Path decompositions of digraphs

Issam Abdul-Kader

Let G = (X, U) be a digraph of order $n \, . \, P(G)$ denotes the minimal cardinal of a path-partition of the arcs of G. Oystein Ore, Theory of graphs (Amer. Math. Soc., Providence, Rhode Island, 1962) has proved that $P(G) \geq \sum_{x \in X_G^+} \left(d_G^+(x) - d_G^-(x) \right)$, where $X_G^+ = \{x \in X \mid d_G^+(x) > d_G^-(x)\}$. We say that G satisfies Q if the preceeding inequality is an equality. We give some properties of the digraphs satisfying Q, and in particular the case where G is strongly connected. Then we prove that $P(G) \leq \left[n^2/4 \right] - 2$, and that this result is the best possible. Next we exhibit the existence of digraphs with circuits such that $P(G) = \left[n^2/4 \right]$.

Finally we prove that if G is a strongly connected digraph of order n which satisfies Q, then there exists a strongly connected digraph H of order n + 1 having G as a sub-digraph and satisfying Q, too.

1. Introduction

1.1. The notations are those of Berge [5].

A digraph G = (X, U) is a non-empty finite set X (the vertices), together with a finite family U of ordered pairs of vertices (the arcs). A simple digraph is a digraph without parallel arcs and loops.

In this paper we only consider simple digraphs. The digraph obtained Received 8 August 1978. Communicated by Michel Chein.

from G by deleting a vertex $x \in X$ and its adjacent arcs will be denoted by G - x.

We denote by (x_1, x_2, \ldots, x_k) (respectively $(x_1, x_2, \ldots, x_k, x_1)$) the elementary path (respectively the circuit) containing the k distinct vertices x_1, \ldots, x_k . Let R be a family of elementary paths of G. If each arc of G lies on exactly one element of R then R is a pathpartition of G. We denote by P(G) the minimal cardinality of a pathpartition of a digraph G.

From now on we denote

$$\Gamma_{G}^{+}(x) = \{ y \in X \mid (x, y) \in U \} , \quad \left(d_{G}^{+}(x) = |\Gamma_{G}^{+}(x)| \right) ,$$

$$\Gamma_{G}^{-}(x) = \{ y \in X \mid (y, x) \in U \} , \quad \left(d_{G}^{-}(x) = |\Gamma_{G}^{-}(x)| \right) ,$$

$$X_{G}^{+} = \{ x \in X \mid d_{G}^{+}(x) > d_{G}^{-}(x) \} ,$$

$$X_{G}^{0} = \{ x \in X \mid d_{G}^{+}(x) = d_{G}^{-}(x) \} ,$$

$$X_{G}^{0} = \{ x \in X \mid d_{G}^{+}(x) = d_{G}^{-}(x) \} ,$$

$$X_{G}^{-} = X - \left(X_{G}^{+} \cup X_{G}^{0} \right) .$$

From Ore [9], we have

$$P(G) \geq \sum_{x \in X_G^+} \left(d_G^+(x) - d_G^-(x) \right) .$$

Alspach and Pullman [4], have conjectured that for any simple digraph G or order n , $P(G) \leq [n^2/4]$.

O'Brien [8] proved this conjecture. For a further detailed study of the index P(G), we refer also to Chaty, Chein ([6], [7]).

DEFINITION 1.2. Let G = (X, U) be a digraph of order n; if $P(G) = \sum_{x \in X_G^+} (d_G^+(x) - d_G^-(x))$ we say G has the property Q. In the following, we denote by e(G) the sum $e(G) = \sum_{x \in X_G^+} (d_G^+(x) - d_G^-(x))$.

2. Results

LEMMA 2.1. Let G = (X, U) be a digraph of order n and $v \in X_G^+$. If G satisfies the following conditions,

(i) $d_{G}(v) = 0$,

(ii) P(G-v) = e(G-v) (that is G - v has the property Q), then G has the property Q.

Proof. $X_{G-v}^+ = (X_{G}^+ \{v\}) \cup (X_G^0 \cap \Gamma_G^+(v))$, and P(G-v) = e(G-v). If $x \in X_{G-v}^+$, then $d_{G-v}^+(x) = d_G^+(x)$ and $d_{G-v}^-(x) = d_G^-(x) - 1$. Moreover, for $x \in X_{G-v}^+ - (X_{G-v}^+ \cap \Gamma_G^+(v))$, we have $d_{G-v}^+(x) = d_G^+(x)$ and $d_{G-v}^-(x) = d_G^-(x)$.

But in G - v, through each vertex $x \in X_{G-v}^+ \cap \Gamma_G^+(v)$ there pass $d_{G-v}(x) - d_{G-v}^-(x) = (d_G^+(x) - d_G^-(x)) + 1$ elementary paths of origin x, which belong to a path-partition R of the arcs of the digraph, the cardinal of R being P(G-v). Among those paths of origin x, consider the path $\lambda = (x, \ldots)$. Since $(v, x) \in U$, the path λ allows the construction in G of the path $\mu = (v, x, \ldots)$ of origin v. Thus the number of paths of origin x in G becomes $(d_G^+(x) - d_G^-(x))$. Moreover, for each $x \in \Gamma_G^+(v) - (X_{G-v}^+ \cap \Gamma_G^+(v))$, we construct the path (v, x) of origin v in G. Let R' be the set of elementary paths obtained from R by cancelling those paths λ which have been used to define the path μ of origin v in G. Let T be the following set of elementary paths: $T = R' \cup \{\mu = (v, x, ...) \mid x \in X^+_{G-v} \cap \Gamma^+_{G}(v)\} \cup \{(v, x) \mid x \in \Gamma^+_{G}(v) - \{X^+_{G-v} \cap \Gamma^+_{G}(v)\}\}.$

It is obvious that the set T partitions the arcs of G , and we have $\big|T\big|\,\leq\,e(G)\,\leq\,P(G)~.$

Therefore P(G) = e(G).

From the preceding lemma, we deduce the following theorem.

THEOREM 2.2 (Ore [9]). Let G = (X, U) be a digraph without circuit; then

P(G) = e(G).

COROLLARY 1 (Alspach and Pullman [4]). If TT_n is the transitive tournament of order n we have

$$P(TT_n) = [n^2/4] .$$

REMARKS. (1) If we replace the condition (i) of the lemma by the condition (i'), $d_G^+(v) = 0$, we get a similar result. Moreover, the preceding lemma allows us to construct from a digraph of order (n-1) satisfying Q, another digraph of order n still satisfying Q.

(2) By that lemma, we can define an algorithm which allows the construction of a path-partition of a digraph without circuit.

The following lemma is due to Alspach, Mason, Pullman [3].

LEMMA 2.3. Let G = (X, U) be a digraph of order n satisfying Q and (x, y) an arc of G such that $x \in X-X_G^+$ and $y \in X_G^+ \cup X_G^0$. If H is the digraph obtained from G by reversing the arc (x, y), then H satisfies Q and P(H) = P(G) + 2 = e(H).

THEOREM 2.4. Consider a strongly connected digraph G = (X, U) satisfying P(G) = e(G). Then we have

$$P(G) \leq \left[n^2/4\right] - 2$$

Proof. Suppose that $P(G) \ge [n^2/4] - 1$. Since G is strongly connected, there exist $x \in X - X_G^+$ and $y \in X_G^+$ such that $(x, y) \in U$.

Denote by G_1 the digraph obtained from G by reversing the arc (x, y). By Lemma 2.3, G_1 satisfies Q and we have

$$P(G_1) = P(G) + 2 \ge [n^2/4] + 1$$
,

which is a contradiction to the fact that $P(G_1) \leq [n^2/4]$. Thus we necessarily have $P(G) \leq [n^2/4] - 2$.

We show that the result of Theorem 2.4 is the best possible.

REMARKS. (1) Let $T_n = (X, U)$ be a tournament of order n. It is easy to verify that $P(T_n) \ge [(n+1)/2]$; therefore

$$[(n+1)/2] \leq P(T_n) \leq [n^2/4]$$

(2) Let $A_n = (X, U)$ be the strongly connected *c*-minimal tournament¹ of order *n* (that is $A_n = (X, U)$ admits exactly ((n-1)(n-2))/2 elementary circuits). Let us study some particular cases. Case n = 4.

Let x_1, x_2, x_3, x_4 be the canonical indexation of the vertices of A_1 . We have

$$P(A_{\underline{h}}) \geq e(A_{\underline{h}}) = 2$$

But the set $\{(x_{\mu}, x_{2}, x_{3}, x_{1}), (x_{3}, x_{\mu}, x_{1}, x_{2})\}$ of elementary paths forms a partition of the arcs of A_{μ} . Therefore $P(A_{\mu}) = [n^{2}/4] - 2 = 2$.

¹ A complete study of strongly connected *c*-minimal tournaments will be found in Abdul-Kader [1].

Case n = 5.

Let x_1, x_2, x_3, x_4, x_5 be the canonical indexation of the vertices of A_5 . We have

$$P(A_5) \ge e(A_5) = 4$$

But the set

$$\{(x_5, x_2, x_3, x_1), (x_5, x_3, x_4, x_2), (x_4, x_1, x_2), (x_4, x_5, x_1)\}$$

of elementary paths forms a partition of the arcs of ${\it A}_{5}$. Therefore

$$P(A_5) = [n^2/4] - 2 = 4 = e(A_5)$$

THEOREM 2.5. Let $A_n = (X, U)$ be the strongly connected c-minimal tournament of order $n \ge 5$; then

$$P(A_n) = [n^2/4] - 2 = e(A_n)$$
.

Proof. We prove the theorem by induction on n. The theorem is already true for n = 4, 5. Suppose it is true for A_{n-1} ; we prove it for A_n $(n \ge 6)$.

Let x_1, x_2, \ldots, x_n be the canonical indexation of the vertices of A_n .

(1) Let G be the digraph obtained from A_{n-1} by adding the vertex y and the arcs (y, x_i) for all i = 1, ..., n-2. By the induction hypothesis A_{n-1} satisfies Q, which implies that the digraph G satisfies Q (see Lemma 2.1).

(2) Let G_1 be the digraph obtained from G by adding the arc

 (x_{n-1}, y) . But $d_{G_1}(x_{n-1}) = 1$ and n > 5; hence there exists at least one path λ of origin y which does not end up at the point x_{n-1} . From this path λ we can construct a path of origin x_{n-1} in G_1 ; therefore $P(G_1) = e(G_1)$ $(G_1$ isomorphic to A_n).

In A_n we have (see Abdul-Kader [1]),

$$\begin{aligned} x_{A_n}^+ &= \{x_i \mid i = [n/2]+1, \dots, n\}, \\ d_{A_n}^+(x_i) &= d_{A_n}^-(x_i) = 2(i-1) - (n-1) \text{ for all } i = [n/2]+1, \dots, n-1, \\ d_{A_n}^+(x_n) &= d_{A_n}^-(x_n) = n - 3. \end{aligned}$$

Therefore

$$P(A_n) = \sum_{i=\lfloor n/2 \rfloor+1}^{n-1} 2(i-1) - (n-1) + (n-3)$$
$$= e(A_n) = \lfloor n^2/4 \rfloor - 2 .$$

The following corollary proves the existence, by exhibiting them, of digraphs G with circuits satisfying $P(G) = [n^2/4]$.

We denote by TT_n the transitive tournament of order n .

COROLLARY 1. There exist tournaments \mathbf{T}_n which are not isomorphic to \mathbf{TT}_n and such that

$$P(T_n) = [n^2/4] .$$

Proof. Let $A_n = (X, U)$ be the tournament strongly connected and *c*-minimal of order n. Let x_1, x_2, \ldots, x_n be the canonical indexation of the vertices of A_n .

First Case: n = 2k.

In A_{2k} we have: if $d_{A_{2k}}^{+}(x_k) = k - 1$ and $d_{A_{2k}}^{-}(x_k) > k - 1$, then $d_{A_{2k}}^{+}(x_k) - d_{A_{2k}}^{-}(x_k) < 0$; moreover $d_{A_{2k}}^{+}(x_{k+1}) - d_{A_{2k}}^{-}(x_{k+1}) > 0$. We

denote by T_n the tournament of order n obtained from A_n by reversing the arc (x_k, x_{k+1}) .

By Lemma 2.3, the tournament T_n satisfies Q and we have

$$P(T_n) = P(A_n) + 2 = [n^2/4] = e(T_n)$$

Second Case: n = 2k + 1.

We have

$$d_{A_n}^+(x_k) - d_{A_n}^-(x_k) < 0 ,$$

$$d_{A_n}^+(x_{k+1}) - d_{A_n}^-(x_{k+1}) = 0 ,$$

and

$$d_{A_n}^+(x_{k+2}) - d_{A_n}^-(x_{k+2}) > 0$$
.

Let T_n be the tournament of order n obtained from A_n by reversing the arc (x_k, x_{k+1}) ; by Lemma 2.3, the tournament satisfies Qand $P(T_n) = P(A_n) + 2 - [n^2/4] = e(T_n)$. Similarly the tournament of order n obtained from A_n by reversing the arc (x_{k+1}, x_{k+2}) satisfies Q and $P(T_n) = P(A_n) + 2 = [n^2/4] = e(T_n)$. This proves our result.

By Abdul-Kader [2], if T_n is a tournament having a unique hamiltonian circuit, we have

- (1) $P(T_n) \leq [n^2/4] 2;$
- (2) this result is the best possible, that is, there exist tournaments having a unique hamiltonian circuit, which are not isomorphic to A_n , and which satisfy the equation

$$P(T_n) = [n^2/4] - 2;$$

(3) T_n does not satisfy the property Q, in general. THEOREM 2.6. Let G = (X, U) be a strongly connected digraph of

213

order n satisfying Q; then there exists a strongly connected digraph H of order n + 1, satisfying Q and having G as a sub-digraph. Proof. We have $X_{C}^{\dagger} \neq \emptyset$.

First Case: $|x_G^-| \ge |x_G^+|$.

Let B_1 , B_2 be a partition of X_G^- such that $|B_1| = |X_G^+|$. Let $x_0 \notin X$ and H be the digraph generated by $X \cup \{x_0\}$ such that

- (1) $G \subset H$,
- (2) for all $x \in X_G^+ \cup B_1$, we consider the arcs (x, x_0) if $x \in X_G^+$ and (x_0, x) if not, as being arcs of H. We have then $X_H^+ = X_G^+$. Moreover, $d_H^+(x) = d_G^+(x) + 1$ and $d_H^-(x) = d_G^-(x)$ for all $x \in X_H^+$; then $P(H) \ge e(H) = e(G) + |X_G^+|$.

If R is a path-partition of G such that |R| = P(G), then the set $R_1 = R \cup \{(x_i, x_0, b_i) \mid x_i \in X_G^+, b_i \in B_1\}$ is a path-partition of the arcs of H and $|R_1| = P(G) + |X_H^+|$. One verifies easily that the digraph His strongly connected; therefore

P(H) = e(H).

Second Case: $|X_{G}^{-}| < |X_{G}^{+}|$.

Let C_1, C_2 be a partition of X_G^+ such that $|C_1| = |X_G^-|$, and let H denote the digraph generated by $X \cup \{x_0\}$ and satisfying

- (1) $G \subset H$,
- (2) for all $x \in C_1 \cup X_{\overline{G}}$, we consider the arcs (x, x_0) if $x \in C_1$ and (x_0, x) if $x \in X_{\overline{G}}$, as being arcs of H.

We have the relations

 $\begin{array}{l} d_{H}^{+}(x) \,=\, d_{G}^{+}(x) \,\,+\, 1 \,\,, \ \ d_{H}^{-}(x) \,\,=\, d_{G}^{-}(x) \quad \mbox{for all} \quad x \,\in\, C_{1} \,\,, \\ \\ d_{H}^{+}(x) \,\,=\, d_{G}^{+}(x) \,\,\,, \ \ d_{H}^{-}(x) \,\,=\, d_{G}^{-}(x) \quad \mbox{for all} \quad x \,\in\, C_{2} \,\,. \end{array}$

Then

$$P(H) \ge e(H) = e(G) + |C_1|$$

Moreover the set $R_1 = R$ $\{(x_i, x_0, y_i) \mid x_i \in C_1, y_i \in X_G^-\}$ partitions the arcs of H and $|R_1| = |R| + |C_1| = P(G) + |C_1|$. Therefore P(H) = e(H). As before, one easily verifies that H is strongly connected.

REMARK. This last theorem constitutes a procedure of extension permitting the construction, from a class of strongly connected digraphs satisfying Q, another class of strongly connected digraphs satisfying Qtoo.

EXAMPLES. Consider a strongly connected digraph G of order n satisfying P(G) = e(G). We study two cases.

(1) n = 5.

By Theorem 2.6, we have

(2) n = 6.

By Theorem 2.6 we have

References

- [1] Issam Abdul-Kader, "Sur des graphes ayant un circuit hamiltonien unique et sur des invariants des cheminements dans les graphes orientés" (Thèses de Doctorat d'Etat lere, Université Pierre et Marie Curie, Paris, 1977).
- [2] Issam Abdul-Kader, "Indice de partition en chemins des arcs des tournois ayant un seul circuit hamiltonien", Problèmes combinatoires et théorie des graphes, Orsay, Juillet, 1976, 1-2 (Colloques Internationaux du Centre National de la Recherche Scientifique, 260. Centre National de la Recherche Scientifique, Paris, 1978).
- [3] Brian Alspach, David W. Mason, Norman J. Pullman, "Path numbers of tournaments", preprint.
- [4] Brian R. Alspach and Norman J. Pullman, "Path decompositions of digraphs", Bull. Austral. Math. Soc. 10 (1974), 421-427.
- [5] C. Berge, Graphes et hypergraphes (Dunod Université, 604. Dunod, Paris, 1970).
- [6] G. Chaty et M. Chein, "Invariants liés aux chemins dans les graphes sans circuits", Colloquio Internazionale sulle Teorie Combinatorie con la collaborazione della American Mathematical Society, Roma, 1973, Tomo I, 287-308 (Atti dei Convegni Lincei, 17. Academia Nazionale dei Lincei, Roma, 1976).
- [7] G. Chaty, M. Chein, "Path-number of k-graphs and symmetric digraphs", Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing, 203-216 (Louisana State University, Baton Rouge, 1976. Congressus Numerantium, 17. Utilitas Mathematica, Winnipeg, 1976).
- [8] Richard C. O'Brien, "An upper bound on the path number of a digraph", J. Combinatorial Theory Ser. B 22 (1977), 168-174.
- [9] Oystein Ore, Theory of graphs (American Mathematical Society Colloquium Publications, 38. American Mathematical Society, Providence, Rhode Island, 1962).

Faculty of Science, Lebanese University, Beirut, Lebanon.