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Abstract

An interior layer problem posed by an elliptic partial differential
equation of the type e V2<£ - x3<t>/dy = f(x, y, e ), 0 < e < 1, is investigated.
This equation arises, for example, in the theory of rotating fluids and the
important feature of the problem is an interior layer of width O(e'") in
which the solution has a relatively large magnitude.

The paper considers the simplest case which involves an interior layer,
that is, where the domain is rectangular and f(x, y, e) = EA for A constant.
A leading approximation is derived and it is shown to be asymptotic to the
exact solution in nearly all of the domain as e —>0. The error estimates are
derived using an a priori estimate for the solution of elliptic equations and a
technique which optimizes the estimates is introduced. The applicability and
limitations of the estimation technique are discussed briefly.

1. Introduction

In this paper, a leading approximation tp to the solution <f) of the singular

perturbation problem

<t>\SG = c!>*(x,y,E) (1.2)

is constructed, and error bounds on 4> are established as e —» 0. The domain G

is the rectangle - a < x < a, -\< y <{ whose boundary dG consists of the

segments denoted {-y, }f=1 in figure 1 and A is a constant. For x > 0 , the

boundary value <t>* is
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494 N. G. Barton [2]

{
0 on -y,

eb2(y) on y2 (1.3)
ebj(x) on y,

and it is assumed, without a serious loss of generality, that <j>* has the
symmetry

4>*(x, y, e)= ct>*(-x, -y, e), (x,y)GdG. (1.4)
The boundary value <j>* is assumed to be sufficiently smooth for the problem
to have a unique, twice continuously differentiable solution.

' y

/ <* (o,V2)

(a,O)

A

Figure I.

Illustrating the domain G and the boundary Ur.iy,

This symmetric problem with constant inhomogeneous term is the
simplest model which includes an interior layer inside the domain G as well as
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[3] The asymptotic solution 495

distinct boundary layers at 8G. The assumed scaling in the inhomogeneous
term of (1.1) and in the boundary conditions (1.3) is consistent and is
convenient to demonstrate the magnitude of the solution in various regions.
These choices are only made for simplicity and the essential features of the
problem are unchanged for more general forcing terms and boundary
conditions.

The approximation <// is found to possess an interior layer of width
O(e"3) centred on the line x = 0 and, in this layer, t/f has the relatively large
magnitude O(e2/3) compared to the magnitude O(e) elsewhere in G. Interior
layer problems of this sort are known to occur in the study of rotating fluids
(see references [3, 8]) and particularly in geophysical fluid dynamics (refer-
ences [6, 16, 17, 18]). Inter-ior layers have previously been studied as elliptic
singular perturbation problems by Eckhaus [15] and Cook & Ludford [10]
who, respectively, considered the effect of non-convex boundaries and of
discontinuous boundary data. The solution of (1.1, 1.2) also possesses
boundary layers adjacent to segments of dG and, in this respect, the problem
resembles previous elliptic singular perturbation problems described in
references [7, 10, 11, 13, 14].

An estimate of the error in ip is obtained by observing that the error
function w,

w = <£-<£ (1.5)

satisfies an elliptic problem with an inhomogeneous (or forcing) term depend-
ing on the construction of ip, that is, for a particular g(x, y, e),

+ x'*y~egix'y'e) i n G ' ( l l 6 )

w\so=0. (1.7)

An upper bound for the magnitude of w is then obtained by applying an a
priori estimate for solutions of two-dimensional elliptic equations, (see Barton
[4]). This gives a pointwise estimate for the error, that is, for the norm || w ||C(O)
where

||w||c(c)=SUp|w|. (1.8)
a

An interesting feature of the estimation technique is the smoothing of the
approximation by C°° mollifiers near the ends of the interior layer. This
procedure is necessary for the use of the a priori estimate and the optimum
size of the mollified region is calculated. A discussion of the results and the
applicability of the estimation technique is given in sections 3, 4.
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2. Construction of a uniform approximation

A leading approximation to the solution of (1.1, 1.2) is constructed for
x > 0 in this section. For x <0, the approximation is given by the symmetry
property

4>(x,y,e)=<K-x,-y,e), (x,y)SG (2.1)

which holds provided the boundary value <f>* satisfies (1.4). The construction
of an approximation is quite complicated since there are three boundary layer
regions to be considered. Two of these regions (indicated by III and IV in
figure 2) are well-understood and have been studied in detail for example by
Eckhaus & de Jager [14]. The other boundary layer region is the interior layer
(denoted by II in Figure 2) and it is the main concern of the present paper.

i

IS I

III

y

1 V L

II

|0(e)

in
t

i G?
X

Figure 2.
Illustrating the various regions in G. The numbers I to V denote, respectively, the outer region,
the interior layer, the ordinary boundary layer, the parabolic boundary layer and the 'corner'

regions.
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[5] The asymptotic solution 497

I The outer region

A suitable Poincare expansion for i// in this region is

</>'(x, y, e) = 2 £l+ntAn(x, y), (2.2)

where the {i/»!,} satisfy the first order equations

dy
0 < x < a, - 1 < y < I (2.3)

Clearly, the {ip'n} can only satisfy a boundary condition at y = + \ or -\ with a
boundary layer occurring at the other end of the lines x = constant. This
question of boundary layer placement has been resolved by Eckhaus & de
Jager [14] whose results imply that the boundary conditions on the {i/*!,} are to
be applied at y,, (y = - | ) .

The leading outer approximation et//i(x, y) is readily found to be

e*Mx,y)= -eA(y+l)x-1, 0< e «1. (2.4)

This term becomes singular as x —*0, and a Poincare expansion of the form
(2.2) is clearly unsuitable throughout the whole of G. This leads to a
consideration of the interior layer.

II The interior layer

An examination of (1.1) shows that ed2<f>/dx2 serves to balance - xd<p/dy
near x = 0, and it follows that the interior layer has thickness O(el/3). A
suitable expansion for ijj in this region is

•n*,y,«0=i ^""V-'teTO (2.5a)

where £ is defined by the stretching transformation

^ = e-'/3x, x>0 (2.5b)

and

17 = 5 + y. (2.5c)

The {if/"} are the solutions of the equations
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~W~^=~^T' " = x (26b)

where 0 < £, < ae ~u\ 0 < 17 < 1.
The boundary and matching conditions that are applied to the leading

interior layer approximation are

(2.7)

where the first condition matches the interior layer and outer solutions, and
/(17) is to be determined so that ip is continuously diflerentiable at x = 0.

By solving (2.6a) subject to (2.7), t//"(£, 17) is found to be

^o(f,i?)=0i + ^2+03 - (2.8a)

where

«Mf) = Mf2, (2-8b)

(2.8c)

(2.8d)

In this solution, the constants c, and c2 are
c = - A r(§)32/3{2r(i)}-\ c2 = {32/3r0)j (2.9)

and M is Kummer's confluent hypergeometric function. Some elementary
substitutions and use of (2.1) then yields an integral equation for f'{y}),

= ca f " f(u)Uv ~ «r/3exp{ - e/9(V -u)} du.
Jo

0 < T J < 1 , (2.10a)

if t/f"(£ 17) is to be continuously differentiable at x = 0.
The solution,

- 1 s i n | | R(t)(v - t)'wdt

r-(i - o-(, - 0
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of the integral equation (2.10a) may be obtained using a modification of a
technique described by Carrier et al [9: p. 426]. Some details of a numerical
solution of (2.10a) have also been given by the author [3, 5].

Now it follows from (2.7) that \\i" has the property

as e —* 0 with x > 0, or

Thus a uniform leading approximation in regions I and II is, simply,

ip^e^^oU-n) (2.H)

This term does not necessarily satisfy the boundary conditions at y2 and -y3,
that is, the approximation requires additional boundary layers in regions III
and IV.

Ill Ordinary boundary layer

The boundary value <f>* is satisfied at y3 if (2.11) is augmented by the
boundary layer term ^'"(JC, y, e),

il,'"(x,y,e)=ebUx)e-*1 (2.12)

where, from (1.3),

bUx)=b,(x)-E-miplo'({,l), 0§£<ae-"3 (2.13)

and

IV Parabolic boundary layer

The boundary layer adjacent to y2 also has a well known structure (see
Eckhaus & de Jager [14]). It is found that the boundary value <f>* is satisfied at
y2 if (2.11) is augmented by ip'v(x, y, e),

[-v2)dv, (2.14)

where, from (1.3) and (2.7),

b*(y +{) = b2(y) + A(y +{)a'\ —2<y<2, (2.15)

and

5 =(a-x)e-"2.
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A simple restriction on the boundary value function <f>* is now intro-
duced to reduce the following analysis. First, the property

62(-2> = 0 (2.16)

is obviously necessary if <f>* is to be continuous, and it follows from (2.14,
2.16) that

-j=\ b*"(-ias2v-2)e-v2dv\.
dy

Clearly if bf(0) = 0 or, from (2.15),

b'2(-i)=-A/a (2.17)

the difficulties associated with the rectangular domain will be reduced. (The
property (2.17) precludes the need for regularization of the parabolic bound-
ary layer, as described in [14]).

It is now shown that the confluence of the boundary layer regions III and
IV does not cause serious difficulties. First, the function b$(x) in (2.13) is
adjusted so that

ebUx)= eb,{x)- ew^'(fel)- 4>lv{x,ie) (2.18)

(OSf < ae~"3) to allow for the O(e') parabolic boundary layer, (see figure 2).
This implies that b*(x) is modified by the parabolic boundary layer in an
O(e2) neighbourhood of x = a. Next, we change b% to

bi(y +i)= Hy) + My +*)«"'- b*{a)e—, (2.19)

( - {< y < I) to account for the ordinary O(e) boundary layer. It follows that
b*{y) is modified only in an O(e) neighbourhood of y = I and (2.14) then
implies that any further adjustments in b* or b* are exponentially small as
e-*0 .

Thus a leading approximation ip to the solution <f> of (1.1, 1.2) is

* { x , y , e ) = e2l^'oU i ? ) + 4 > " \ x , y , e ) + ^ l v ( x , y, s ) , (2.20)

and, in the outer region, this is asymptotic to

4f(x, y , e ) = eijj'o(x, y ) + 4>'"(x, y , e ) + ^ l v ( x , y , e ) . (2.21)

3. Pointwise estimation of the error

3.1 Prelimimries

An estimate for the error w in the approximate solution is deduced in
§3.2 using a technique described elsewhere by the author [4]. A modification
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of the approximation ip is required before making the estimation, however,
since i/f is not continuously differentiable at the points (0, ±j). The sing-
ularities in the derivatives of ip are discussed in appendix A.

Figure 3.
The strip S, and the border S*.

First, consider neighbourhoods of the point (0, — i) and introduce a
C°°(G) mollifier which annihilates functions in a small rectangular strip Si. Let
mi(x, y) be a C°{G) function in the border S* surrounding Si (see figure 3)
with the properties

fO for(x,y)eS, , (that is, |x | ̂  e", 17 g e"),
m,(x,y)= <

[l for(x, y ) e G - ( S , U S ? ) , (that is, \x | s 2e", 17 g? 2e3)

in the adjoining regions. Such a mollifier must satisfy

= 0 at <?ST

where ST is the boundary of the border region ST.
A second mollifier m2(x, y) may be defined to exclude the corresponding

rectangular strip S2 containing (0, {). The precise size of the strips S, and S2 are
established in appendix B.

These mollifiers enable a continuously differentiable approximation

r = s ^ J ' K , T,)m,(x, y)m2(x, y) + ^"(x, y, e) + *'v(x, y, e) (3.1)

to be used, where the coefficient b*(x) in ipl" now becomes

eb*3(x)= eb3(x)- mi(x,y)m2(x,y){emiP'0Ul)}- <l,lv(x,ie) (3.2)

in order that ip* satisfies the boundary value (1.3).
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An inequality relating the norms || ||w;(c) and || | |C(G)

In the following lemma, D is a closed domain, (x, y) and (x',y') are
general points in D, and £(r) denotes any C°° function with

where 0 < R <diam. D, r = \(x,y)-(x',y')\.

LEMMA [4] Let u (x, y) be a continuously differentiable function defined on
a closed domain D which possesses the cone property. Then the function u
satisfies the following relations:
I If u and its derivatives are sufficiently small such that

sup In

then for any p in the interval 1 < p < 2, and (x, y) in D,

(3.3)

II Alternatively, if

sup In

there exists q in the interval 1 < q < 2 such that for any (x, y) in D,

\\\ (u2 + (Vuf)dxdyj (3.4)

The constants c,, c2, c3 are independent of u and it is shown in reference [4]
that the index q is defined by

(2 — = 1 (3.5)

Estimation of the norm ||

The error w = <f> - tj/* satisfies the elliptic boundary value problem

eV-w-x—=eg(x,y,e) in G.
dy

(3.6a)

(3.6b)

where the term eg is defined in appendix B. These equations may be used to
obtain a standard energy estimate for w,
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( 3 7 )

3.2 Estimation of the error

If the second alternative in the above Lemma applies, equations (3.4) and
(3.7) imply

w{
7*)2) }iJL

whence

{ J J }' ' (3.8)
To estimate the logarithmic term in (3.8), we observe that the term eg in
(3.6a) has the bound

sup | eg | < c4e "" for some fixed v < oo;
c

and the boundary data (3.6b) and Schauder's estimates (see for example,
Courant & Hilbert [12: p. 336]) then yield*

sup(w2 + (Vw)2) = c5e~u for fixed ^ < oo. (3.9)
a

Also, (3.5) gives for the index q

q = 2 - c 6 | l n e | - + O ( | l n e r 2 ) (3.10)

where c6>0 is independent of e. Therefore, the inequalities (3.8, 3.10) give
the error bound

(3.11)

'This point requires clarification for, in the cited reference, Schauder's estimates are
presented for a domain with a smooth boundary. The author is unaware of estimates in which the
smooth boundary requirement is relaxed, possibly a conformal map could be used for this
purpose. Schauder's estimates should still be applicable, however, for the rectangular boundary
assumed for this problem in view.of the smooth boundary values and the mildness of the required
bound (3.9).
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where q is given by (3.10) and c7 is a positive constant independent of e and
w.

The integral in (3.11) is now estimated and, for this purpose, the domain
G is divided into several regions for x > 0 (see figure 2), that is,

the interior layer {(x, y) | \x | S /c,e1/3, -\+ fc2g y ^ | - fc2},

the outer region {(x,y)\\x\>k,s"\ - 2 < y < l } ,

the corner regions {(x, y) | | x | S k,e "3, - 1 < y < - 1 + k2 or | - k2 < y < I}-

Here, fci and fc2 are constants independent of e with j ^ - ^ l . Also the
inhomogeneous term eg in (3.6a) is decomposed into two terms eg, + eg2

where, from the defining equations (B • lb, B • lc),

eg, = eA(l - m)- Emj^{ew<l>o{e, T,)}

+ terms involving derivatives of m,(x, y) and m2(x, y),

Eg2 = ~ eJ?W"(x' y> £)}-e£-A4>1V(x, y, e)}

(The term m denotes m,(x, y)m2(x, y).)
The construction of the above functions leads to the bounds

max \gi\<ce2/}, sup | g i | < c e / | x |
interior layer outer region

where c is a constant depending on k, and k2, and it readily follows that

ff \gl\dS = O(e), f f \gl\dS = O(e\lne\). (3.12)
J J interior layer J J outer region

Further, equations (2.12, 2.14, 2.19, 3.2) can be used to show

\g2\dS = O(e), (3.13)

and finally, it is shown in appendix B that a suitable choice for the mollifier
parameters a and /3 leads to the estimate

f f \gl\dS = O(ei+s) (3.14)
J Jcornerregions

where 8 is a small positive constant.
Substituting the estimates (3.12-3.14) into (3.11) therefore yields the

pointwise bound

sup | w I = O(\ In e \ e<i*w->'|-'+o<i'"'i-2»), e -»0,
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which reduces to

sup|H-|=O(|lne|e'+s), e^O (3.15)
G

since
fi-t|lM|- = exp( -k)

is independent of e.
Equation (3.15) shows that i/»* is asymptotic to <f> in the interior layer

(although only by a narrow margin), that is in the interior layer,

\<t>-tft*\ = o(tl/*) as e^-0, 0<e<e o <U. (3.16)

In the remaining regions of G, however, \<j>-il/*\ is not o(i/>*) as e—*0.
Clearly the result (3.15) would be sharpened if a better approximation were
constructed in the corner regions since the mollifying technique is a crude way
of obtaining a continuously differentiable approximation. The derivation of
sharper estimates is discussed in the next section.

The above analysis has been based on the assumption that the second
alternative of the Lemma applies. A similar analysis can be used if the first
alternative holds, thus giving the error bound

sup|w|=iconst.(2-p)-1£(>+S)<''-1), \<p<2, (3.17)
G

whence the asymptotic property (3.16) still holds provided

The estimate (3.17) may be made sharper than (3.15) by a suitable choice for
the index p.

4. Improved error estimates

The error estimates derived above are useful only in the interior layer
since, elsewhere in the domain, the approximation ip* has a smaller mag-
nitude than the error bound. Further, although the number S in (3.15, 3.17)
has not been specified precisely, an examination of the estimates from which
it is derived (equations B.2) shows that S could not be larger than about 0.05.
Thus the error bounds are certainly not sharp. In this section, it is described
how ip* might be proved asymptotic to <t> in the outer region as e —»0, and a
procedure which would establish the asymptoticity of higher approximations
is outlined.

It is clear that the accuracy of the outer approximation can be established
only by calculating better approximations or by using some other estimation
technique. Certainly a better estimate would result from better mollifiers, but
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even if the contributions of the corner region to the estimate were negligible,
the theory would still give an unsatisfactory bound,

sup|u>| = O ( e | l n e | 2 ) (4.1)
G

The accuracy of approximate solutions for certain related singular
perturbation problems has been examined by Eckhaus & de Jager [14] using
the maximum principle for elliptic equations. For the present problem, their
results become applicable away from the interior layer. Thus if sub-domains
in which | J C | > / are considered (/ is O( l ) as e—>0), Eckhaus & de Jager's
analysis implies a "barrier" or dominating function for w can be defined to
show

\<j>-i}j*\=o(xp*), | x | > / + O ( e ' ) , e ^ O . (4.2)

That is, if the sub-domain | x | > / is considered to be separate from the
interior layer, the outer solution is still determined by the boundary condi-
tions applied at y, and y4. Further, the effect of a changed boundary condition
at \x | = / is restricted to an O(e ' ) parabolic boundary layer along \x \ = I.

Therefore, i/»* is known to be asymptotic to <p except in the narrow
transition region between the interior layer and the sub-domain with | x | >
/ + O(e ' ) .

We now consider the possibility of deriving general results. Suppose a
function tpN(x,y,e) with the generalized asymptotic expansion

N

ijjN(x, y, e) = 2 8" (« )<M*> y. e )

were to be constructed, where {5n}™=0 is an asymptotic sequence and i//N is a
formal approximation to <f> in the sense that

^ e y 4 + O(SN+I(e)) in G, (4.3a)
dy

^N\to = 4>* (4.3b)

The construction of such an approximation is a daunting prospect for the
present problem in view of various boundary and interior layer regions. The
theory of §3 then gives an error bound on wN = <t> — ipN,

sup |w N |= O( | Ine |e- 'SN + , (e)) . (4.4)
G

Since two approximations ipN and tpM (M < N) differ only by terms which are
o(t/fM) uniformly as e —>0, (4.4) proves the asymptoticity of ipM where M is an
index such that
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| lne |e -6N+l(e) = o(6M(e)) as e-»U.

The theory described above is based on an a priori estimate [4] for elliptic
equations in two variables. For higher dimensions, there are general a priori
estimates available [2]. In the present case, however, the use of general
estimates would lead to inferior results to the above.
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Appendix A

Bounds for the derivatives d2ip2/dy2 and <?2</>3/<9T72 are established in this
appendix.

The r] -derivatives of i/f2(£, i?) may be obtained by direct differentiation
and the properties of Rummer's function M(~5,i, - x7(9eT/)) (see, for
example [1]). Introducing k,

k = - x3/(9eV), (A.I)

we obtain for k moderate and large

f c,e'"xr,-5n for |k | =ik (A.2a)
e2n-

c2e
2x-' for|fc|>fc*. (A.2b)

Here fc, c, and c2 are O(l) constants, and ^2(£ ij) is singular only near x = 0,
y = - 1 for x s 0.

A discussion of t/»3(£ 17) given by (2.8d) requires a knowledge of /(17) as
TJ —> 0 and 17 —> 1. Evaluating the principal value integrals in (2.10b) using a
table of Hilbert transforms and estimating the resultant for 17 small gives

2/(TJ)//I - - 2 . 3 5 V / 6 - 1 - 4 3 » J 2 / 3 + 1 . 2 8 I J 7 / " + • • • •, 0 < T J < T J O < U

The behaviour of /(17) as 17 —> 1 is given by symmetry.
The estimation of the derivatives of t//3 may now be completed by

differentiation and direct substitution. A lengthy, but straightforward calcula-
tion shows that near x = 0, y = —{, and for k, = x7(9erj) moderate and large,

f c ,£2 /V'"6 forO^fc.sfc", (A.3a)

1 c 2 e 2 / V" / 6 exp( - fc , ) for k , > k , . (A.3b)
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Similarly, near x = 0, y = \ and for k2 = x3/9e(l - TJ) moderate and large,

r c,£2/3(l-T7)-11/6 forOgfc2Sk2 (A.4a)

M
L c2e5/2x-'"2 ioxk2>k2. (A.4b)

e 2 / 3 '

All the constants in (A.3, A.4) are independent of e and corresponding results
for x < 0 are given by symmetry.

Appendix B

The mathematical steps that are required to establish the estimate (3.14)
are described in this appendix. In full, the elliptic partial differential equation
for the error w is

eV2w -x-^= eg, + eg2 (B.la)

where

d2

eg\ = eA(1 — m) — em—2{e2lit\i"(^, TJ)} — e V • [£2/3i//"('

eg2= - s-^-A*"\x,y,e)}- ej^W\x,y,e)}. (B.lc)

(Again, m denotes the mollifier product tn,(x,y)m2(x,y). Only neighbor-
hoods of the point x = 0, y = -\ are considered here as the contribution from
the other corner region is identical.

The estimate is obtained by choosing the mollifier parameters a and /3 so
that the contributions from all the non-homogeneous terms of equation (B.la)
are sufficiently small. For this purpose, the singularities in these terms have
been determined in appendix A, and reference is made to the estimates
(A.2-A.4) in which the constants denoted by ("), ('•), (') are of O(l) as

Suppose the parameters a and /3 are chosen so that the configuration
depicted in figure 4 applies, and let the regions /?,, R2 and R3 be as shown.
The situation sketched in figure 4 holds provided

and the admissible values of a and (3 are illustrated in figure 5.
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•T\ = k 2

509

Figure 4.
The configuration in the corner region. The curves (1) and (2) are given by \X'/(9ET])\ = k and

|*7(9£T))| = k (or k). The points A_ and A+ are

The contributions to //,„„regions| g\ \ dS from each of the non-
homogeneous terms of equation (B.la) are

ff
J Jcorner regions

(B.2a)

(B.2b)

(B.2c)
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IL mjp{

Vm

- i l l ?/i ii dtn

£ J J s , " * " 1 7

Figure 5.

[18]

(B.2d)

(B.2e)

(B.2f)

(B.2g)

10 a

Admissible values for the mollifier parameters a and /3. TTie lines are: (1) 1 + fj = 3a, (2)

a + p = i (3) a = I (4) 0 = M5) /3 = M6) a - |3 = U7) a = 5-
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[19] The asymptotic solution 511

The above estimates have been established using crude bounds and some of
them (particularly (B.2g)) are unduly pessimistic. The reduced domain S* is
used in the last three estimates since the derivatives of m are zero elsewhere.

Now the application of §3 requires that//cornerregioI,s|g,| dS be of O(eA) as
e —»0 where A >§. The estimates (B.2a) to (B.2g) above therefore yield the
set of inequalities:

a + p > I a < i (3 < I P>1 )
(B.3)

J

The admissible values of a and /3 satisfying these inequalities are shown
in figure 5 and the property (3.14),

\gi\dS = O(e'+S), 8>0,
corner regions

holds if the parameters a and P lie in the range indicated by the shaded
triangle.
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