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Abstract
Nikolskii-type inequalities, thus mequalities between different metrics of a
function, are established for trigonometric polynomials and pth power
integrable functions, 0</><oo, of several variables having Fourier transform
with compact support. It is shown that certain gaps in the spectra of the
functions involved may be taken into account. As an immediate consequence
it follows that the general results cover the classical inequalities which are
concerned with functions of rectangular type. But at the same time one may
give applications to functions of type K where K is a symmetric body in
Euclidean n-space.

1. Introduction

Nikolskii-type inequalities, following the usual nomenclature, are, roughly speaking,

inequalities between different metrics of the same function. Thus Nikolskii derived

the inequalitiesf for 1 </»<£< oo:

(2*)»n>i,

for trigonometric polynomials of type

S
i ,

0 - 3 ) 'm,,...,m»:= S ••• S

as well as for entire functions/^...)OW(zi,•••,zn) of exponential (rectangular, see

(4.11)) type ff1,...,<Tn>0, respectively (see Nikolskii, 1951, and 1974, p. 126). For

(one-dimensional trigonometric) polynomials analogous results were obtained by

The contribution of this author was supported by Grant No. II B7-FA 5334 awarded
by the Minister fur Wissenschaft und Forschung des Landes Nordrhein-Westfalen.

t Our notations U'll , ,^ | |- | | , (see (2.1), f3.1)) differ from those in Nikolskii (1951, 1974)
by a factor (2TT)"'*.
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Szego and Zygmund (1953) (see also Zygmund (1959, I, p. 154)), and in the
particular case q = oo already by Jackson (1933) (see also Achieser, 1967, p. 178).

In numerous papers (see Ibragimov (1958,1959,1965); Ibragimov and Dzafarov
(1961); Ibragimov and Mamedhanov (1964); Ibragimov and Rymarenko (1966);
Mamedhanov (1964); Sabziev (1965); Timan (1963, pp. 227-236)) (1.1) and (1.2)
are sharpened and extended. In particular, the inequality

1/p-I/g

H

p0 denoting the smallest integer not less than p/2, is derived in Ibragimov (1959),
Ibragimov and Dzafarov (1961) and Timan (1963). The corresponding result

[ n
ri

for trigonometric polynomials of type (1.3) is developed in Ibragimov (1958),
Timan (1963) and Sabziev (1965). The constants in (1.4), (1.5) seem to be the best
known so far, their optimal values being an open problem. Inequalities with
respect to norms on subintervals are established in Bari (1954). For functions
which are positive for real values of their arguments, (1.4) is sharpened still
further in Mamedhanov (1964). Analogous inequalities for weighted metrics and
in generalized Lebesgue spaces are considered in Ibragimov (1965), Ibragimov
and Dzafarov (1961), Ibragimov and Mamedhanov (1964), Ibragimov and
Rymarenko (1966), Mamedhanov (1964), Sabziev (1965), Triebel (1977). For
similar estimates concerning algebraic polynomials of (real) variables (on compact
sets) see Ganzburg (1975), Lebed (1957), Szego and Zygmund (1953), Timan
(1963, p. 235). For inequalities concerning polynomials of a complex variable
on curves see Mamedhanov (1974). Moreover, Nikolskii-type inequalities in
connection with orthonormal systems of functions are treated in Jackson (1933),
Nessel and Wilmes (1976), Nessel and Wilmes (to appear), Timan (1975), Watari
and Okuyama (1975). For further details and related topics one may also consult
Burenkov (1968), Gorlich and Paulus (to appear), and the literature cited there.

The purpose of this note is to observe that in inequalities of the above type one
may in fact take into account certain gaps in the spectrum of the function involved.
Indeed, it follows in Section 2 that the ratio ||<||9,27r/|Mli>,2jr essentially depends
upon the number of nonzero coefficients and not upon a specific definition of the
degree of the trigonometric polynomial t. In Section 3 corresponding estimates
are established for Lp(Rn)-functions having Fourier transform with compact
support. The theorem of Paley-Wiener-Schwartz is then used in Section 4 to
derive inequalities for entire functions of exponential type K, where K is a sym-
metric body. As an immediate application of Theorems 2 and 5 the inequalities
(1.4) and (1.5) (including constants) are regained as special cases.
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The authors express their sincere gratitude to Professor W. Hayman, London,
for his valuable advice in connection with the case 0 <p < 1 of Theorem 5 as well
as to Professor E. Gorlich and G. Paulus for various hints concerning the literature
and for a critical reading of the manuscript. For further stimulating discussions
the authors would like to thank the participants of the colloquium lectures held
by the first-named author at Delft, Eindhoven, and Leiden in the week of
22-25 March 1976.

2. Inequalities for trigonometric polynomials

Let Rn be the Euclidean n-space with elements x:= (x1,...,xn), y,v,..., inner
product xy:= S j ^ x ^ , and norm |x|:= J(xx). Let Qn<=R™ be the cube {xeRn;
-n^x^Vyl ^j^n} and L$n, 0<p^oo, the space of measurable functions with
period 2n in each variable for which

(2.1) | | / IU:=((2")-n i \f(u)\'du)VP, 11/11.:= esssup|/(«)|,

respectively, is finite. Zn denotes the set of all integral lattice points k in Rn. For
f,geL\n convolution and &th Fourier coefficient are given by

(/**)(*):= (2*r)-» f f(x-u)g(u)du, /*(*):=(2W)- f f(u)cxp(-iku)du.
Jo." JQ»

Let an arbitrary trigonometric polynomial be given via

(2.2) t(x):= £ ckexp(ikx), suppr:={£eZ"; t*(k) = cfc#0},
fcesupp (^

and let 5R(G) denote the number of lattice points in G<=Rn, in other words,
is the number of nonzero coefficients of the polynomial /.

THEOREM 1. For each trigonometric polynomial (2.2) there holds the inequality

(2-3) i l i 8 , 2 , U
PROOF. If £>(;<:):= 2j.6SuppP,exp(/&;c) denotes the corresponding Dirichlet

kernel, the Hausdorff-Young inequality yields for any r^2 , l/r+l/r' = 1,

Hence by the convolution theorem and Young's inequality one has

l l i ^ = ll^*'IU^II'IUII^IU<5R(suppr)^-^»/|U
for all values !</><^<oo satisfying \\p—\\q= 1 —1/r = l/r'>|. In particular,
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^ I M L * for all K/»^2, which implies (2.3) since \\t\\g^ is
a logarithmically convex function of \\q (see Zygmund (1959,1, p. 25)).

Let us point out that the factor in the inequality (2.3) only depends upon the
number of nonzero coefficients and not upon a specific definition of the degree of
the polynomial in question. For example, if in case » = 1 we take to(x):=exp(imx)
for some m e Z , then (2.3) (together with (2.4)) reproduces the triviality
I k l l a ^ l M L a * (for a11 0<p^q^<x>) whereas (1.5) would yield

This observation may be of some interest in studying lacunary series. Moreover,
the example of the Dirichlet kernel shows that the constant in (2.3) is the best
possible one for p = 2, q = co. Note, however, that (2.3) is in general not true for
p>2. For, otherwise, the example of the Dirichlet kernel would lead to
||Sj[L-.mexP(y*)||j» = (2m+l)1/p', a contradiction to an extremal property of the
Hausdorff-Young inequality (see Zygmund (1959, II, p. 105)).

To derive inequalities of type (2.3) for arbitrary/? > 0, we have to restrict ourselves
to convex spectra.

THEOREM 2. For each trigonometric polynomial (2.2) there holds the inequality

(2-4) ||/Ha,,,

where p0 is the smallest integer not less than p/2, and conv (supp t*) denotes the

convex hull of supp t*.

PROOF. Following a device in Timan (1963, p. 229), consider the polynomial tPa.
Then

supp (rPo)A> c supp t~+... + supp t*<=p0 conv (supp t~),

and by Theorem 1 one has

which implies (2.4) for q = oo. From this the assertion follows as in the proof of
Theorem 1.

The proof indeed shows that for 0 <p < 1 even the assertion (2.3) remains valid.
Moreover, one may replace [p0 conv (supp t~)] in (2.4) by [supp t*+...+supp t^].

Note that (2.4) not only covers (1.5) since

p0conv (supp C , . . . , ^ ) c (x6R"; | x,\ </>„mj91«?./^«},
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but also delivers inequalities with respect to other classical definitions of the degree
of trigonometric polynomials of several variables. For the radial case compare
Corollary 2 in connection with classical results of the geometry of numbers.

3. Inequalities for functions with compact spectra

Let Lp(Rn), 0<p^oo, be the space of measurable functions for which

(3.1) ||/||P:=f(2^-»r ifMpdu)1", ||/|U:=esssup|/(M)|,

respectively, is finite. Let <S(Rn) be the Schwartzian space of infinitely differentiable
functions, rapidly decreasing at infinity, and S ' the corresponding dual space of
tempered distributions. The Fourier transform o f / e© ' is given by

f
J

<p{x)exp(-ivx)dx
R»

THEOREM 3. Let feU>(Rn), l</?<2, be such that supp/^ is compact. Then f
belongs to LQ(Rn) for all p ^q < oo and satisfies

(3-2) ||/||8 < [meas ( s u p p r ) ] ^ - " i / | | p )

where meas (supp/^) denotes the Lebesgue measure of the support off*. Again the
constant in (3.2) is the best possible one in case p = 2,q = ao.

PROOF. Let K denote the characteristic function of supp/^, and let ^ eL2(Rm)
be such that ^ = K, thus if>(x) = (2n)n K*(-x). Since «:eI<1(Rm)nL2(Rm),
Titchmarsh's inequality implies ipeLr(Rn) for each 2<r<oo and (l/r+ l/r' = 1)

Moreover,/^ = /^K6L 1 (R™) , and hence by the Parseval formula (see Butzer and
Nessel (1971, p. 212))

(2nr(f~Kr(-x) = (f*MxyM2?r)-n f f(x-u)+(u)du.
JR»

Therefore/*^ = / , and Young's inequality yields

for any l/r' = \lp — \lq^\. In particular, for 1 ^p^2 one has

Hence feL"(Rn) nL°°(Rn), and the logarithmic convexity of the norm then implies
(3.2) as in the previous section. The example of the function ifs shows that the
constant in (3.2) is best possible in case p = 2,q = <x>.
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To establish a Nikolskii inequality for arbitrary values of p we proceed as in the
trigonometric case.

THEOREM 4. Let feLp(Rn), l^p^oo, be such that supp/~ is compact. Then f
belongs to L9(Rn)for allp^q^co and satisfies

(3.3) ||/1|ff < {ps meas [conv (suppr)]}"*-^ ||/||p

with p0 as in Theorem 2. The assertion remains valid for 0 <p < 1 (and then even in
the form (3.2)) if one additionally assumes /e(£>'(Rn).

PROOF. Let Kp<co. Let ifie<5(Rn) be such that ifi* equals 1 in a compact
neighbourhood of supp/~. Then/=/*^r, so that / is bounded and

Moreover (see Treves, (1967, p. 314)) if**)* is equal to the/)0-fold convolution
product/~ *... */A, and thus one has (see Friedman (1963, p. 77))

supp (p*>y* c supp/~ +... + supp/~ c/>0 conv (supp/^).

Since meas [/?„ conv (supp/^)] = p% meas [conv (supp/^)], (3.3) may then be
derived from Theorem 3 as in the trigonometric case.

In the case 0 <p < 1 it now suffices to show that the present assumptions imply
/eZ^OR"). Indeed, let/eZ,»(R»)n<5'(RB) be such that supp/~ is compact. Then,
for example by the theorem of Paley-Wiener-Schwartz (see Section 4), this
implies in particular that / is continuous. Thus, choosing i/re(x):=S~(—ex), e>0,
where 8e<3(Rm) is positive satisfying

(2n)~n I 8(u)du = 1, supp 8<={ueRn; |u\^ 1},

one has (/&T = / " • « " " S(./e)6S(R") and lim^0+(/^)(JC) =/(*) for aU
Moreover, since / ^ e i , 0 0 ^ " ) and supp (/i/>e)

Ac:supp/A+supp S uniformly for
all 0<e< 1, one may conclude as in the previous cases that

I W e IU ̂  const ||^Ae IU < const H «Ae lU Hrlli, = const
Thus one has for all xeRn

which shows that/is bounded.
Let us mention that (3.3) again gives an upper bound for the ratio||/j|9/||/||j,

which only depends upon the measure of the convex hull of the support of/^ (and
not, for example, upon the symmetric (to the origin) convex hull; but see Section 4).

https://doi.org/10.1017/S1446788700038878 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038878


[7] Nikolskii-type inequalities 13

4. Inequalities for entire functions of exponential type K

In this section we would like to show that the results of the previous section
cover (1.4), at the same time generalizing it from rectangular type to a rather
general notion of exponential type.

Following Stein and Weiss (1971, pp. 11 Iff.), let K<=Rn be a symmetric body,
thus a compact, convex, symmetric (xeK implies — xeK) subset of Rn with
nonempty interior, and let K*:={yeRn; | X J | < 1 for all xeK} be its polar set.
Note that K is a symmetric body if and only if it is the unit sphere with respect to
a norm || • Ĥ  on Rn. Furthermore, K* is again a symmetric body, and one has

(4.1) (K*)* = K,

(4.2) \\A\K= sup|xy|, \\x\\K, = |
yeK* y<=K

(4.3) (<xK)* = a-1**, | | * | U = a - i H

Let Cn be the n-fold Cartesian product of the complex plane C with elements
z:=(z1,...,zn):=u+iv (with u,veRn) and norm |^|:=(SJL1|^|2)*- Then (4.2) can
be extended to a norm on Cn by setting

(4.4) IIZIU:= sup|zy|= sup|«j+/i>>>|.
VeK* yeK*

An entire function F, defined on Cn, is said to be of exponential type K if for
each e > 0 there exists a constant Ae> 0 such that (see Stein and Weiss (1971, p. 112))

(4.5) \F(z)\<Aeexp{(l + e)\\z\\K} (zeO) .

Let (&(K) be the set of all entire functions of exponential type K, and let (£j,(AT),
0<p^co, be the subset of those functions fe(£(K) whose restriction to Rn belongs
to Lp(Rm). In this case, if no confusion may occur, the same notation is applied
to f e <&p(K) and its restriction to Rn. In this terminology, one has

THEOREM OF PALEY-WIENER-SCHWARTZ. Let K^Rn be a symmetric body and
'. The following assertions are equivalent:

(0 / ^ has support in K*.
(ii) f can be extended to Cn as an entire function f(z) such that there is an integer

and a constant 0 0 such that for all z = u+iv

\f(z)\<C(l+\z\Texp{\\v\\K}.

(Hi) f can be extended to a function in
An explicit proof of the equivalence of (i) and (ii) is given in Treves (1967,

pp. 311-312). For functions in L?(Rn) the equivalence of (i) and (iii) is proved in
Stein and Weiss (1971, pp. 112-114). The extension to general tempered distri-
butions may be performed analogously to the procedure described in Friedman
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(1963, p. 145) and Schwartz (1966, p. 272), where the above result is proved for
rectangles K.

THEOREM 5. Let K be a symmetric body. Iffe(£p(K)for some 0<p^oo, then
/belongs to (£q(K)for allp^q <oo and satisfies

(4.6) ||/||g< [tf nieas tf *F»-1/«||/V

PROOF. In view of the Theorem of Paley-Wiener-Schwartz and Theorem 4 it
only remains to show that fe<SP(K), 0<p<l, implies/eZ,°°(Rn). For n = 1 and
K= [—a,#]<=R, a>0, this result is proved in Boas (1954, p.98). For the sake of
completeness let us reduce the case n > 1 to the one-dimensional result via induction,
using the theorem of Paley-Wiener-Schwartz and the Nikolskii inequality of
Theorem 4.

Let neNbe fixed and assume

for all symmetric bodies K'cRm, K m ^ n . Let K<=Rn+1 be a symmetric body,
and let/6(£p(AT). It follows from Fubini's theorem that

(4.7) A(*n+i):= f \f(x,

(4.8) g(x
JR

Since all norms on a finite dimensional space are equivalent, one can choose
symmetric bodies K'^Rn and ^ " c R i such that ||z||x<||.z'lk/+llzn+ilk» f o r a U

(z',zn+1):=zeCm+1. Then it follows from (4.7) that f(z', xn+1) considered as a
function of z'eC™ belongs to <£P(K') for at least almost all xn+1eR. Analogously
one has/(x,zn+1)e(£p(^r") for almost all xeRn. Since

by assumption, one may apply the Theorem of Paley-Wiener-Schwartz and
Theorem 4 to conclude (see (4.7), (4.8))

sup |/(JC, Jcn+1) | < [meas K'*]Up \ h(xn+1) \
Vp almost everywhere in R,

xeR»

sup |/(JC, xn+1) | < [meas K "*¥**> \ g(x) \1/p almost everywhere in Rn.

Thus one has for almost all (x,xn+1)eRn+1

x) | Ih(xn+J)\
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and hence fe &2p(K). An appropriate iteration of the above argument yields
fe(£q(K) for some l^q which imph'es/e(200(A) by Theorem 4 in connection with
the Theorem of Paley-Wiener-Schwartz.

Let us consider two special cases of symmetric bodies, namely (see Stein and
Weiss (1971, p. Ill))

for some alt..., on>0 and a>0, respectively. It is easy to check that for all xeILn

(4.9) K*

(4.10) K*

However, for zeC" one only has

Even though equality does not hold for general zeCn, the sets
consist precisely of those entire functions/whose restrictions to Rn are bounded
and which are of rectangular type cr1,...,crn>0, thus

(4.11) | / (z ) | sU e exp(s07 ,+e)N) (zeC»e>0),

or of radial type a>0, thus

(4.12) |/(z)|<^exp{(a+£)|z|} (zeC» e>0),

respectively. This is a consequence of the following

LEMMA. Let || • || be an arbitrary norm on Cn, and let f be an entire function such
that for each e>0 one has |/(z)|<^eexp{(l + e)||z||}/or all z = u+iveCn. If the
restriction off to Rn is bounded, then f satisfies

(4.13) |A«+fr)|<||/1l»«P{|M|}.

For n = 1 this result is proved in Stein and Weiss (1971, p. 109), to which (4.13)
may be reduced by an argument as given for/> = 2 (instead ofp = 00) in Stein and
Weiss (1971, p. 113). Observing that

n 2irin

meas*• = 2-n *„ ^J

one may state the following inequalities.
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COROLLARY 1. Let feLp(Rn), 0<p^ao, be the restriction to R" of an entire
function of rectangular type a1,...,anfor some o^>0, l^j^n. Then f belongs to
Z,8(R") for allp^q^oo and

L ii J

Indeed, the assumptions again imply /eLc0(R7t). Therefore by (4.9) and the
mma

and thus fe t&p{K^) so that the assertion follows by Theorem 5. Note that (4.14)
regains (1.4) including constants.

COROLLARY 2. Let feLp(Rn), 0<p^co, be the restriction to Rn of an entire
function of radial type a>0. Then f belongs toLa(Rn)for allp^q^coand

For various apph'cations of Nikolskii-type inequalities one may consult Burenkov
(1968), Jackson (1933), Mertens et al. (1976), Nessel and Wiimes (to appear),
Nikolskii (1951, 1974), Szalay (1974), Timan (1963, p. 365), Triebel (1977),
Watari and Okuyama (1975).
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