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HIDDEN REGULAR VARIATION OF MOVING AVERAGE
PROCESSES WITH HEAVY-TAILED INNOVATIONS

BY SIDNEY I. RESNICK AND JOYJIT ROY

Abstract

We look at joint regular variation properties of MA(∞) processes of the form X =
(Xk, k ∈ Z), where Xk = ∑∞

j=0 ψjZk−j and the sequence of random variables
(Zi, i ∈ Z) are independent and identically distributed with regularly varying tails.
We use the setup of MO-convergence and obtain hidden regular variation properties for
X under summability conditions on the constant coefficients (ψj : j ≥ 0). Our approach
emphasizes continuity properties of mappings and produces regular variation in sequence
space.

Keywords: Regular variation; multivariate heavy tail; hidden regular variation; moving
average process
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1. Introduction

The purpose of this paper is to obtain joint regular variation properties of moving average
processes of the form

Xk =
∞∑
j=0

ψjZk−j , k ∈ Z,

where the Zi are independent and identically distributed (i.i.d.), nonnegative heavy-tailed
random variables and the ψj are constant nonnegative coefficients. The study of the tail
behavior of such processes has a long history. Early studies of the one-dimensional case with
constant coefficients include [4, 8, 22, 23]; see also the accounts in [3, 20]. The d-dimensional
results as well as results for moving average processes with random coefficients can be found in
[12, 16, 21]. Joint regular variation properties of the MA(∞) process were obtained in [8]. Many
of these studies emphasized finding proper summability conditions for the coefficient sequence
which forces the extremal properties of the process to be determined by the tail behavior of
the innovation sequence. In this paper we use a fairly strong summability assumption on the
coefficient sequence and concentrate on using continuity arguments to obtain joint regular
variation properties of the entire sequence as a random element of the space of double-sided
sequences.

Traditionally, multivariate regular variation properties of d-dimensional random vectors
have been expressed using the vague convergence of measures whose limit measures are finite
on compact sets. To make extremal sets which contain neighborhoods of infinities and are
unbounded above compact, the approach has been to compactify a locally compact space
such as [0,∞)2 by adding lines through ∞ to obtain [0,∞]2 and then to restrict the class of
sets on which the limit measure has to be finite by removing a point such as (0, 0) to obtain
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268 S. I. RESNICK AND J. ROY

[0,∞]2 \ {(0, 0)}. See [13, 17, 19]. There are systemic problems inherent in this use of
vague convergence theory, as, for example, in dealing with lines through ∞ and points of
uncompactification when addressing continuous mapping arguments. Furthermore, the theory
is limited to locally compact spaces.

The theory of MO-convergence developed in [10] provides an alternative setting for dealing
with the tail behavior of general random elements. In this approach, the theory of w#-conver-
gence (see [6]) is used to obtain a framework which lends itself well to dealing with regular
variation on any complete, separable metric space with a point removed. MO-convergence
theory was further extended in [14] to allow the consideration of spaces with a general closed
cone removed. The main attraction of any such theory lies in the powerful mapping theorems
and their use to obtain results about transformations and functionals (see [9, 11]). In this paper
we use these mapping results to prove that X = (Xk, k ∈ Z) is regularly varying as an element
of R

∞
+,Z \ {0∞} (see Section 3 for this last notation).

Another aspect of multivariate regular variation that is relevant to our paper is the concept of
hidden regular variation; this was first developed in [15] and [18]. For a simple example,
consider two concurrent regular variation properties of an i.i.d. Pareto(1) pair of random
variables (X1, X2). For such random variables and x1, x2 ≥ 0,

t P{X1 > tx1, X2 > tx2} →
{
(x1 ∨ x2)

−1 if x1 ∧ x2 = 0,

0 otherwise,

while
t P{X1 > t1/2x1, X2 > t1/2x2} → (x1x2)

−1 if x1 ∧ x2 > 0.

Here the second regular variation property of the pair (X1, X2) is only applicable on a part of the
state space obtained by removing the support of the limit measure in the first regular variation
property and then using a scaling function that goes to ∞ more slowly than t . The second
property was hidden by the coarse scaling used to obtain convergence to a nonzero measure
in the first case. The theory of MO-convergence has already been fruitfully applied to prove
the existence of hidden regular variation (see [7]). In this paper we obtain an infinite sequence
of hidden regular variation properties for the finite moving average process as an element of
R

∞
+,Z.
In Section 2 we define MO-convergence and collect relevant results about the theory as well

as the definition of regular variation of a random variable in this framework. In Section 3.1
we restate results obtained in [14] about the regular variation of i.i.d. heavy-tailed sequences;
these results form the basis for proving the results in this paper. In Section 3.3 we prove the
existence of hidden regular variation for the MA(m) process before proving our main theorem in
Section 3.4. Owing to technical considerations, proving a hidden regular variation property for
the MA(∞) sequence has not yet been possible, but the authors are working towards achieving
that end; instead, we prove hidden regular variation for finite-order moving averages. Still,
our main result about the joint regular variation of the entire sequence does serve as a good
demonstration of the power of continuous mapping theorems in the MO framework, and may
suggest applications based on other functionals.

2. Basics of MMMOOO-convergence and regular variation of measures

In this section we define the framework for MO-convergence and collect basic results that
will be useful later. For more details and proofs, see Sections 2 and 3 of [14].
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2.1. MMMOOO-convergence

Let (S, d) be a complete separable metric space with Borel σ -algebra S generated by open
sets. Fix a closed set C ⊂ S, and set O = S \ C. The subspace O is a metric subspace of S in
the relative topology with σ -algebra S(O) = {A : A ⊂ O, A ∈ S}.

Let Cb denote the class of real-valued, nonnegative, bounded, and continuous functions on S,
and let Mb denote the class of finite Borel measures on S. A basic neighborhood of μ ∈ Mb is
a set of the form {ν ∈ Mb : | ∫ fi dν − ∫

fi dμ| < ε, i = 1, . . . , k}, where ε > 0 and fi ∈ Cb
for i = 1, . . . , k. This equips Mb with the weak topology, and the convergence μn → μ in
Mb means that

∫
f dμn → ∫

f dμ for all f ∈ Cb. See, for example, Sections 2 and 6 of [1]
for details.

Let C(O) denote the real-valued, nonnegative, bounded, and continuous functions f on O

such that, for each f, there exists r > 0 such that f vanishes on C
r ; we use the notation

C
r = {x ∈ S : d(x,C) < r}, where d(x,C) = infy∈C d(x, y). Similarly, write d(A,C) =

infx∈A, y∈C d(x, y) forA ⊂ S. Say that a setA ∈ S(O) is bounded away from C ifA ⊂ S \C
r

for some r > 0, or, equivalently, d(A,C) > 0. Then C(O) consists of nonnegative continuous
functions whose supports are bounded away from C.

Let MO be the class of Borel measures on O = S \ C whose restriction to S \ C
r is finite for

each r > 0. When convenient, we also write M(O) or M(S\C) for MO. A basic neighborhood
of μ ∈ MO is a set of the form {ν ∈ MO : | ∫ fi dν − ∫

fi dμ| < ε, i = 1, . . . , k}, where
ε > 0 and fi ∈ C(O) for i = 1, . . . , k. The convergence μn → μ in MO is convergence in the
topology defined by this base. As the next theorem shows (see [14, Theorem 2.1]), it actually
suffices to consider the class of uniformly continuous functions in C(O).

Theorem 2.1. Let μ,μn ∈ MO. Then the following statements are equivalent:

(i) μn → μ in MO as n → ∞;
(ii)

∫
f dμn → ∫

f dμ for each f ∈ C(O) which is also uniformly continuous on S;
(iii) μ(r)n → μ(r) in Mb(S \ C

r ) for all r > 0 such that μ(∂ S \ C
r ) = 0, where μ(r) denotes

the restriction of μ to S \ C
r .

Continuous mapping theorems play an important role in extending the regular variation
property of the innovation sequence to that of the actual moving average sequence. Here we
state one version that is useful to us. Consider another separable and complete metric space S

′,
and let O

′,SO′ ,C′, and MO′ have the same meaning relative to the space S
′ as do O,SO,C,

and MO relative to S.

Theorem 2.2. Suppose that h : S 
→ S
′ is uniformly continuous and that C

′ := h(C) is closed
in S

′. Then ĥ : MO 
→ MO′ defined by ĥ(μ) = μ ◦h−1 is continuous.

2.2. Regular variation of measures

The usual notion of regular variation involves comparisons along a ray and requires a concept
of scaling or multiplication. Given any real number λ > 0 and any x ∈ S, we assume that there
exists a mapping (λ, x) 
→ λx from (0,∞)× S into S satisfying

• the mapping (λ, x) 
→ λx is continuous; and

• 1x = x and λ1(λ2x) = (λ1λ2)x.

These two assumptions allow us to define a cone C ⊂ S as a set such that x ∈ C implies that
λx ∈ C for any λ > 0. For this section, fix a closed cone C ⊂ S, so that O := S \ C is then an
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open cone. Also, assume that

• d(x,C) < d(λx,C) if λ > 1 and x ∈ O.

Recall (e.g. from [2]) that a positive measurable function c defined on (0,∞) is regularly
varying with index ρ ∈ R if limt→∞ c(λt)/c(t) = λρ for all λ > 0. Similarly, a sequence
{cn}n≥1 of positive numbers is regularly varying with index ρ ∈ R if limn→∞ c[λn]/cn = λρ

for all λ > 0. Here [λn] denotes the integer part of λn.

Definition 2.1. A sequence {νn}n≥1 of measures in MO is regularly varying if there exists an
increasing sequence {cn}n≥1 of positive numbers for which {cn} is regularly varying and some
nonzero μ ∈ MO such that cnνn → μ in MO as n → ∞.

We now define regular variation for a single measure in MO as well as an equivalent
formulation that is more pleasing to handle algebraically.

Definition 2.2. A measure ν ∈ MO is regularly varying if the sequence {ν(n·)}n≥1 in MO is
regularly varying, or, equivalently, there exists a nonzero μ ∈ MO and an increasing function
b such that t ν(b(t) ·) → μ(·) in MO as t → ∞. Similarly, an S-valued random variable Y is
regularly varying if the associated probability measure is regularly varying, i.e. if P{Y ∈ ·} is
regularly varying.

We refer to the function b in Definition 2.2 as the scaling function corresponding to the
regularly varying measure ν on MO.

3. Main results
3.1. Hidden regular variation for i.i.d. heavy-tailed sequences

From here on we take S = R
∞
+,Z, where R

∞
+,Z is defined to be the space of all double-sided

sequences of nonnegative real numbers, i.e. R
∞
+,Z = {x = (xi, i ∈ Z) : xi ≥ 0}, equipped with

the metric d∞,Z defined by

d∞,Z(x, y) =
∞∑

i=−∞

|xi − yi | ∧ 1

2|i|+1 ; (3.1)

the concept of multiplication here is given by the standard pointwise multiplication of a sequence
by a real number.

Observe that convergence in this metric is equivalent to convergence of all finite-dimensional
sequences, i.e. d∞,Z(x

n, x) → 0, if and only if, for anyM ∈ Z+, the sequences (xni , |i| ≤ M)

converge pointwise to (xi, |i| ≤ M) in R
2M+1. Furthermore, observe that (R∞

+,Z, d∞,Z) as a
metric space is homeomorphic to (R∞+ , d∞), where R

∞+ = {x = (xi, i ∈ N) : xi ≥ 0} and
d∞(x, y) = ∑∞

i=1( |xi − yi | ∧ 1)/2i .
Define 0∞ to be the sequence with all components 0 in R

∞
+,Z, and ei to be the sequence in

R
∞
+,Z with the ith component 1 and all other components 0. Furthermore, define εx(A) = 1 if

x ∈ A and 0 otherwise. We use this to define

C=j =
{
x ∈ R

∞
+,Z :

∞∑
i=−∞

εxi ((0,∞)) = j

}
for all j ≥ 1,

C≤j =
{
x ∈ R

∞
+,Z :

∞∑
i=−∞

εxi ((0,∞)) ≤ j

}
for all j ≥ 0.

(3.2)

Define Oj = R
∞
+,Z \ C≤j−1 for j ≥ 1.
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Let Z = (Zi, i ∈ Z) be i.i.d. random variables in R+ with regularly varying tails with index
α > 0, i.e.

lim
t→∞

P{Z0 > tz}
P{Z0 > t} = z−α for all z > 0, (3.3)

or, equivalently, for some regularly varying function b(·),
lim
t→∞ t P{Z0 > b(t)z} = z−α for all z > 0. (3.4)

With this setup, we can restate Theorem 4.2 of [14] as a statement about the space R
∞
+,Z and

the sequence of i.i.d. random variables Z ∈ R
∞
+,Z. Define, for each j ≥ 0,

μ
(j)
t (·) = t P

{
Z

b(t1/(j+1))
∈ ·

}
,

μ(j)(·) =
∑

{i1,...,ij+1}

∫
I

{j+1∑
k=1

zkeik ∈ ·
}
να(dz1) · · · να(dzj+1),

where να(x,∞) = x−α and the indices of {i1, . . . , ij+1} run through the ordered subsets of
size j + 1 of Z.

Theorem 3.1. For every j ≥ 0, μ(j)t → μ(j) in M(Oj ). The measure μ(j) has support
C≤j+1 \ C≤j = C=j+1 and admits the alternative form

μ(j)(. . . , dz1, dz0, dz−1, . . .) =
∑

{i1,...,ij+1}

( ∏
k /∈{i1,...,ij+1}

ε0(dzk)

)( ∏
k∈{i1,...,ij+1}

να(dzk)

)
.

(3.5)

3.2. Definition of the MA(∞) process and the framework for the proof of the main result

Let (ψj , j ≥ 0) be a sequence of nonnegative constants with

(A1) ψ0 > 0; and

(A2) for some δ < α ∧ 1,
∑∞
j=0 ψ

δ
j < ∞.

Observe that assumption (A2) implies the following:

(C1)
∑∞
j=0 ψj < ∞;

(C2)
∑∞
j=0 ψ

α
j < ∞;

(C3) for any k ∈ Z, the sequence
∑∞
j=0 ψjZk−j converges almost surely; and

(C4) for any x > 0 and k ∈ Z,

lim
N→∞ lim sup

t→∞
t P

{∑
j>N

ψjZk−j > b(t)x

}
= 0,

where Z = (Zi, i ∈ Z) is defined in (3.4). Conditions (C1) and (C2) are easy to see, while the
proofs of (C3) and (C4) can be found in [17, Section 4.5, especially Lemma 4.24] and [4, 5].

Remark 3.1. Assumption (A2) is not the weakest condition known in the literature that implies
(C1)–(C4). See [12, 16, 21, 24] for different summability assumptions on the sequence (ψj ,
j ≥ 0) as well as a treatment of moving average processes with random coefficients and
heavy-tailed innovations.
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For k ∈ Z, define

Xk =
∞∑
j=0

ψjZk−j .

Condition (C3) ensures that X = (Xk, k ∈ Z) is a well-defined sequence of random variables in
R

∞
+,Z. Defining the map T ∞ : R

∞
+,Z  z = (zi, i ∈ Z) 
→ T ∞(z) = (T∞

k (z), k ∈ Z) ∈ R
∞
+,Z,

where

T∞
k (z) =

∞∑
j=0

ψjzk−j , (3.6)

then
X = T ∞(Z).

This leads us to suspect that regular variation properties can be obtained from Theorem 3.1 using
a continuous mapping argument. But, unfortunately, the map T ∞, even though well defined
P-almost surely, is nowhere continuous on R

∞
+,Z. This forces us to use a truncation argument

as detailed in the sequel by using a sequence of maps which map Z to the partial sums of the
infinite sums that make up the elements of X and then using a Slutsky-style approximation.
The details are technical as we are dealing with infinite measures.

3.3. Hidden regular variation of the MA(m) process

For every m ≥ 0, define the random variable Xm = (Xmk , k ∈ Z) ∈ R
∞
+,Z, where

Xmk =
m∑
j=0

ψjZk−j .

Similarly to (3.6), define, for everym ≥ 0, the map T m : R
∞
+,Z  z = (zi, i ∈ Z) 
→ T m(z) =

(T mk (z), k ∈ Z) ∈ R
∞
+,Z, where

T mk (z) =
m∑
j=0

ψjzk−j .

Again, we have Xm = T m(Z). However, the map T m is well behaved enough for us to use
Theorem 2.2. We first prove two preliminary lemmas to enable the use of that theorem; these
will then lead us to the main result about the MA(m) processes.

Lemma 3.1. For every m ≥ 0, the map T m is uniformly continuous.

Proof. Fixm ≥ 0 and ε > 0. LetM > 0 be such that 2 × 2−M < ε/2. Let x = (xi, i ∈ Z)

and y = (yi, i ∈ Z), so x and y ∈ R
∞
+,Z. Then

d∞,Z(T
m(x),T m(y)) <

∑
|i|<M

| ∑m
j=0 ψjxi−j − ∑m

j=0 ψjyi−j | ∧ 1

2|i|+1 + ε

2

≤ 2

( m∑
j=0

ψj

)( ∨
|i|<M+m

|xi − yi |
)

+ ε

2
. (3.7)

Let δ < (
∑m
j=0 ψj )

1
4ε 2−(M+m), and assume that d∞,Z(x, y) < δ. Then, from (3.1),

∨
|i|<M+m

|xi − yi | < 2(M+m)δ <
( m∑
j=0

ψj

)
ε

4
.
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Then, using (3.7),
d∞,Z(T

m(x),T m(y)) < ε.

Lemma 3.2. For every m ≥ 0, j ≥ 0, and C≤j as in (3.2), T m(C≤j ) is closed.

Proof. Fix m ≥ 0, and observe that, for j = 0 , T m(C≤0) = T m({0∞}) = {0∞}, which is
trivially closed. This settles the base case for a proof of the result by induction. Assume that the
result holds for j < J . Take zn ∈ C=J such that zn → z ∈ R

∞
+,Z. It is enough to assume this

as C≤J = C≤J−1 ∪ C=J . Furthermore, assume that we have sequences λn1, λ
n
2, . . . , λ

n
J > 0

and in1 < in2 < · · · < inJ ∈ Z such that

zn =
J∑
k=1

λnkeink and T m(zn) =
m∑
l=0

J∑
k=1

ψlλ
n
keink−j .

Observe that if inJ → −∞ along some subsequence nq then the limit of any finite-dimen-
sional subsequence of T m(znq ) is the same as the finite-dimensional subsequential limit of
T m(

∑J−1
k=1 λ

nq
k e

i
nq
k
). Since the limit of a sequence in R

∞
+,Z is determined by the limits of the

finite-dimensional subsequences, the induction hypothesis then implies that z ∈ T m(C≤J−1) ⊂
T m(C≤J ). A similar argument shows that if in1 → ∞ along some subsequence then z ∈
T m(C≤J ). So {in1 , in2 , . . . , inJ } must be contained in some bounded set, and so they must equal
some {i1, i2, . . . , iJ } infinitely often, where i1 < i2 < · · · < iJ . Without loss of generality, we
may now assume that

zn =
J∑
k=1

λnkeik and T m(zn) =
m∑
l=0

J∑
k=1

ψlλ
n
keik−j .

Since {T m(zn)}iJ−m = ψ0λ
n
J converges as n → ∞, and ψ0 > 0 by assumption (A1), we

must have λnJ → λ for some λ ≥ 0. This implies that T m(
∑J−1
k=1 λ

n
keik ) → z − T m(λeiJ ). But

the induction hypothesis now implies that z−T m(λeiJ ) ∈ T m(C≤J−1). Hence, z ∈ T m(C≤J ),
proving the induction step.

A quick application of Theorem 2.2 now gives the following result.

Theorem 3.2. For every m ≥ 0 and j ≥ 0, as t → ∞, μ(j)t ◦ (T m)−1 → μ(j) ◦ (T m)−1 in
M(R∞

+,Z \ T m(C≤j )), or, equivalently,

t P

{
Xm

b(t1/(j+1))
∈ ·

}
→

∑
{i1,...,ij+1}

∫
I

{
T m

(j+1∑
k=1

zkeik

)
∈ ·

}
να(dz1) · · · να(dzj+1).

Remark 3.2. Observe that Theorem 3.2 implies an infinitude of regular variation properties
for Xm. For example, for j = 0,

t P

{
Xm

b(t)
∈ ·

}
→ νm,(0)(·) in M(R∞

+,Z \ T m({0∞})) = M(R∞
+,Z \ {0∞}),

where

νm,(0)(·) =
∞∑

i=−∞

∫
I{T m(ziei ) ∈ ·} να(dzi).
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It is clear from the above that νm,(0) is a nonzero measure, finite on subsets of R
∞
+,Z bounded

away from 0∞, and its support is on T m(C=1). Thus, Xm is regularly varying on R
∞
+,Z \ {0∞}

with scaling function b(·) and limit measure νm,(0). Using (3.5) and assuming that ψj > 0 for
all j ≤ m, we have the following alternative and slightly more illuminating formulation for
νm,(0):

νm,(0)(. . . , dz1, dz0, dz−1, . . .)

=
∞∑

i=−∞

(∏
k<i

ε0(dzk)

)( ∏
i≤k≤i+m

να

(
dzk
ψk−i

))( ∏
k>i+m

ε0(dzk)

)
.

Furthermore, for any k ∈ Z,

t P
{
Xmk > b(t)x

} →
( m∑
l=0

ψαl

)
x−α for x > 0.

Similarly, for j = 1,

t P

{
Xm

b(t1/2)
∈ ·

}
→ νm,(1)(·) in M(R∞

+,Z \ T m(C≤1)),

where νm,(1) is a nonzero measure on R
∞
+,Z \ T m(C≤1) with support T (C=2). So Xm is also

regularly varying on R
∞
+,Z \ T m(C≤1) with scaling function b(t1/2). Observe that, for j = 0,

we removed just T m(C≤0) = {0∞} from R
∞
+,Z and concluded that Xm was regularly varying

with a limit measure concentrating on T m(C=1) which is a very small part of the entire state
space R

∞
+,Z \ {0∞}. Now, on also removing the support of νm,(0), i.e. T m(C=1), from the

state space we obtained a new regular variation property for Xm on a smaller state space
R

∞
+,Z \ T m(C≤1) with a finer scaling function b(t1/2). This regular variation property was

in some sense hidden by the cruder scaling that we used for the larger state space. This is a
typical example of hidden regular variation. For a more expository account on such a nested
sequence of regular variation properties in the case of i.i.d. heavy-tailed random variables, see
[14, Section 4.5].

In fact, we have an increasing sequence of cones,

T m(C≤0) ⊂ T m(C≤1) ⊂ · · · ⊂ T m(C≤j ) ⊂ · · · ,
a sequence of nonzero measures νm,(j), j ≥ 0, where νm,(j) is supported on T m(C≤j+1) \
T m(C≤j ), and a sequence of decreasing scaling functions

b(t) > b(t1/2) > · · · > b(t1/(j+1)) > · · ·
such that Xm is regularly varying on R

∞
+,Z \ T m(C≤j ) with limit measure νm,(j) and scaling

function b(t1/(j+1)). Thus, by removing more and more of the state space and using finer and
finer scaling functions, we are able to get a more detailed picture of the extremal properties
of Xm.
3.4. Regular variation of the MA(∞) process

As mentioned before, the map T ∞ is only well defined P-almost surely. For each j > 0,
T ∞(C≤j ) is not closed, even though T ∞ is well defined on each C≤j . This prevents us from
proving a result implying hidden regular variation of X as in Theorem 3.2 for Xm. However,
the fact that T ∞({0∞}) = {0∞}, and the use of (C4) and interpreting X as the limit of Xm as
m → ∞, allows us to prove the following result. The proof, except for technical details, is
similar in spirit to [19, Theorem 3.5] or [1, Theorem 3.2].
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Theorem 3.3. It holds that μ(0)t ◦ (T ∞)−1 → μ(0) ◦ (T ∞)−1 = ν(0) in M(R∞
+,Z \ {0∞}) =

M(O0), or, equivalently,

t P

{
X

b(t)
∈ ·

}
→

∞∑
i=∞

∫
I{T ∞(ziei ) ∈ ·} να(dzi).

Remark 3.3. (i) Theorem 3.3 implies that X is regularly varying on R
∞
+,Z \ 0∞ with limit

measure ν(0) and scaling function b(·). The limit measure ν(0) can also be expressed in the
following way, emphasizing the fact that its support is on T ∞(C=1) and it is indeed nonzero:

ν(0)(. . . , dz1, dz0, dz−1, . . .) =
∞∑

i=−∞

( ∏
k<i or ψk−i=0

ε0(dzk)

)( ∏
k≥i and ψk−i>0

να

(
dzk
ψk−i

))
.

Also, for any k ∈ Z,

t P{Xk > b(t)x} →
( ∞∑
l=0

ψαl

)
x−α for x > 0.

(ii) It is also instructive to compare Theorem 3.3 with Theorem 2.4 of [8] where a point process
version of the same result was obtained.

(iii)An application of the continuous mapping theorem (Theorem 2.2) allows us to prove regular
variation for sums of MA(∞) processes from Theorem 3.3. For everym ≥ 0, define the random
variable Ym = (Ymk , k ∈ Z) ∈ R

∞
+,Z, where

Ymk =
m∑
j=0

Xk−j .

Observe that Ym = SUMm(X) where, for every m ≥ 0, the map SUMm : R
∞
+,Z  x =

(xi, i ∈ Z) 
→ SUMm(x) = (
∑m
j=0 xk−j , k ∈ Z) ∈ R

∞
+,Z. The function SUMm is uniformly

continuous by Lemma 3.1, so we can apply Theorem 2.2 to ν(0) to conclude that, in M(R∞
+,Z \

{0∞}),
t P

{
Ym

b(t)
∈ ·

}
→ ν(0) ◦ (SUMm)−1(·).

Application of Theorem 3.3 to obtain regular variation of other functionals of MA(∞), such as
sample covariances, is not so straightforward in the sense that proving uniform continuity of the
corresponding function, such as SUMm in the case of the summation functional, is nontrivial.

Before proving Theorem 3.3 we prove two technical lemmas. Set
∑∞
j=0 ψj = S, which is

finite by (C1).

Lemma 3.3. For any γ > 0 and setting δn = 2−(n+1)/S,

lim
n→∞ lim sup

t→∞
μ
(0)
t {z : d∞,Z(T

∞(z), 0∞) > γ, d∞,Z(z, 0∞) < δn} = 0.

Proof. Fix γ > 0, and let M > 0 be such that 2
∑

|i|≥M 2−(|i|+1) < γ/2. Then

{z : d∞,Z(T
∞(z), 0∞) > γ, d∞,Z(z, 0∞) < δn}

⊂
{
z :

∑
|i|<M

T ∞
i (z) ∧ 1

2|i|+1 >
γ

2
,

∑
|i|<n

zi ∧ 1

2|i|+1 < δn

}
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⊂
{
z :

∨
|i|<M

T ∞
i (z) > γ,

∨
|i|<n

zi < 2nδn

}

⊂
⋃

|i|<M

{
z :

∞∑
l=0

ψlzi−l > γ,
∨
|i|<n

zi < 2nδn

}

⊂
⋃

|i|<M

{
z :

( ∞∑
l=0

ψl

)( ∨
|i|<n

zi

)
+

∑
l>i+n

ψlzi−l > γ,
∨
|i|<n

zi < 2nδn

}

⊂
⋃

|i|<M

{
z :

∑
l>i+n

ψlzi−l > γ − S 2nδn

}

⊂
⋃

|i|<M

{
z :

∑
l>i+n

ψlzi−l >
γ

2

}

for large enough n. So we have

lim
n→∞ lim sup

t→∞
μ
(0)
t {z : d∞,Z(T

∞(z), 0∞) > γ, d∞,Z(z, 0∞) < δn}

≤
∑

|i|<M
lim
n→∞ lim sup

t→∞
μ
(0)
t

{
z :

∑
l>i+n

ψlzi−l >
γ

2

}

≤
∑

|i|<M
lim
n→∞ lim sup

t→∞
t P

{
z :

∑
l>i+n

ψlZi−l >
b(t)γ

2

}

= 0,

where the last equality follows from (C4).

Lemma 3.4. For any β > 0,

lim
m→∞ lim sup

t→∞
μ
(0)
t {z : d∞,Z(T

∞(z),T m(z)) > β} = 0.

Proof. Fix β > 0, and let M > 0 be such that 2
∑

|i|≥M 2−(|i|+1) < β/2. Then

{z : d∞,Z(T
∞(z),T m(z)) > β}

⊂
{
z :

∑
|i|<M

|T ∞(z)− T m(z)|i ∧ 1

2|i|+1 >
β

2

}

⊂
{
z :

∑
|i|<M

∑
l>m+1 ψlzi−l ∧ 1

2|i|+1 >
β

2

}

⊂
{
z :

∨
|i|<M

∑
l>m+1

ψlzi−l > β

}

⊂
⋃

|i|<M

{
z :

∑
l>m+1

ψlzi−l > β

}
.
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Now, as in Lemma 3.3, we have

lim
m→∞ lim sup

t→∞
μ
(0)
t {z : d∞,Z(T

∞(z),T m(z)) > β}

≤ lim
m→∞ lim sup

t→∞

∑
|i|<M

t P

{
z :

∑
l>m+1

ψlZi−l > b(t)β

}
,

which is 0 by (C4).

Proof of Theorem 3.3. By Theorem 2.1, it is enough to show that, for any uniformly con-
tinuous f ∈ C(O�),

∫
f dμ(j)t ◦ (T ∞)−1 → ∫

f dμ(j) ◦ (T ∞)−1. Fix any such f, and set
F = {z ∈ R

∞
+,Z : f (z) > 0}. Since f ∈ C(O�), we may assume that d∞,Z(F, 0∞) > γ > 0

and supz∈R∞+,Z f (z) = 1. Let ωf (·) be the modulus of continuity of f .
Fix ε > 0. By Lemma 3.3 we can find G := {z ∈ R

∞
+,Z : d∞,Z(z, 0∞) > δ} for some δ > 0

such that μ(0)(∂G) = 0 and limt→∞ μ
(0)
t (F \ T ∞(G)) = μ(0)(F \ T ∞(G)) < ε. Then∣∣∣∣

∫
f dμ(0)t ◦ (T ∞)−1 −

∫
f dμ(0) ◦ (T ∞)−1

∣∣∣∣
=

∣∣∣∣
∫

T ∞(z)∈F

f ◦ T ∞(z) μ(0)t (dz)−
∫

T ∞(z)∈F

f ◦ T ∞(z) μ(0)(dz)

∣∣∣∣
≤

∣∣∣∣
∫

G

f ◦ T ∞(z) μ(0)t (dz)−
∫

G
f ◦ T ∞(z) μ(0)(dz)

∣∣∣∣ + μ
(0)
t (F \ T ∞(G))

+ μ(0)(F \ T ∞(G)).

Since the last two terms are less than ε for large enough t , it suffices to show that the first term
in the last line above goes to 0. By a standard triangular inequality argument we have∣∣∣∣

∫
G

f ◦ T ∞(z) μ(0)t (dz)−
∫

G
f ◦ T ∞(z) μ(0)(dz)

∣∣∣∣
≤

∣∣∣∣
∫

G

f ◦ T ∞(z) μ(0)t (dz)−
∫

G
f ◦ T m(z) μ

(0)
t (dz)

∣∣∣∣
+

∣∣∣∣
∫

G

f ◦ T m(z) μ
(0)
t (dz)−

∫
G
f ◦ T m(z) μ(0)(dz)

∣∣∣∣
+

∣∣∣∣
∫

G

f ◦ T m(z) μ(0)(dz)−
∫

G
f ◦ T ∞(z) μ(0)(dz)

∣∣∣∣
=: I + II + III,

and we deal with I, II , and III separately. Observe first that

I ≤
∫

G

|f ◦ T ∞(z)− f ◦ T m(z)| I{d∞,Z(T
∞(z),T m(z)) ≤ β} μ(0)t (dz)

+
∫

G

|f ◦ T ∞(z)− f ◦ T m(z)| I{d∞,Z(T
∞(z),T m(z)) > β} μ(0)t (dz)

≤ ωf (β)μ
(0)
t (G)+ 2μ(0)t {z : d∞,Z(T

∞(z),T m(z)) > β}.
The first term above goes to 0 as β → ∞ because μ(0)t (G) is finite for all large t, while the
second term goes to 0 by Lemma 3.4 by first letting t → ∞ and then letting m → ∞.

For any fixedm, f ◦T m is continuous on O0 and, hence, on G, so, by part (ii) of Theorem 2.1
and using Theorem 3.2 for j = 0, we see that II → 0 as t → ∞ for every m.
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For III , first note that, for any z ∈ C=1, limm→∞ T m(z) = T ∞(z). To see this, let z = λei .
Then

d∞,Z(T
m(z),T ∞(z)) ≤ λ

∞∑
l=m+1

ψl,

and the right-hand side tends to 0 as m → ∞ because
∑∞
j=0 ψj < ∞ by (C1). Since μ(0) is

finite on G and concentrates on C=1, and f is continuous and bounded, it follows, by dominated
convergence, that III → 0 as m → ∞.

Remark 3.4. The entire exercise in this paper could have been carried out in somewhat more
generality by assuming that the i.i.d. sequence (Zi, i ∈ Z)was real valued, and instead of (3.3)
we assumed that |Z0| was regularly varying with tail index α > 0 and

lim
t→∞

P{Z0 > t}
P{|Z0| > t} = p and lim

t→∞
P{Z0 < t}
P{|Z0| > t} = 1 − p.
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