result. H.T. drew the connection with Gauss’
principle; C.G. reduced it to Hertz’ principle and conjectured the constraint nature of the pressure force;
H.T. proved it; C.G. proved non-lifting properties of the circular cylinder and showed that lift requires
asymmetry in the conformal mapping. H.T. provided the variational formulation of Euler’s equation and
proved the equivalence theorem; C.G. performed numerical simulations of the theory and computational fluid
dynamics simulations; C.G. also studied convergence and created the figures; H.T. wrote the draft of the paper;
and both authors finalized the manuscript.

941 A58-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-3158-4304
https://orcid.org/0000-0003-3158-4304
https://orcid.org/0000-0002-9242-2045
https://orcid.org/0000-0002-9242-2045
https://doi.org/10.1017/jfm.2022.348


C. Gonzalez and H. Taha

Appendix A. Equivalence between Euler’s equation and minimization of the
Appellian for incompressible flows

THEOREM. If ut(x) ≡ ∂u/∂t is continuously differentiable in Ω ⊂ R
3 and minimizes the

functional

S(ut(x)) = 1
2

∫
Ω

ρ (ut(x) + u(x) · ∇u(x))2 dx (A1)

for all t ∈ R subject to the constraint

∇ · u = 0 ∀ x ∈ Ω, t ∈ R, (A2)

and the no-penetration boundary condition

u · n = 0, ∀x ∈ ∂Ω, t ∈ R, (A3)

where n is normal to the boundary ∂Ω , then ut(x) must satisfy

ρ (ut + u · ∇u) = −∇p ∀ x ∈ Ω, t ∈ R (A4)

for some differentiable function p on Ω .

Proof . If the constraint ∇ · u = 0 must be satisfied for all t, then it implies that ∇ · ut = 0.
Then, to minimize S subject to the constraint ∇ · ut = 0 for all x ∈ Ω , we construct the
Lagrangian

L = S −
∫

Ω

p(x) (∇ · ut(x)) dx, (A5)

where p is a Lagrange multiplier. A necessary condition for the constrained minimization
problem is then: the first variation of the Lagrangian vanishes with respect to variations in
ut(x). The first variation of L with respect to ut is written as

δL =
∫

Ω

[ρ (ut + u · ∇u) · δut − p∇ · δut]dx = 0. (A6)

The last term p∇ · δut can be written as

p∇ · δut = ∇ · ( pδut) − ∇p · δut. (A7)

Integrating the first component ∇ · ( pδut) and using the divergence theorem, we have∫
Ω

∇ · ( pδut) dx =
∫

∂Ω

pδut · n dx. (A8)

Since u · n is specified on the boundary for all t, it implies that ut · n is also specified
on the boundary. As such, its variation δut · n must vanish on the boundary, resulting in∫
Ω

∇ · ( pδut)dx = 0. Hence, we have

δL =
∫

Ω

[ρ (ut + u · ∇u) + ∇p] · δut dx = 0 (A9)

for all admissible variations δut, which implies that

ρ (ut + u · ∇u) = −∇p ∀x ∈ Ω, t ∈ R. (A10)

�
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The above theorem is a special case of the theorem provided by Taha & Gonzalez
(2022b) where they generalized the current formulation to viscous fluids governed by
Navier–Stokes’ equation.

The above theorem shows that a solution that minimizes the Appellian automatically
satisfies Euler’s equation. However, we conjecture that the converse may not be true. While
an Euler’s solution extremizes the Appellian, we conjecture that only the stable solutions
of Euler’s equation are minimizing the Appellian, and the unstable ones are maximizers
instead. This variational formulation of hydrodynamic stability, which is inspired by
Arnold’s work (Arnold 1966), will be pursued in the future.

REFERENCES

ABRAMSON, H.N. & CHU, H.-H. 1959 A discussion of the flutter of submerged hydrofoils. J. Ship Res. 3 (2),
5–13.

ABRAMSON, H.N., CHU, W.-H. & IRICK, J.T. 1967 Hydroelasticity with special reference to hydrofoil craft.
Tech. Rep. 2557. NSRDC Hydromechanics Lab.

ARNOLD, V.I. 1966 On a variational principle for the steady flows of perfect fluids and its application to
problems of non-linear stability. In Vladimir I. Arnold-Collected Works (ed. A.B. Givental, B.A. Khesin,
A.N. Varchenko, V.A. Vassiliev & O.Y. Viro), pp. 71–84. Springer.

BABINSKY, H. 2003 How do wings work? Phys. Educ. 38 (6), 497–503.
BADDOO, P.J., HAJIAN, R. & JAWORSKI, J.W. 2021 Unsteady aerodynamics of porous aerofoils. J. Fluid

Mech. 913, A16.
BAI, C., LI, J. & WU, Z. 2014 Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow

with vortex production–A general model. Chin. J. Aeronaut. 27 (5), 1037–1050.
BASS, R.L., JOHNSON, J.E. & UNRUH, J.F. 1982 Correlation of lift and boundary-layer activity on an

oscillating lifting surface. AIAA J. 20 (8), 1051–1056.
BASU, B.C. & HANCOCK, G.J. 1978 The unsteady motion of a two-dimensional aerofoil in incompressible

inviscid flow. J. Fluid Mech. 87 (1), 159–178.
BATEMAN, H. 1929 Notes on a differential equation which occurs in the two-dimensional motion of a

compressible fluid and the associated variational problems. Proc. R. Soc. Lond. A 125 (799), 598–618.
BRETHERTON, F.P. 1970 A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44 (1), 19–31.
CHANG, K. 2003 Staying aloft; What does keep them up there? New York Times, 9 December 2003.
CHORIN, A.J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22 (104), 745–762.
CHOW, C.-Y. & HUANG, M.-K. 1982 The initial lift and drag of an impulsively started airfoil of finite

thickness. J. Fluid Mech. 118, 393–409.
CHU, W.-H. 1961 An aerodynamic analysis for flutter in Oseen-type viscous flow. J. Aerosp. Sci. 29, 781–789.
CHU, W.-H. & ABRAMSON, H.N. 1959 An alternative formulation of the problem of flutter in real fluids.

J. Aerosp. Sci. 26 (10), 683–684.
CRAIG, P.P. 1959 Observations of perfect potential flow and critical velocities in superfluid helium II. PhD

thesis, California Institute of Technology.
CRAIG, P.P. & PELLAM, J.R. 1957 Observation of perfect potential flow in superfluid. Phys. Rev. 108 (5),

1109.
CRIGHTON, D.G. 1985 The Kutta condition in unsteady flow. Annu. Rev. Fluid Mech. 17 (1), 411–445.
CROWDY, D. 2006 Calculating the lift on a finite stack of cylindrical aerofoils. Proc. R. Soc. A 462 (2069),

1387–1407.
CROWDY, D. 2020 Solving Problems in Multiply Connected Domains. SIAM.
DANIELS, P.G. 1978 On the unsteady Kutta condition. Q. J. Mech. Appl. Maths 31 (1), 49–75.
FEYNMAN, R.P. 1964 The Feynman Lectures on Physics: Mainly Electromagnetism and Matter, vol. 2.

Addison–Wesley.
FÖPPL, L. 1983 Vortex motion behind a circular cylinder. NASA STI/Recon Technical Report N 83, 1–18.
GAUSS, C.F. 1829 Über ein neues allgemeines grundgesetz der mechanik. J. Reine Angew. Math. 1829 (4),

232–235.
GOLDSTEIN, S. 1938 Modern Developments in Fluid Dynamics: An Account of Theory and Experiment

Relating to Boundary Layers, Turbulent Motion and Wakes. Clarendon Press.
GOLOMB, M. 1961 Lectures on Theoretical Mechanics (Mimeographed Notes by I. Marx). Purdue University.
GRAHAM, J.M.R. 1983 The lift on an aerofoil in starting flow. J. Fluid Mech. 133, 413–425.

941 A58-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.348


C. Gonzalez and H. Taha

HARGREAVES, R. 1908 XXXVII. A pressure-integral as kinetic potential. Lond. Edinb. Dublin Philos. Mag.
J. Sci. 16 (93), 436–444.

HEMATI, M.S., ELDREDGE, J.D. & SPEYER, J.L. 2014 Improving vortex models via optimal control theory.
J. Fluids Struct. 49, 91–111.

HENRY, C.J. 1961 Hydrofoil flutter phenomenon and airfoil flutter theory. Tech. Rep. 856. Davidson
Laboratory.

HERIVEL, J.W. 1955 The derivation of the equations of motion of an ideal fluid by Hamilton’s principle.
In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 344–349. Cambridge
University Press. Communicated by D.R. Taunt.

HERRIG, L.J., EMERY, J.C. & ERWIN, J.R. 1956 Effect of section thickness and trailing-edge radius
on the performance of NACA 65-series compressor blades in cascade at low speeds. Tech. Rep.
NACA-RM-L51J16.

HOFFMAN, J., JANSSON, J. & JOHNSON, C. 2016 New theory of flight. J. Math. Fluid Mech. 18 (2), 219–241.
HOFFREN, J. 2000 Quest for an improved explanation of lift. In 39th Aerospace Sciences Meeting and Exhibit,

AIAA Paper 2000-0872.
KAMBE, T. 2002 Geometrical theory of fluid flows and dynamical systems. Fluid Dyn. Res. 30 (6), 331–378.
KARAMCHETI, K. 1966 Principles of Ideal-Fluid Aerodynamics. John Wiley & Sons.
LANCZOS, C. 1970 The Variational Principles of Mechanics. Courier Corporation.
LI, J. & WU, Z.-N. 2015 Unsteady lift for the wagner problem in the presence of additional leading/trailing

edge vortices. J. Fluid Mech. 769, 182–217.
LOFFREDO, M.I. 1989 Eulerian variational principle for ideal hydrodynamics and two-fluid representation.

Phys. Lett. A 135 (4–5), 294–297.
LUKE, J.C. 1967 A variational principle for a fluid with a free surface. J. Fluid Mech. 27 (2), 395–397.
MILNE-THOMSON, L.M. 1996 Theoretical Hydrodynamics. Courier Corporation.
MUSSER, S., PROMENT, D., ONORATO, M. & IRVINE, W.T.M. 2019 Starting flow past an airfoil and its

acquired lift in a superfluid. Phys. Rev. Lett. 123 (15), 154502.
NAYFEH, A.H. 1973 Perturbation Methods. John Wiley & Sons.
ORSZAG, S.A. & CROW, S.C. 1970 Instability of a vortex sheet leaving a semi-infinite plate. Stud. Appl. Maths

49 (2), 167–181.
PAPASTAVRIDIS, J.G. 2014 Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained

Systems, Reprint edition. Word Scientific Publishing Company.
PENFIELD, P. JR 1966 Hamilton’s principle for fluids. Phys. Fluids 9 (6), 1184–1194.
PRANDTL, L. 1904 Grenzschichten in Flussigkeiten mit Kleiner Reibung, pp. 484–491. Verhandlungen des

dritten internationalen Mathematiker-Kongresses.
RAYLEIGH, LORD 1877 On the irregular flight of a tennis ball. Messenger Math. 7, 14–16.
RIZZI, A. 1982 Damped Euler-equation method to compute transonic flow around wing-body combinations.

AIAA J. 20 (10), 1321–1328.
ROTT, N. & GEORGE, M.B.T. 1955 An approach to the flutter problem in real fluids. Tech. Rep. 509.
SALMON, R. 1988 Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 20 (1), 225–256.
SATYANARAYANA, B. & DAVIS, S. 1978 Experimental studies of unsteady trailing-edge conditions. AIAA J.

16 (2), 125–129.
SAVAGE, S.B., NEWMAN, B.G. & WONG, D.T.-M. 1979 The role of vortices and unsteady effects during the

hovering flight of dragonflies. J. Expl Biol. 83 (1), 59–77.
SCHLICHTING, H. & TRUCKENBRODT, E. 1979 Aerodynamics of the Airplane. McGraw-Hill.
SELIGER, R.L. & WHITHAM, G.B. 1968 Variational principles in continuum mechanics. Proc. R. Soc. Lond.

A 305, 1–25.
SERRIN, J. 1959 Mathematical principles of classical fluid mechanics. In Fluid Dynamics I/Strömungsmechanik

I (ed. S. Flugge, & C. Truesdell), pp. 125–263. Springer.
SHEN, S.F. & CRIMI, P. 1965 The theory for an oscillating thin airfoil as derived from the Oseen equations.

J. Fluid Mech. 23 (3), 585–609.
STACK, J. & LINDSEY, W.F. 1938 Tests of n-85, n-86 and n-87 airfoil sections in the 11-inch high speed wind

tunnel. NACA Tech. Rep. 665.
TAHA, H. & REZAEI, A.S. 2019 Viscous extension of potential-flow unsteady aerodynamics: the lift frequency

response problem. J. Fluid Mech. 868, 141–175.
TAHA, H.E. & GONZALEZ, C. 2022a The flow over a flat plate: did Kutta get it right? AIAA SciTech

Conference 2022, AIAA-Paper 2022-1665.
TAHA, H.E. & GONZALEZ, C. 2022b What does nature minimize in every incompressible flow?

arXiv:2112.12261.

941 A58-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2112.12261
https://doi.org/10.1017/jfm.2022.348


A variational theory of lift

THEODORSEN, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech.
Rep. 496.

TIETJENS, O.K.G. & PRANDTL, L. 1934 Applied Hydro-and Aeromechanics: Based on Lectures of L.
Prandtl. Courier Corporation.

VAN DYKE, M. 1982 An Album of Fluid Motion. Parabolic Press.
VON KÁRMÁN, T. & SEARS, W.R. 1938 Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5 (10),

379–390.
WAGNER, H. 1925 Uber die entstehung des dynamischen auftriebs von tragflugeln. Z. Angew. Math. Mech. 5,

17–35.
WOOLSTON, D.S. & CASTILE, G.E. 1951 Some effects of variations in several parameters including fluid

density on TBE flutter speed of light uniform cantilever wings. NACA Tech. Rep. 2558.
WU, J.-Z., MA, H.-Y. & ZHOU, M.-D. 2007 Vorticity and Vortex Dynamics. Springer Science & Business

Media.
XIA, X. & MOHSENI, K. 2017 Unsteady aerodynamics and vortex-sheet formation of a two-dimensional

airfoil. J. Fluid Mech. 830, 439–478.
YOSHIHARA, H., NORSTRUD, H., BOERSTOEL, J.W., CHIOCCHIA, G. & JONES, D.J. 1985 Test cases for

inviscid flow field methods. Tech. Rep. AR-211. AGARD.
ZHU, W., MCCRINK, M.H., BONS, J.P. & GREGORY, J.W. 2020 The unsteady Kutta condition on an airfoil

in a surging flow. J. Fluid Mech. 893, R2.

941 A58-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.348

	1 Introduction: meager state of theoretical modelling of aerodynamics
	2 Lack of dynamical features in the current theory of aerodynamics: variational formulation is the panacea
	3 Theoretical mechanics approach: Gauss' principle of least constraint and Hertz' principle of least curvature
	4 Novel variational formulation of the dynamics of ideal fluids
	5 A variational theory of lift: dynamical closure condition
	5.1 Non-lifting circular cylinder
	5.2 Lifting bodies

	6 Discussion
	7 Conclusion
	A Appendix A. Equivalence between Euler's equation and minimization of the Appellian for incompressible flows
	References

