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Abstract. The method of ultradiscrete limit is applied to a series of discrete
systems derived from Hamiltonian systems parametrized with corresponding lattice
polygons. For every ultradiscrete system, general solution is obtained from the polar
set of each lattice polygon.
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1. Introduction. The non-analytic limit [1, 3]

lim
ε→+0

ε log
(

exp
[

U
ε

]
+ exp

[
V
ε

]
+ · · · + exp

[
W
ε

])
= max(U, V, . . . , W ) (1)

has been introduced into soliton theory and used to translate many fully discrete
soliton equations into the corresponding soliton cellular automaton [2, 4]. Nowadays,
formula (1) is called the ultradiscrete limit, since the soliton equation of fully discrete
independent variables is further transformed through this limit into a system whose
dependent variables are also discretized.

We propose applying the ultradiscrete limit to the Hamiltonian system

dQ
dt

= ∂H
∂ p

,
dP
dt

= −∂H
∂Q

.

We will see that it is successful for some of the Hamiltonian functions in the form

H(Q, P) = ε log


 ∑

(j,k)∈∂�∩Z2

a(j,k) exp
[

jQ + kP
ε

]
 , (2)

where ε > 0 is a parameter and the weight constants a(j,k) depend on a convex lattice
polygon � having the origin as a unique internal lattice point. Below we explain the
precise correspondence between such polygons and Hamiltonian functions.

1.1. Hamiltonian with polygon �. Let � be a convex polygon such that
� every vertex ∈ Z2,
� the origin (0, 0) is a unique internal lattice point.

Figure 1. shows examples �1 and �2, where the labels on the lattice points of the edges
are the weight constants. Polygons �1 and �2 correspond to the following Hamiltonian
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Figure 1. �1 and �2 with weight constants

functions:

H�1(Q, P) = ε log




1 · e(1,0)·(Q,P)/ε + 1 · e(1,−1)·(Q,P)/ε

+2 · e(0,−1)·(Q,P)/ε + 1 · e(−1,−1)·(Q,P)/ε

+2 · e(−1,0)·(Q,P)/ε + 1 · e(−1,1)·(Q,P)/ε

+1 · e(0,1)·(Q,P)/ε


 , (3)

H�2(Q, P) = ε log




1 · e(1,0)·(Q,P)/ε + 1 · e(1,−1)·(Q,P)/ε

+2 · e(0,−1)·(Q,P)/ε + 1 · e(−1,−1)·(Q,P)/ε

+3 · e(−1,0)·(Q,P)/ε + 3 · e(−1,1)·(Q,P)/ε

+1 · e(−1,2)·(Q,P)/ε + 2 · e(0,1)·(Q,P)/ε


 . (4)
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We remark that the weight constants cannot be chosen arbitrarily, but have a
considerable degree of freedom for our purpose of discretization. We use appropriate
binomial coefficients as our weight constants for the present, which allow us to
discretize the independent variable t. Further research may allow us to determine
the suitable general weight constants on general �. We give some more examples in the
following section.

2. Discretization of independent variable t. We consider the discretization of our
Hamiltonian systems.

First we note that our Hamiltonian functions H = H�i (for i = 1, 2) are strictly
convex, that is, ∂2H

∂Q2 > 0, ∂2H
∂Q2

∂2H
∂P2 − ( ∂2H

∂Q∂P )2 > 0 for all (Q, P) ∈ R2. Also, they each have
a minimum value, at a unique finite point (Q, P) = (Qf ix, Pf ix) such that ∂H

∂Q = ∂H
∂ p = 0.

Now, we make general consideration. Let H(Q, P) be a Hamiltonian function
given as strictly convex for all (Q, P) ∈ R2 and having a minimum value. Then, for
arbitrary initial point (Q0, P0), the orbit {(Q(t), P(t))|t ∈ R, (Q(0), P(0)) = (Q0, P0)} of
the time evolution with

dQ
dt

= ∂H
∂ p

,
dP
dt

= −∂H
∂Q

(5)

is the set {(Q, P) ∈ R2|H(Q, P) = H(Q0, P0)}, that should be either some simple closed
curve or the fixed point {(Qf ix, Pf ix)}. Here, we emphasize that the time evolution
(Q(t), P(t)) from (Q(0), P(0)) = (Q0, P0) always passes through any (Q, P) such that
H(Q, P) = H(Q0, P0). This situation enables us to obtain a discrete system.

The idea of discretization is simple: Let (Q(t), P(t)) be one of the representation of
general solution to system (5), and let (X(t), Y (t)) be another,

dX
dt

= ∂H
∂ p

(X, Y ),
dY
dt

= −∂H
∂Q

(X, Y ), (6)

satisfying

H(Q, P) = H(X, Y ). (7)

Then, for any chosen initial point (Q(0), P(0)) of (Q(t), P(t)), there exists some point
(X(0), Y (0)), the initial point of (X(t), Y (t)), and some δ such that (Q(δ), P(δ)) =
(X(0), P(0)). Thus we have

EδQ = X, EδP = Y, (8)

where Eδ is the time shift operator Eδφ(t) = φ(t + δ) for a properly chosen fixed
parameter δ. We note that this parameter δ is determined respectively for each one-to-
one correspondence,

(Q, P) �→ (X, Y ) = (Fδ(Q, P), Gδ(Q, P)). (9)

Hence, we have found that (8) and (9) form the discrete system

EδQ = Fδ(Q, P), EδP = Gδ(Q, P), (10)
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which is satisfied by the general solution (Q(t), P(t)) of (5) with a properly chosen fixed
parameter δ, if the pair of functions Fδ and Gδ satisfy

dFδ

dt
= ∂H

∂ p
(Fδ, Gδ),

dGδ

dt
= −∂H

∂Q
(Fδ, Gδ), H(Q, P) = H(Fδ, Gδ), (11)

obtained from (6), (7) and (9).

REMARK. If a discrete system of the form (10) was given then the condition (11)
would be d

dt · Eδ(Q, P) = Eδ · d
dt (Q, P), H(Q, P) = EδH(Q, P).

Here, we rewrite the condition (11) into more suitable form for our Hamiltonian
functions. Let us introduce the following transformation,

(Q(t), P(t), H(Q, P), Fδ(Q, P), Gδ(Q, P))

�→ (q(t), p(t), h(q, p), f (q, p), g(q, p)) := (
eQ/ε, eP/ε, eH/ε, eFδ/ε, eGδ/ε

)
, (12)

which transforms the condition (11) into the following system of equations,


ξ (q, p)
∂ f
∂ q

+ η(q, p)
∂ f
∂ p

= ξ (f, g),

ξ (q, p)
∂ g
∂ q

+ η(q, p)
∂ g
∂ p

= η(f, g),

h(q, p) = h(f, g),

(13)

where the functions ξ and η are defined by

ξ (q, p) = q p
∂h(q, p)

∂ p
, η(q, p) = −q p

∂h(q, p)
∂ q

.

The discrete system (10) is transformed into Eδq = f (q, p), Eδp = g(q, p).

2.1. Discretization for case �1. The transformation (12) transforms (3) into

h�1(q, p) = q + q
p

+ 2
p

+ 1
q p

+ 2
q

+ p
q

+ p,

and we have

ξ�1(q, p) = q p
∂h�1

∂ p
, η�1(q, p) = −q p

∂h�1

∂ q
.

For the above ξ�1 and η�1 (13) is


ξ�1(q, p) ∂ f
∂ q + η�1(q, p) ∂ f

∂ p = ξ�1(f, g),

ξ�1(q, p) ∂ g
∂ q + η�1(q, p) ∂ g

∂ p = η�1(f, g),

h�1(q, p) = h�1(f, g).

This system has an exact solution

f = p, g = p + 1
q

,

https://doi.org/10.1017/S0017089505002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002314


ULTRADISCRETE HAMILTONIAN SYSTEMS 91

so, we have the rational map

Eδq = p, Eδp = p + 1
q

,

which is transformed using (12) into the discrete system

EδQ = P, EδP = ε log(exp[P/ε] + 1) − Q,

which, for some δ, is satisfied by the general solution of continuous Hamiltonian
system.

2.2. Discretization for case �2. The transformation (12) transforms (4) into

h�2(q, p) = q + q
p

+ 2
p

+ 1
q p

+ 3
q

+ 3p
q

+ p2

q
+ 2p,

and we have

ξ�2(q, p) = q p
∂h�2

∂ p
, η�2(q, p) = −q p

∂h�2

∂ q
.

For this ξ�2 and η�2 (13) is


ξ�2(q, p) ∂ f
∂ q + η�2(q, p) ∂ f

∂ p = ξ�2(f, g),

ξ�2(q, p) ∂ g
∂ q + η�2(q, p) ∂ g

∂ p = η�2(f, g),

h�2(q, p) = h�2(f, g).

This system has an exact solution

f = p(q + p + 1)
q

, g = p + 1
q

,

so we have the rational map

Eδq = p(q + p + 1)
q

, Eδp = p + 1
q

,

which is transformed by (12) into the discrete system{
EδQ = P + ε log(exp[Q/ε] + exp[P/ε] + 1) − Q,

EδP = ε log(exp[P/ε] + 1) − Q,

which, for some δ, is satisfied by the general solution of continuous Hamiltonian
system.

2.3. Exact solution to system (13): More examples. We can construct other
examples. The following are some of them, where we give only h� and the respective
exact solution f, g of (13) in each case:
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� h�3 = q + q p−1 + p−1 + q−1p + p.

f = p
q(q + p + 1)

, g = 1
q + p

.

� h�4 = q p + 2p−1 + q−1p−3 + 4q−1p−2 + 6q−1p−1 + 4q−1 + q−1p + 2p.

f = p(q p2 + (p + 1)2)2

(p + 1)4
, g = (p + 1)2

q p2
.

� h�5 = q + q p−1 + 2p−1 + q−1p−1 + q−1 + p.

f = q p
q + 1

, g = q p + q + 1
q(q + 1)

.

� h�6 = q + p−1 + q−1 + q p.

f = p
q p + 1

, g = 1
q p

.

� h�7 = q p + p−1 + q−1p−1 + p + q p2.

f = q p2(p + 1), g = 1
q p(p + 1)

.

The following discussion is also applicable to the above examples.

3. Ultradiscrete Hamiltonian systems. We apply the ultradiscrete limit ε → +0
to our Hamiltonian functions (3) and (4) using (1), to obtain

H�1(Q, P) = max(Q, Q − P,−P,−Q − P,−Q,−Q + P, P),

H�2(Q, P) = max(Q, Q − P,−P,−Q − P,−Q,−Q + P,−Q + 2P, P),

and we obtain the following ultradiscrete systems,

EδQ = P, EδP = max(P, 0) − Q, for H�1(Q, P),
EδQ = P + max(Q, P, 0) − Q, EδP = max(P, 0) − Q, for H�2(Q, P).

In order to find the general solution to the above ultradiscrete system, we use the
polar set of � [5].

3.1. Polar set of �. Here we describe how to obtain the polar set for a polygon �

of the form defined in Section 1.1. This procedure is not available for a general polygon.
1. Each edge joins two vertices of �. For each edge construct outward normals

from each end to the nearest lattice point.
2. Then, for every vertex, construct the triangle spanned by the pair of outward

normal vectors at that vertex.
3. Finally, translate each triangle constructed in 2. So that the original vertices

coincide at the origin. The resulting convex lattice polygon �� is the polar set
of �.

For our �1 and �2, we can construct the polar sets as Figure 2.
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Γ1

Γ1∆

Γ2

Γ2∆

Figure 2. How to make the polar set ��

Hereafter, we treat the Hamiltonian function (2) as the ultradiscrete limit,

H�(Q, P) = max
(j,k)∈∂�∩Z2

{jQ + kP}.
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Then, we can show that for all �,

{(Q, P)|H�(Q, P) = 1} = ∂��. (14)

The formula (14) means that the contour line {(Q, P)|H�(Q, P) = 1} of the ultradiscrete
Hamiltonian function H� corresponds to the boundary of the polar set ��. Further,
we note that the similarity H�(λQ, λP) = λH�(Q, P) = λ holds for all � and λ ≥ 0.
Therefore, we have obtained a procedure for constructing arbitrary contour line of
the ultradiscrete Hamiltonian function. We remark that any solution orbit of the
ultradiscrete system is on a contour line {(Q, P)|H�(Q, P) = λ} for some λ ≥ 0 in the
phase space.

We will now verify formula (14): Let � be an N-gon with N-vertices (j1, k1), (j2, k2),
. . . , (jN, kN), where we choose one of the vertices to be u1 := (j1, k1), and then label
the other vertices as uj := (ji, ki) counterclockwise for i = 2, 3, . . . , N. We use cyclic
notation uN+1 := u1 or u0 := uN . We note that

H�(Q, P) = max
(j,k)∈∂�∩Z2

{(jQ + kP)} = max
(j,k)∈∂�∩Z2

{(j, k) · (Q, P)}
= max

1≤i≤N
{ui · (Q, P)},

because of the identity,

max{A · (Q, P), B · (Q, P), C · (Q, P)} = max{A · (Q, P), C · (Q, P)},

which holds when B is on the line segment from A to C. Thus, (14) is equivalent to
{(Q, P)| max1≤i≤N{ui · (Q, P)} = 1} = ∂��.

To prove this we represent ∂� using ui = (ji, ki). We recall that � includes the origin
(0, 0) as an internal lattice point, and that ui have been arranged counterclockwise, so
we have

� =
{

(j, k)

∣∣∣∣det
(

ji−1 − j ki−1 − k
ji − j ki − k

)
≥ 0, for 1 ≤ i ≤ N

}
.

If, we write

Di := det
(

ji−1 ki−1

ji ki

)
,

for 1 ≤ i ≤ N, then, we have that Di > 0 and

� = {(j, k)|(j, k) · (ki − ki−1, ji−1 − ji) ≤ Di, for 1 ≤ i ≤ N}.

Thus we have

∂� = {
(j, k)

∣∣ max
1≤i≤N

{(j, k) · (ki − ki−1, ji−1 − ji)/Di} = 1
}
.

Now we set vi := (ki − ki−1, ji−1 − ji)/Di, for 1 ≤ i ≤ N, that have the following
properties:

� Since ui · vi = ui−1 · vi = 1, we have (ui − ui−1) · vi = 0, hence vi is the normal for
the edge (ui − ui−1) of �.
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� We have

det
(

vi

ui − ui−1

)
= det

(
ki − ki−1 ji−1 − ji
ji − ji−1 ki − ki−1

)
/Di > 0,

hence, vi points outward.
� With gcd(ji−1, ki−1) = gcd(ji, ki) = 1, we have

Di = (the number of lattice points on the edge from ui−1 to ui) − 1,

hence, ||vi|| = ||ui − ui−1||/Di is the length of the shortest lattice vector as the normal
for ui − ui−1.
Therefore, we have shown that {vi|1 ≤ i ≤ N} is the set of all vertices of �� constructed
by the procedure. Here, we note that

� �� has the unique internal lattice point (0, 0).
� vi are counterclockwise for i = 1, 2, . . . , N.
� �� is convex. (Because, ui · (vi+1 − vi) = 0 for i = 1, 2, . . . , N, and both {ui} and

{vi} are counterclockwise.)
Next we represent ∂�� using vi =: (Qi, Pi). We can do this in the same way as ∂�:

∂�� = {
(Q, P)

∣∣ max
1≤i≤N

{(Pi+1 − Pi, Qi − Qi+1) · (Q, P)/D′
i} = 1

}
,

where we have defined

D′
i := det

(
Qi Pi

Qi+1 Pi+1

)
.

Now, we set wi := (Pi+1 − Pi, Qi − Qi+1)/D′
i, for 1 ≤ i ≤ N, using cyclic notation

wn+1 := w1. Then, wi becomes the outward normal for the edge vi+1 − vi of ��, as the
shortest lattice vector, and {wi|1 ≤ i ≤ N} becomes the set of all vertices of a convex
N-gon having the unique internal lattice point (0, 0). Since (wi+1 − wi) · vi+1 = 0, for
1 ≤ i ≤ N, and we note that such a convex N-gon should be uniquely determined. On
the other hand, we have already found that (ui+1 − ui) · vi+1 = 0. Hence, we obtain
wi = ui for 1 ≤ i ≤ N and so

∂�� = {
(Q, P)

∣∣ max
1≤i≤N

{ui · (Q, P)} = 1
} = {(Q, P)|H�(Q, P) = 1},

as required.

3.2. General solution to ultradiscrete system. We restrict the formula (14) to Z2:

{(Q, P) ∈ Z2|H�(Q, P) = 1} = ∂�� ∩ Z2.

From this formula, we can find the general solution to our ultradiscrete system as
follows. We call it the ‘general solution’ in the sense that the solution includes any time
evolution solution from arbitrary chosen initial point (Q0, P0) ∈ R2.

First, we note that our ultradiscrete system for �1,

EδQ = P, EδP = max(P, 0) − Q,
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acts to permute the set

{(Q, P) ∈ Z2|H�1(Q, P) = 1} = ∂�1� ∩ Z2

= {(1, 0), (0,−1), (−1, 0), (0, 1), (1, 1)}.

Actually, we have

(1, 0) �→ (0,−1) �→ (−1, 0) �→ (0, 1) �→ (1, 1) �→ (1, 0).

Here, we let 
(Q0, P0) denote the periodic solution to our system for �1 of an initial
value (Q0, P0) in ∂�1� ∩ Z2. For instance,


(1, 0) =




(1, 0), t/δ ≡ 0 (mod 5),
(0,−1), t/δ ≡ 1 (mod 5),
(−1, 0), t/δ ≡ 2 (mod 5),
(0, 1), t/δ ≡ 3 (mod 5),
(1, 1), t/δ ≡ 4 (mod 5).

Then, the general solution to our system for �1 is written as

µ
(Q0, P0) + νEδ
(Q0, P0), (15)

for arbitrary µ ≥ 0, ν ≥ 0 and (Q0, P0) ∈ ∂�1� ∩ Z2. This solution is, indeed, the
general solution, since,

R2 = {µ(1, 0) + ν(0,−1)} ∪ {µ(0,−1) + ν(−1, 0)} ∪ {µ(−1, 0) + ν(0, 1)}
∪ {µ(0, 1) + ν(1, 1)} ∪ {µ(1, 1) + ν(1, 0)},

which is to say, an arbitrary point of the phase space R2 can be taken as the initial
point, and the one-step time evolution of our ultradiscrete system for �1 causes a
permutation of the five components of R2 decomposed as above.

Second, we note that our ultradiscrete system for �2,

EδQ = P + max(Q, P, 0) − Q, EδP = max(P, 0) − Q.

acts to permute the set

{(Q, P) ∈ Z2|H�2(Q, P) = 1} = ∂�2� ∩ Z2

= {(1, 0), (0,−1), (−1, 0), (1, 1)}.

Actually, we have

(1, 0) �→ (0,−1) �→ (−1, 0) �→ (1, 1) �→ (1, 0).

Here, we let �(Q0, P0) denote the periodic solution to our system for �2 of an initial
value (Q0, P0) in ∂�2� ∩ Z2. For instance,

�(1, 0) =




(1, 0), t/δ ≡ 0 (mod 4),
(0,−1), t/δ ≡ 1 (mod 4),
(−1, 0), t/δ ≡ 2 (mod 4),
(1, 1), t/δ ≡ 3 (mod 4).
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Then, the general solution to our system for �2 is written as

µ�(Q0, P0) + νEδ�(Q0, P0), (16)

for arbitrary µ ≥ 0, ν ≥ 0 and (Q0, P0) ∈ ∂�2� ∩ Z2.
Both general solutions (15) and (16) are represented in the same form. In the other

cases of �3, �4, . . . , and so on, the general solutions are represented in the similar
form without some arrangement of basic periodic solutions for superposition.

4. Summary. The method of ultradiscrete limit is applied to the discrete systems
derived from the Hamiltonian systems as parametrized with lattice polygons. For every
ultradiscrete system considered, the general solution is obtained from the polar set of
each lattice polygon.

Comment: The first author owes his study to JSPS Research Fellowships for Young
Scientists.
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