
Precision Asteroseismology
Proceedings IAU Symposium No. 301, 2013
J. A. Guzik, W. J. Chaplin, G. Handler & A. Pigulski, eds.

c© International Astronomical Union 2014
doi:10.1017/S1743921313015196

Order and chaos in hydrodynamic BL Her
models

Rados�law Smolec and Pawe�l Moskalik
Nicolaus Copernicus Astronomical Centre,
ul. Bartycka 18, 00-716 Warszawa, Poland

email: smolec@camk.edu.pl

Abstract. Many dynamical systems of different complexity, e.g. 1D logistic map, the Lorentz
equations, or real phenomena, like turbulent convection, show chaotic behaviour. Despite huge
differences, the dynamical scenarios for these systems are strikingly similar: chaotic bands are
born through the series of period doubling bifurcations and merge through interior crises. Within
chaotic bands periodic windows are born through the tangent bifurcations, preceded by the
intermittent behaviour. We demonstrate such behaviour in models of pulsating stars.
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During our study of hydrodynamic BL Her-type models showing periodic and quasi-
periodic modulation of pulsation akin to the Blazhko Effect (Smolec & Moskalik 2012)
we also found the domains of chaotic behaviour. Here we report the initial analysis of
these models, focusing on the universal behaviour they display.

All of our models were computed with the Warsaw nonlinear convective pulsation codes
(Smolec & Moskalik 2008). The models have the same mass (0.55 M�) and chemical com-
position (X/Z = 0.76/0.0001) and were computed along a horizontal strip (136L�) in
the H-R diagram with a maximum step in effective temperature of 1 K. Convective pa-
rameters are the same as in Smolec & Moskalik (2012). We note that the eddy-viscous
dissipation was strongly decreased, resulting in too-large pulsation amplitudes as com-
pared with observations. Yet, the models show a wealth of dynamical behaviours charac-
teristic of deterministic chaos. Except for the period-doubling effect (Smolec et al. 2012),
such behaviour was not detected in any BL Her star so far, but these models may help
to understand the pulsation of more luminous, longer-period, irregular variables.

In Fig. 1 (top) we show the bifurcation diagram for our models: the histogram of
possible values of maximum radii (gray shaded) plotted as a function of the control
parameter for which we choose the effective temperature, Teff . This diagram is compared
with the bifurcation diagram for the simplest chaotic system, namely the iteration of the
logistic map, xn+1 = kxn (1− xn ) (Fig. 1, bottom). Despite the huge differences between
the two systems, striking similarities are apparent.

The chaotic bands are born through the period-doubling cascades (within dashed
frames in Fig. 1). In case of our models the single-periodic (period-one) cycle (one point
on the bifurcation diagram), found at both the cool and the hot edge of the compu-
tational domain, undergoes a series of period-doubling bifurcations en route to chaos.
Period-two, period-four and period-eight cycles are all detected. In case of the logistic
map the same scenario is computed as k is increased beyond k = 3.0.

Within the chaotic bands, periodic windows of order emerge. There are several such
windows in case of our models, e.g. period-5, period-6, period-7 or period-9 windows. We
stress that, contrary to recent claims (Plachy et al. 2013), stable periodic cycles are not
necessarily caused by the resonances among pulsation modes, but may be an intrinsic
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Figure 1. Bifurcation diagrams for hydrodynamic models (top) and the logistic map (bottom).

property of the chaotic systems. We focus our attention on parameter ranges indicated
with solid frames in Fig. 1. Similarity between our models and the logistic map is apparent
again. The well understood properties of simple logistic mapping allow us to explain
the dynamics of the much more complex hydrodynamic models. As k(Teff ) is increased
the stable period-3 cycle is born through the tangent bifurcation. The bifurcation is
preceded with intermittent behaviour (Pomeau & Mannevile 1980) – evolution of the
system is characterized by long phases of almost periodic behaviour interrupted with
shorter bursts of chaos. As k(Teff ) is increased further, the period-3 cycle undergoes a
series of period-doubling bifurcations to form three chaotic bands. These bands finally
merge through interior crises (Grebogi et al. 1982) – a bifurcation in which the volume
occupied by chaotic attractor suddenly changes. The crises occurs when three chaotic
bands collide with the unstable period-3 cycle born along with stable period-3 cycle in
the tangent bifurcation. Detailed analysis of the presented models is in preparation.
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