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Abstract
Consider a reductive linear algebraic group G acting linearly on a polynomial ring S over an infinite field; key
examples are the general linear group, the symplectic group, the orthogonal group, and the special linear group,
with the classical representations as in Weyl’s book: For the general linear group, consider a direct sum of copies of
the standard representation and copies of the dual; in the other cases, take copies of the standard representation. The
invariant rings in the respective cases are determinantal rings, rings defined by Pfaffians of alternating matrices,
symmetric determinantal rings and the Plücker coordinate rings of Grassmannians; these are the classical invariant
rings of the title, with 𝑆𝐺 ⊆ 𝑆 being the natural embedding.

Over a field of characteristic zero, a reductive group is linearly reductive, and it follows that the invariant ring
𝑆𝐺 is a pure subring of S, equivalently, 𝑆𝐺 is a direct summand of S as an 𝑆𝐺-module. Over fields of positive
characteristic, reductive groups are typically no longer linearly reductive. We determine, in the positive characteristic
case, precisely when the inclusion 𝑆𝐺 ⊆ 𝑆 is pure. It turns out that if 𝑆𝐺 ⊆ 𝑆 is pure, then either the invariant ring
𝑆𝐺 is regular or the group G is linearly reductive.
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1. Introduction

The classical invariant rings that we study here are determinantal rings, rings defined by Pfaffians of
alternating matrices, symmetric determinantal rings and the Plücker coordinate rings of Grassmannians.
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2 M. Hochster et al.

Over a field of characteristic zero, these are all invariant rings for classical groups as in Weyl [We]; by
[Ig, DP, Ha], these are also invariant rings for the corresponding classical groups over an infinite field
of positive characteristic. The embedding 𝑆𝐺 ⊆ 𝑆, for S a polynomial ring and G a classical group, is
the natural embedding of the title. We describe these in turn, for K a field of arbitrary characteristic.

(a) Let Y and Z be 𝑚 × 𝑡 and 𝑡 × 𝑛 matrices of indeterminates, respectively. Set S to be the polynomial
ring 𝐾 [𝑌, 𝑍], and take R to be the K-subalgebra generated by the entries of the product matrix
𝑌𝑍 . Then R is isomorphic to the determinantal ring 𝐾 [𝑋]/𝐼𝑡+1(𝑋), where X is an 𝑚 × 𝑛 matrix of
indeterminates, and 𝐼𝑡+1(𝑋) is the ideal generated by its size 𝑡 + 1 minors. The general linear group
GL𝑡 (𝐾) acts K-linearly on S via

𝑀 :

{
𝑌 ↦−→ 𝑌𝑀−1

𝑍 ↦−→ 𝑀𝑍
,

where 𝑀 ∈ GL𝑡 (𝐾). When the field K is infinite, R is precisely the ring of invariants; see [DP, §3]
or [Ha, Theorem 4.1].

(b) Let Y be a 2𝑡 × 𝑛 matrix of indeterminates, and set 𝑆 := 𝐾 [𝑌 ]. Let

Ω :=
(

0 1
−1 0

)
(1.0.1)

be the size 2𝑡 standard symplectic block matrix, where 1 is the size t identity matrix. The K-
algebra 𝑅 := 𝐾 [𝑌 trΩ𝑌 ] is isomorphic to 𝐾 [𝑋]/Pf2𝑡+2 (𝑋), where X is an 𝑛 × 𝑛 alternating matrix
of indeterminates, and Pf2𝑡+2 (𝑋) the ideal generated by its principal size 2𝑡 + 2 Pfaffians; see §6.
The symplectic group

Sp2𝑡 (𝐾) := {𝑀 ∈ GL2𝑡 (𝐾) | 𝑀
trΩ𝑀 = Ω}

acts K-linearly on S, where

𝑀 : 𝑌 ↦−→ 𝑀𝑌 for 𝑀 ∈ Sp2𝑡 (𝐾).

It is readily seen that𝑌 trΩ𝑌 ↦−→ 𝑌 tr𝑀 trΩ𝑀𝑌 = 𝑌 trΩ𝑌 for 𝑀 ∈ Sp2𝑡 (𝐾), so the entries of the matrix
𝑌 trΩ𝑌 are invariant under the action; when K is infinite, the invariant ring is precisely the ring R;
see [DP, §6] or [Ha, Theorem 5.1].

(c) Let Y be a 𝑑 × 𝑛 matrix of indeterminates. Set 𝑆 := 𝐾 [𝑌 ], and let R be the K-subalgebra generated
by the entries of 𝑌 tr𝑌 . Then R is isomorphic to 𝐾 [𝑋]/𝐼𝑑+1 (𝑋), for X an 𝑛 × 𝑛 symmetric matrix of
indeterminates. The orthogonal group

O𝑑 (𝐾) := {𝑀 ∈ GL𝑑 (𝐾) | 𝑀 tr𝑀 = 1}

acts K-linearly on S via

𝑀 : 𝑌 ↦−→ 𝑀𝑌 for 𝑀 ∈ O𝑑 (𝐾).

Note that 𝑌 tr𝑌 ↦−→ 𝑌 tr𝑀 tr𝑀𝑌 = 𝑌 tr𝑌 for 𝑀 ∈ O𝑑 (𝐾), so the entries of 𝑌 tr𝑌 are invariant under the
action; when the field K is infinite of characteristic other than two, the invariant ring is precisely
the subring R, as proved in [DP, §5]. When K is infinite of characteristic two, as proved in [Ri, §5],
the invariant ring has the additional generators

𝑦1 𝑗 + · · · + 𝑦𝑑 𝑗 where 1 � 𝑗 � 𝑛.
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(d) Let Y be a 𝑑 × 𝑛 matrix of indeterminates over K, where 𝑑 � 𝑛, and set 𝑆 := 𝐾 [𝑌 ]. Let

𝑅 := 𝐾 [{Δ}],

where {Δ} is the set of size d minors of Y. Then R is the Plücker coordinate ring of the Grassmannian
of d-dimensional subspaces of an n-dimensional vector space. The special linear group SL𝑑 (𝐾)
acts K-linearly on S where

𝑀 : 𝑌 ↦−→ 𝑀𝑌 for 𝑀 ∈ SL𝑑 (𝐾).

Each size d minor of Y is fixed under the group action; when K is an infinite field, the invariant ring
is precisely R, as proved in [Ig] or [DP, §3].

If K has characteristic zero, the groups GL𝑡 (𝐾), Sp2𝑡 (𝐾), O𝑑 (𝐾) and SL𝑑 (𝐾) are linearly reductive;
it follows that, in each case, the invariant ring R is a direct summand of S as an R-module, equivalently
that 𝑅 ⊆ 𝑆 is pure. See §2 for the equivalence. This then implies a wealth of strong properties for R;
see [Bo, HH1, HR, Ke3]. Over fields of positive characteristic, these invariant rings maintain favorable
properties such as the Cohen–Macaulay property and F-regularity (see [HH2, Theorem 7.14]), though
the groups are typically not linearly reductive. Indeed, in positive characteristic, each of the classical
groups above admits a representation for which the invariant ring is not Cohen–Macaulay [Ko]. It is
natural to ask if the embeddings (a)–(d) are pure when K has positive characteristic. We prove:

Theorem 1.1. Let K be a field of characteristic 𝑝 > 0. Fix positive integers 𝑑, 𝑚, 𝑛 and t, and let 𝑅 ⊆ 𝑆
denote one of the following inclusions:

(a) 𝐾 [𝑌𝑍] ⊆ 𝐾 [𝑌, 𝑍], where Y and Z are 𝑚 × 𝑡 and 𝑡 × 𝑛 matrices of indeterminates;
(b) 𝐾 [𝑌 trΩ𝑌 ] ⊆ 𝐾 [𝑌 ], where Y is a 2𝑡 × 𝑛 matrix of indeterminates;
(c) 𝐾 [𝑌 tr𝑌 ] ⊆ 𝐾 [𝑌 ], where Y is a 𝑑 × 𝑛 matrix of indeterminates;
(d) 𝐾 [{Δ}] ⊆ 𝐾 [𝑌 ], where Y is a 𝑑 × 𝑛 matrix of indeterminates with 𝑑 � 𝑛.

Then 𝑅 ⊆ 𝑆 is pure if and only if, in the respective cases,

(a) 𝑡 = 1 or min{𝑚, 𝑛} � 𝑡;
(b) 𝑛 � 𝑡 + 1;
(c) 𝑑 = 1; 𝑑 = 2 and p is odd; 𝑝 = 2 and 𝑛 � (𝑑 + 1)/2; or p is odd and 𝑛 � (𝑑 + 2)/2;
(d) 𝑑 = 1 or 𝑑 = 𝑛.

Suppose the field K in Theorem 1.1 is infinite; in case (c) assume also that the characteristic of K
is odd. In this setting, the ring R is the invariant ring 𝑆𝐺 for an action of a classical group G on S, as
recorded earlier. It is notable that whenever 𝑆𝐺 ⊆ 𝑆 is pure, either the invariant ring 𝑆𝐺 is regular or
the group G is linearly reductive.

In (a), 𝑆𝐺 is regular if min{𝑚, 𝑛} � 𝑡, while if 𝑡 = 1, then GL1(𝐾) is the torus 𝐾×, which is linearly
reductive. For (b), 𝑆𝐺 is regular if 𝑛 � 2𝑡 + 1, though 𝑆𝐺 ⊆ 𝑆 is pure in the more restrictive range
𝑛 � 𝑡 + 1. In case (c), the orthogonal group O𝑑 (𝐾) is linearly reductive if 𝑑 = 1 and also if 𝑑 = 2 and
p is odd, as discussed in the proof of Theorem 7.14. The ring 𝑆𝐺 is regular if 𝑛 � 𝑑, though 𝑆𝐺 ⊆ 𝑆 is
pure in a smaller range and one that depends on the characteristic. Lastly, in (d), 𝑆𝐺 is regular precisely
if d equals 1, 𝑛 − 1, or n.

The cases (a)–(d) of Theorem 1.1 are proven as Theorems 4.2, 6.9, 7.14 and 3.1, respectively. In each
case, this involves investigating the nullcone of the action of G on S, namely the ring 𝑆/𝔪𝑆𝐺𝑆, where
𝔪𝑆𝐺 is the homogeneous maximal ideal of the invariant ring 𝑆𝐺 (or, more generally, the ring 𝑆/𝔪𝑅𝑆).
The study of nullcones goes back at least to Hilbert’s proof of the finite generation of invariant rings
[Hi]; more recent work includes [He, KS, KW, Sc]. Specifically, Kraft and Schwartz determine, for
classical invariant rings of characteristic zero, precisely when the nullcone is reduced or a domain [KS,
Theorem 9.1]. Our paper includes the corresponding results in the positive characteristic case.
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The easiest to settle is the SL𝑛 (𝐾) case: The invariant ring is the homogeneous coordinate ring for the
Plücker embedding of a Grassmannian variety, and the nullcone is a determinantal ring, hence Cohen–
Macaulay by Hochster–Eagon [HE]. More work is needed in the other cases. For the GL𝑛 (𝐾) action, the
invariant rings are generic determinantal rings, but the nullcone typically fails to be Cohen–Macaulay
or even equidimensional. We use the theory of varieties of complexes as introduced by Buchsbaum–
Eisenbud [BE] and expanded by Kempf [Ke1], De Concini–Strickland [DS] and Huneke [Hu]. We settle
the purity question by examining the irreducible components and their intersections.

In the symplectic group Sp2𝑛 (𝐾) case, the invariant rings are defined by the principal Pfaffians of
fixed size of an alternating matrix of indeterminates. It is worth mention that there is much amongst our
results that is new even in the case of characteristic zero: for example, for the Sp2𝑛 (C) case, Kraft and
Schwarz [KS, Theorem 9.1.3] prove that the nullcone is irreducible and normal. We prove that it is, in
addition, Cohen–Macaulay.

Theorem 1.2. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K, where t and n are positive
integers. Set 𝑆 := 𝐾 [𝑌 ], and take 𝔓 to be the ideal generated by the entries of the matrix 𝑌 trΩ𝑌 , where
Ω is the size 2𝑡 standard symplectic matrix as displayed in equation (1.0.1).

Then 𝔓 is a prime ideal, and the ring 𝑆/𝔓 is Cohen–Macaulay.

The situation is more complicated in the case of the orthogonal group O𝑑 (𝐾); the characteristic zero
case of parts (1a) and (1b) of the following is [KS, Theorem 9.1.4]:

Theorem 1.3. Let Y be a 𝑑 × 𝑛 matrix of indeterminates over a field K, where d and n are positive
integers. Set 𝑆 := 𝐾 [𝑌 ], and take 𝔄 to be the ideal generated by the entries of 𝑌 tr𝑌 .

(1) Suppose K has characteristic other than 2. Then:
(a) The ideal 𝔄 is radical if and only if 2𝑛 � 𝑑.
(b) If K contains a primitive fourth root of unity, then 𝔄 is prime if and only if 2𝑛 < 𝑑.
(c) If d is odd, or if 2𝑛 < 𝑑, then 𝑆/rad 𝔄 is a Cohen–Macaulay integral domain.
(d) Suppose d is even, 2𝑛 � 𝑑 and K contains a primitive fourth root of unity. Then 𝔄 has minimal

primes 𝔓 and 𝔔 (see Definition 7.7) and the rings 𝐾 [𝑌 ]/𝔓 and 𝐾 [𝑌 ]/𝔔 are Cohen–Macaulay.
(2) Suppose K has characteristic two. Then 𝔄 is not radical; however, 𝑆/rad 𝔄 is a Cohen–Macaulay

integral domain.

Theorem 1.2 is part of Theorem 6.8, while Theorem 1.3 is covered by Theorems 7.2, 7.12 and 7.13.
It is worth emphasizing that, in all cases (a)–(d) of Theorem 1.1, the minimal primes of 𝔪𝑆𝐺𝑆—the
defining ideal of the nullcone—are perfect ideals, that is, they define Cohen–Macaulay rings. This
supports the maxim, ‘Perfection is often hunted for and usually found in generic situations’ (Bruns
[Br2]). A key technique used to establish the perfection is that of principal radical systems, introduced
by Hochster–Eagon in their study of determinantal rings [HE]. This is reviewed in §5.

Theorem 1.3 is related to work on Lovász–Saks–Schrijver ideals. Given a simple graph G on a vertex
set {1, . . . , 𝑛}, an integer d and a field K, let Y be an 𝑛× 𝑑 matrix of indeterminates over K. The Lovász–
Saks–Schrijver ideal 𝐿𝐾𝐺 (𝑑) is the ideal of 𝐾 [𝑌 ] generated by the entries of 𝑌𝑌 tr in the positions (𝑖, 𝑗)
that are edges of G. In [HMSW] and [CW], the conditions that the ideal 𝐿𝐾𝐺 (𝑑) is radical, prime or a
complete intersection are related to various conditions on G and d. Notably, the restriction to simple
graphs ensures that the ideals 𝐿𝐾𝐺 (𝑑) are generated by elements whose initial terms are square-free,
allowing for Gröbner degeneration techniques. It is easy to see that the ideal 𝔄 from Theorem 1.3 has
no square-free initial ideal.

Let V be a commutative ring, and let R denote either a Pfaffian ring𝑉 [𝑋]/Pf2𝑡+2(𝑋) or a determinantal
or symmetric determinantal ring 𝑉 [𝑋]/𝐼𝑡+1 (𝑋). While Theorem 1.1 addresses the purity of the natural
embedding 𝑅 ⊆ 𝑆 when V is a field of positive characteristic, it remains unresolved whether R is a pure
subring of some polynomial ring over V. However, when V is the ring of integers or the ring of p-adic
integers, the following theorem addresses embeddings in arbitrary polynomial rings over V.
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Theorem 1.4 [JS, Theorem 9.1]. Let V denote either the ring of integers Z or a ring of p-adic integers
Ẑ(𝑝) . Let 𝑑, 𝑚, 𝑛 and t be positive integers.

(a) Let 𝑅 := 𝑉 [𝑋]/𝐼𝑡+1 (𝑋), where X is an 𝑚 × 𝑛 matrix of indeterminates. Then R is a pure subring of
a polynomial ring over V if and only 𝑡 = 1 or min{𝑚, 𝑛} � 𝑡.

(b) Let 𝑅 := 𝑉 [𝑋]/Pf2𝑡+2(𝑋), where X is an 𝑛 × 𝑛 alternating matrix of indeterminates. Then R is a
pure subring of a polynomial ring over V if and only if 𝑛 � 2𝑡 + 1, that is, if and only if R is itself a
polynomial ring over V.

(c) Let 𝑅 := 𝑉 [𝑋]/𝐼𝑑+1 (𝑋), where X is a symmetric 𝑛 × 𝑛 matrix of indeterminates. Then R is a pure
subring of a polynomial ring over V if and only if 𝑛 � 𝑑, or 𝑑 = 1, or 𝑑 = 2 and 𝑉 = Ẑ(𝑝) for p an
odd prime.

The formulation of the theorem in [JS] is in terms of direct summands rather than pure subrings,
but the notions are equivalent when V above is a ring of p-adic integers, from which the remaining
assertions follow. Specifically, conditions (1) and (2) in Theorem 2.1 remain equivalent when 𝑅0 = 𝑆0
is, more generally, a complete local ring. The proof in this case uses [BH, Theorem 3.6.17].

Notation

For commutative rings 𝑅 ⊆ 𝑆 and M a matrix with entries from S, we use 𝑅[𝑀] to denote the R-algebra
generated by the entries of M, and (𝑀) or (𝑀)𝑆 to denote the ideal of S generated by the entries of M.
For a product matrix 𝑀𝑁 , one has (𝑀𝑁) ⊆ (𝑀), so if N is invertible, then (𝑀𝑁) = (𝑀).

We use 1 for the identity matrix, or 1𝑛 if the size needs to be specified. For a matrix M, we use 𝑀 |𝑠
to denote the submatrix consisting of the first s columns of M. This should not be confused with the
notation 𝑀𝛼 |𝛽—used only in §7.3—for the submatrix with rows indexed by 𝛼 and columns indexed by 𝛽.

2. Pure, split and solid extensions

A ring homomorphism 𝑅 −→ 𝑆 is pure if 𝑅 ⊗𝑅 𝑀 −→ 𝑆 ⊗𝑅 𝑀 is injective for each R-module M. It is
readily seen that if R is a direct summand of S as an R-module, that is, if the inclusion 𝑅 −→ 𝑆 is split
in the category of R-modules, then 𝑅 −→ 𝑆 is pure.

A related notion is that of a solid algebra: Let R be an integral domain. Following [Ho2], an R-algebra
S is solid if Hom𝑅 (𝑆, 𝑅) is nonzero. If R is a direct summand of S as an R-module, it follows that S is a
solid R-algebra. More generally, we have:

Theorem 2.1 (cf. [Ho2, Corollary 2.4]). Let 𝑅 −→ 𝑆 be a degree-preserving inclusion of N-graded
normal rings that are finitely generated over a field 𝑅0 = 𝑆0. Set 𝔪𝑅 to be the homogeneous maximal
ideal of R, and set 𝑑 := dim 𝑅. Let 𝐸𝑅 denote the injective hull of 𝑅/𝔪𝑅 in the category of graded
R-modules. Consider the following statements:

(1) The ring R is a direct summand of S as an R-module.
(2) The map 𝑅 −→ 𝑆 is pure.
(3) The induced map 𝑅 ⊗𝑅 𝐸𝑅 −→ 𝑆 ⊗𝑅 𝐸𝑅 is injective.
(4) The local cohomology module 𝐻𝑑𝔪𝑅

(𝑆) is nonzero.
(5) The R-algebra S is solid.

Then (1), (2) and (3) are equivalent, and imply the equivalent conditions (4) and (5). If R is a
polynomial ring over a field of positive characteristic, then (1)–(5) are equivalent.

Since it is an issue that will come up often, we take this opportunity to clarify a point regarding (4):
As S is an R-module, so is the local cohomology 𝐻𝑑𝔪𝑅

(𝑆). This is the same R-module as considering
the S-module 𝐻𝑑𝔪𝑅𝑆

(𝑆) and restricting scalars.
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Proof. The implications (1) =⇒ (2) =⇒ (3) are clear; for (3) =⇒ (1), applying the graded dual
Hom𝑅 (−, 𝐸𝑅) yields the surjection

Hom𝑅 (𝑆 ⊗𝑅 𝐸𝑅, 𝐸𝑅) −−−−−−→ Hom𝑅 (𝐸𝑅, 𝐸𝑅)��� ���
Hom𝑅 (𝑆, 𝑅) −−−−−−→ 𝑅,

where the bottom map is simply 𝜑 ↦−→ 𝜑(1).
The equivalence of (4) and (5) is the graded version of [Ho2, Corollary 2.4]; the proof there is readily

modified using instead a homogeneous Noether normalization and duality in the graded setting.
For (2) =⇒ (4), note that the induced map

𝐻𝑑𝔪𝑅
(𝑅) = 𝑅 ⊗𝑅 𝐻𝑑𝔪𝑅

(𝑅) −→ 𝑆 ⊗𝑅 𝐻𝑑𝔪𝑅
(𝑅) = 𝐻𝑑𝔪𝑅

(𝑆) (2.1.1)

is injective, where the second equality holds by the right exactness of 𝐻𝑑𝔪𝑅
(−).

Lastly, suppose R is the polynomial ring 𝐾 [𝑥1, . . . , 𝑥𝑑], where K is a field of positive characteristic
p, and that (4) holds. The local cohomology module 𝐻𝑑𝔪𝑅

(𝑅) agrees with 𝐸𝑅 up to a grading shift, so
to show that (3) holds, it suffices to verify that the map (2.1.1) is injective. Computing 𝐻𝑑𝔪𝑅

(𝑅) using a
Čech complex on 𝑥1, . . . , 𝑥𝑑 , its socle is spanned by the cohomology class

𝜂 :=
[

1
𝑥1 · · · 𝑥𝑑

]
,

so one need only verify that the image of 𝜂 in 𝐻𝑑𝔪𝑅
(𝑆) is nonzero. Indeed, if this image were zero, then

applying the Frobenius map iteratively, the elements[
1

𝑥𝑝
𝑒

1 · · · 𝑥
𝑝𝑒

𝑑

]
∈ 𝐻𝑑𝔪𝑅

(𝑆)

would be zero for each integer 𝑒 � 1. But these generate 𝐻𝑑𝔪𝑅
(𝑆) as an S-module. �

The equivalence of the conditions in Theorem 2.1 may fail when R is a polynomial ring over a field
of characteristic zero, as we see next.

Example 2.2. Set R to be the polynomial ring Q[𝑥1, 𝑥2, 𝑥3], and S to be the hypersurface

Q[𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3]/
(
(𝑥1𝑥2𝑥3)

2 −

3∑
𝑖=1

𝑦𝑖𝑥
3
𝑖

)
.

Consider the grading with deg 𝑥𝑖 = 1 and deg 𝑦𝑖 = 3 for each i. A difficult computation of Roberts [Ro]
shows that 𝐻3

(𝑥1 ,𝑥2 ,𝑥3)
(𝑆) is nonzero, that is, the inclusion 𝑅 −→ 𝑆 satisfies condition (4) in Theorem 2.1.

However, it does not satisfy (1) since (𝑥1𝑥2𝑥3)
2 is an element of the ideal (𝑥3

1, 𝑥
3
2, 𝑥

3
3)𝑆 though not of

(𝑥3
1, 𝑥

3
2, 𝑥

3
3)𝑅.

Even when 𝑅 −→ 𝑆 is an inclusion of polynomial rings over a field K, the purity may be quite subtle;
for example, it may depend on the characteristic of K. Let Y be a 2 × 3 matrix of indeterminates over a
field K, and set 𝑆 := 𝐾 [𝑌 ]. Let R be the K-algebra generated by the size 2 minors of Y. Since the minors
are algebraically independent over K in this case, the ring R is a polynomial ring. The inclusion 𝑅 −→ 𝑆
is pure precisely when K has characteristic zero; this is a special case of the result of the next section, a
key ingredient being the vanishing theorem of Peskine–Szpiro, recorded below in the graded setting.
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Theorem 2.3 [PS, Proposition III.4.1]. Let S be a polynomial ring over a field of positive characteristic.
If 𝔞 is a homogeneous ideal such that 𝑆/𝔞 is Cohen–Macaulay, then

𝐻𝑘𝔞 (𝑆) = 0 for each 𝑘 ≠ ht𝔞.

3. Plücker embeddings of Grassmannians

The first case of Theorem 1.1 that we address is (d), namely the case of the special linear group. This
ends up being the easiest by far, the nullcones here being the well-studied determinantal rings.

Fix integers 1 � 𝑑 � 𝑛. Let Y be a 𝑑 × 𝑛 matrix of indeterminates over a field K, and set 𝑆 := 𝐾 [𝑌 ].
Let R denote the K-algebra generated by the size d minors of Y. Then R is the homogeneous coordinate
ring, under the Plücker embedding, of the Grassmannian 𝐺 (𝑑, 𝑛) of d-dimensional subspaces of an n-
dimensional vector space. The ring R is regular when d equals 1, 𝑛 − 1 or n; in other cases, the relations
between the size d minors are quadratic—these are the Plücker relations, [HP, Chapter VII, §6]. The
ring R is a Gorenstein unique factorization domain, [Ho1, La, Mu], of dimension 𝑑 (𝑛 − 𝑑) + 1.

Consider the K-linear action of the special linear group SL𝑑 (𝐾) on S, where

𝑀 : 𝑌 ↦−→ 𝑀𝑌 for 𝑀 ∈ SL𝑑 (𝐾).

It is readily seen that the size d minors of Y are fixed by the group action; when the field K is infinite,
the invariant ring is precisely the subring R, see [Ig] or [DP, §3]. If K is a field of characteristic zero,
then the group SL𝑑 (𝐾) is linearly reductive, and it follows that the invariant ring R is a direct summand
of S as an R-module. In particular, the inclusion 𝑅 ⊆ 𝑆 is pure when K has characteristic zero. In the
case of positive characteristic, we have:

Theorem 3.1. Let K be a field of positive characteristic. Let Y be a 𝑑×𝑛 matrix of indeterminates where
1 � 𝑑 � 𝑛, and set 𝑆 := 𝐾 [𝑌 ]. Let R be the K-algebra generated by the size d minors of Y. Then the
inclusion 𝑅 ⊆ 𝑆 is pure if and only if 𝑑 = 1 or 𝑑 = 𝑛.

Proof. Set 𝔪𝑅 to be the homogeneous maximal ideal of R. Since the ring R has dimension 𝑑 (𝑛− 𝑑) +1,
if the inclusion 𝑅 ⊆ 𝑆 is pure, then 𝐻𝑑 (𝑛−𝑑)+1𝔪𝑅

(𝑆) must be nonzero by Theorem 2.1. But 𝔪𝑅𝑆 equals the
determinantal ideal 𝐼𝑑 (𝑌 ), which has height 𝑛− 𝑑 +1, and defines a Cohen–Macaulay ring 𝐾 [𝑌 ]/𝐼𝑑 (𝑌 );
see [EN] or [HE]. But then Theorem 2.3 implies that

𝑑 (𝑛 − 𝑑) + 1 = 𝑛 − 𝑑 + 1,

so 𝑑 = 1 or 𝑑 = 𝑛.
Conversely, if 𝑑 = 1 or 𝑑 = 𝑛, then R is a polynomial ring and ht(𝔪𝑅𝑆) = dim 𝑅, so the module

𝐻𝑑 (𝑛−𝑑)+1𝔪𝑅
(𝑆) is nonzero; hence, the inclusion 𝑅 ⊆ 𝑆 is pure by Theorem 2.1. �

Note that when 𝑑 = 𝑛 − 1 in Theorem 3.1, the ring R is regular but 𝑅 ⊆ 𝑆 is not pure. The argument
above serves as the template for the other cases of Theorem 1.1, namely we proceed by studying the
expansion of the homogeneous maximal ideal 𝔪𝑅 of the subring R to the ambient polynomial ring S and
analyze the local cohomology obstruction 𝐻dim𝑅

𝔪𝑅
(𝑆). In the remaining cases, the ideal𝔪𝑅𝑆 may be more

subtle: In the case of determinantal rings treated next, the ideal 𝔪𝑅𝑆 is typically not equidimensional.

4. Generic determinantal rings

Let K be a field, and let Y and Z be 𝑚 × 𝑡 and 𝑡 × 𝑛 matrices of indeterminates, respectively. Set
𝑆 := 𝐾 [𝑌, 𝑍], and take R to be the K-subalgebra of S generated by the entries of the product matrix
𝑌𝑍 . Then R is isomorphic to the determinantal ring 𝐾 [𝑋]/𝐼𝑡+1(𝑋), where X is an 𝑚 × 𝑛 matrix of
indeterminates, and 𝐼𝑡+1(𝑋) is the ideal generated by its size 𝑡+1 minors. The ring R is Cohen–Macaulay
by [HE]; it is regular precisely if min{𝑚, 𝑛} � 𝑡 since this corresponds to 𝐼𝑡+1(𝑋) = 0. Outside of the

https://doi.org/10.1017/fms.2023.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.67


8 M. Hochster et al.

regular case, the ring R has dimension 𝑚𝑡 + 𝑛𝑡 − 𝑡2, class group Z by Bruns [Br1] and is Gorenstein
precisely if m equals n by Svanes [Sv].

The general linear group GL𝑡 (𝐾) acts K-linearly on S via

𝑀 :

{
𝑌 ↦−→ 𝑌𝑀−1

𝑍 ↦−→ 𝑀𝑍,

where 𝑀 ∈ GL𝑡 (𝐾). When K is infinite, the ring R is precisely the ring of invariants for this action; see
[DP, §3] or [Ha, Theorem 4.1]. If, moreover, the field K has characteristic zero, then GL𝑡 (𝐾) is linearly
reductive, so the ring extension 𝑅 −→ 𝑆 is pure.

4.1. Irreducible components of the nullcone

A complex of K-vector spaces

𝐾𝑏0
𝑀1
←−−−−−− 𝐾𝑏1

𝑀2
←−−−−−− · · ·

𝑀ℎ
←−−−−−− 𝐾𝑏ℎ

can be regarded as a point in affine space using the entries of the matrices 𝑀𝑘 . Setting 𝑟𝑘 to be the rank
of 𝑀𝑘 , the matrices satisfy the rank conditions 𝑟1 � 𝑏0, and 𝑟ℎ � 𝑏ℎ , and

𝑟𝑘 + 𝑟𝑘+1 � 𝑏𝑘 for 1 � 𝑘 � ℎ − 1.

Given sequences (𝑏0, . . . , 𝑏ℎ) and (𝑟1, . . . , 𝑟ℎ) satisfying these rank conditions, consider matrices of
indeterminates 𝑋𝑘 of size 𝑏𝑘−1 × 𝑏𝑘 for 1 � 𝑘 � ℎ. The corresponding variety of complexes is the
algebraic set defined by the vanishing of the entries of the matrices 𝑋𝑘𝑋𝑘+1 and the determinantal
ideals 𝐼𝑟𝑘+1(𝑋𝑘 ). When K has characteristic zero, these varieties were shown to be Cohen–Macaulay
and normal, with rational singularities, by Kempf [Ke1] using [Ke2]. The Cohen–Macaulay property is
proved in arbitrary characteristic by Huneke [Hu, Theorem 6.2] using principal radical systems, and by
De Concini–Strickland [DS, Theorem 2.7] using Hodge algebra methods; however, as pointed out by
Tchernev [Tc, Example 9.2], the Hodge algebra structure of [DS] is not correct, though the assertions
can be obtained instead using Gröbner bases as in [Tc]. See also [MS] and the discussion in the proof
of [CW, Theorem 8.6]. The normality is [Hu, Theorem 7.1].

Returning to our setting where Y and Z are𝑚×𝑡 and 𝑡×𝑛matrices of indeterminates, and 𝑆 = 𝐾 [𝑌, 𝑍],
one has ℎ = 2 and the complex at hand is

𝑆𝑚
𝑌

←−−−−−− 𝑆𝑡
𝑍

←−−−−−− 𝑆𝑛.

The papers above give:

Theorem 4.1 [DS, Hu, Ke1, MS, Tc]. Let K be a field. Fix positive integers 𝑚, 𝑛 and t, and set
𝑆 := 𝐾 [𝑌, 𝑍], where Y and Z are, respectively, 𝑚 × 𝑡 and 𝑡 × 𝑛 matrices of indeterminates. For
nonnegative integers 𝑖, 𝑗 with 𝑖 + 𝑗 � 𝑡, set

𝔭𝑖, 𝑗 := 𝐼𝑖+1(𝑌 ) + 𝐼 𝑗+1(𝑍) + (𝑌𝑍)𝑆,

where (𝑌𝑍)𝑆 is the ideal generated by the entries of the matrix 𝑌𝑍 . Then:

(1) For each 𝑖, 𝑗 , the ring 𝑆/𝔭𝑖, 𝑗 is a Cohen–Macaulay normal domain.
(2) If 𝑖 � 𝑚 and 𝑗 � 𝑛, then ht(𝔭𝑖, 𝑗 ) = (𝑚 − 𝑖) (𝑡 − 𝑖) + (𝑛 − 𝑗) (𝑡 − 𝑗) + 𝑖 𝑗 .
(3) The radical of (𝑌𝑍)𝑆 is the intersection of the prime ideals 𝔭𝑖, 𝑗 with 𝑖 + 𝑗 = 𝑡.

It is perhaps amusing to note that varieties of complexes with ℎ = 1 give us determinantal rings, their
Cohen–Macaulay property being used in the SL𝑑 (𝐾) case of Theorem 1.1.
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4.2. The purity of the embedding

We next settle the GL𝑡 (𝐾) case of Theorem 1.1.

Theorem 4.2. Let K be a field of positive characteristic. Fix positive integers 𝑚, 𝑛, 𝑡 and consider
the inclusion 𝜑 : 𝐾 [𝑌𝑍] −→ 𝐾 [𝑌, 𝑍], where Y and Z are, respectively, 𝑚 × 𝑡 and 𝑡 × 𝑛 matrices of
indeterminates. Then 𝜑 is pure if and only if 𝑡 = 1, or 𝑚 � 𝑡, or 𝑛 � 𝑡.

Proof. We claim that if the inclusion 𝜑 : 𝐾 [𝑌𝑍] −→ 𝐾 [𝑌, 𝑍] is pure for a fixed triple of positive
integers (𝑚, 𝑛, 𝑡), then purity holds as well for the inclusion of the K-algebras corresponding to a triple
(𝑚′, 𝑛′, 𝑡) with 𝑚′ � 𝑚 and 𝑛′ � 𝑛.

To see this, set 𝑌 ′ to be the matrix consisting of the first 𝑚′ rows of Y, and 𝑍 ′ to be the matrix
consisting of the first 𝑛′ columns of Z, and consider theN-grading on 𝐾 [𝑌, 𝑍] where the indeterminates
from the submatrices 𝑌 ′ and 𝑍 ′ have degree 0, as does K, while the remaining indeterminates have
degree 1 so that 𝐾 [𝑌, 𝑍]0 = 𝐾 [𝑌 ′, 𝑍 ′]. Then

𝐾 [𝑌𝑍]0 = 𝐾 [𝑌 ′𝑍 ′],

so 𝐾 [𝑌 ′𝑍 ′] is a pure subring of 𝐾 [𝑌𝑍]. Since we are assuming 𝐾 [𝑌𝑍] −→ 𝐾 [𝑌, 𝑍] is pure, it follows
that the composition

𝐾 [𝑌 ′𝑍 ′] ⊆ 𝐾 [𝑌𝑍] ⊆ 𝐾 [𝑌, 𝑍]

is pure as well, but then so is 𝐾 [𝑌 ′𝑍 ′] ⊆ 𝐾 [𝑌 ′, 𝑍 ′]. This proves the claim; similar reduction arguments
will be used for other matrix families later in the paper.

Set 𝑆 := 𝐾 [𝑌, 𝑍] and 𝑅 := 𝐾 [𝑌𝑍]. We next prove that 𝜑 is pure in the cases claimed in the theorem.
When 𝑡 = 1, the ring R coincides with the Segre product of the polynomial rings 𝐾 [𝑌 ] and 𝐾 [𝑍], which
is a pure subring of S. For the case 𝑚 � 𝑡, in light of the reduction step, it suffices to establish the purity
when 𝑚 = 𝑡 and 𝑛 � 𝑡. In this case, the ring R has dimension 𝑚𝑛, specifically the matrix entries

𝑥𝑖 𝑗 := (𝑌𝑍)𝑖 𝑗

are algebraically independent over K and hence form a homogeneous system of parameters for R. By
Theorem 2.1, it suffices to show that 𝐻𝑚𝑛𝔪𝑅

(𝑆) is nonzero; we show that[
1∏
𝑥𝑖 𝑗

]
∈ 𝐻𝑚𝑛𝔪𝑅

(𝑆)

is a nonzero element, equivalently that for each 𝑘 � 1, one has(∏
𝑥𝑖 𝑗

) 𝑘−1
∉ (𝑥𝑘11, . . . , 𝑥

𝑘
𝑚𝑛)𝑆.

It is enough to show the above after specializing the entries of Y to the 𝑡 × 𝑡 identity matrix. This
specialization maps 𝑌𝑍 to Z, with the image of S being the polynomial ring 𝐾 [𝑍]. The above display
then takes the form (∏

𝑧𝑖 𝑗

) 𝑘−1
∉ (𝑧𝑘11, . . . , 𝑧

𝑘
𝑚𝑛)𝐾 [𝑍],

which is immediately seen to hold. The case 𝑛 � 𝑡 is much the same.
Next, suppose 𝑡 � 2. It remains to prove that 𝜑 : 𝐾 [𝑌𝑍] −→ 𝐾 [𝑌, 𝑍] is not pure if 𝑚 > 𝑡 and 𝑛 > 𝑡.

By the reduction step at the beginning of the proof, it suffices to show that 𝜑 is not pure in the case
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𝑚 = 𝑡 + 1 = 𝑛. In this case, the ring 𝑅 = 𝐾 [𝑌𝑍] is a hypersurface of dimension 𝑡2 + 2𝑡, so it suffices by
Theorem 2.1 to show that the local cohomology module

𝐻𝑡
2+2𝑡
𝔪𝑅
(𝑆)

is zero, where 𝔪𝑅 is the homogeneous maximal ideal of R. The minimal primes of the ideal 𝔪𝑅𝑆 are
described by Theorem 4.1; in the notation of that theorem, these are the primes 𝔭0,𝑡 , 𝔭1,𝑡−1, . . . , 𝔭𝑡 ,0.
With cd denoting the cohomological dimension, we shall prove that for each integer k with 0 � 𝑘 � 𝑡,
one has

cd
(
𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘

)
� 𝑡2 + 𝑡 + 1, (4.2.1)

from which it follows that cd(𝔪𝑅𝑆) � 𝑡2 + 𝑡 + 1; since 𝑡 � 2, one has 𝑡2 + 𝑡 + 1 < 𝑡2 + 2𝑡.
We first claim that

cd
(
𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘

)
� max

{
cd(𝔭0,𝑡 ), cd(𝔭1,𝑡−1), . . . , cd(𝔭𝑘,𝑡−𝑘 ),

cd(𝔭0,𝑡−1) − 1, cd(𝔭1,𝑡−2) − 1, . . . , cd(𝔭𝑘−1,𝑡−𝑘 ) − 1
}
. (4.2.2)

Quite generally, for ideals 𝔞 and 𝔟 of S, the Mayer–Vietoris sequence

−−−−−−→ 𝐻𝑖𝔞 (𝑆) ⊕ 𝐻𝑖𝔟 (𝑆) −−−−−−→ 𝐻𝑖𝔞∩𝔟 (𝑆) −−−−−−→ 𝐻𝑖+1𝔞+𝔟 (𝑆) −−−−−−→

shows that

cd(𝔞 ∩ 𝔟) � max{cd(𝔞), cd(𝔟), cd(𝔞 + 𝔟) − 1}.

Using this for the ideals 𝔞 := 𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘 and 𝔟 := 𝔭𝑘+1,𝑡−𝑘−1, one has

cd
(
[𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘 ] ∩ 𝔭𝑘+1,𝑡−𝑘−1

)
� max

{
cd

(
𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘

)
,

cd(𝔭𝑘+1,𝑡−𝑘−1), cd
(
[𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘 ] + 𝔭𝑘+1,𝑡−𝑘−1

)
− 1

}
.

Up to taking radicals, the ideal

[𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘 ] + 𝔭𝑘+1,𝑡−𝑘−1

coincides with

(𝔭0,𝑡 + 𝔭𝑘+1,𝑡−𝑘−1) ∩ (𝔭1,𝑡−1 + 𝔭𝑘+1,𝑡−𝑘−1) ∩ · · · ∩ (𝔭𝑘,𝑡−𝑘 + 𝔭𝑘+1,𝑡−𝑘−1)

= 𝔭0,𝑡−𝑘−1 ∩ 𝔭1,𝑡−𝑘−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘−1 = 𝔭𝑘,𝑡−𝑘−1,

since 𝔭𝑖1 , 𝑗1 + 𝔭𝑖2 , 𝑗2 = 𝔭𝑖, 𝑗 for 𝑖 := min{𝑖1, 𝑖2} and 𝑗 := min{ 𝑗1, 𝑗2}. It follows that

cd
(
𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘+1,𝑡−𝑘−1

)
� max

{
cd

(
𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘

)
, cd(𝔭𝑘+1,𝑡−𝑘−1), cd(𝔭𝑘,𝑡−𝑘−1) − 1

}
.

Using this inductively, one obtains the inequality (4.2.2).
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Since the rings 𝑆/𝔭𝑖, 𝑗 are Cohen–Macaulay for 𝑖+ 𝑗 � 𝑡, Theorem 2.3 implies that cd(𝔭𝑖, 𝑗 ) = ht(𝔭𝑖, 𝑗 ).
Consequently, the inequality (4.2.2) gives

cd
(
𝔭0,𝑡 ∩ 𝔭1,𝑡−1 ∩ · · · ∩ 𝔭𝑘,𝑡−𝑘

)
� max

{
ht(𝔭0,𝑡 ), ht(𝔭1,𝑡−1), . . . , ht(𝔭𝑘,𝑡−𝑘 ),

ht(𝔭0,𝑡−1) − 1, ht(𝔭1,𝑡−2) − 1, . . . , ht(𝔭𝑘−1,𝑡−𝑘 ) − 1
}
.

Using the formula for ht(𝔭𝑖, 𝑗 ) from Theorem 4.1, it is readily verified that for each fixed integer ℓ with
0 � ℓ � 𝑡, one has

max
{
ht(𝔭0,ℓ), ht(𝔭1,ℓ−1), . . . , ht(𝔭ℓ,0)

}
= ℓ2 − (2𝑡 + 1)ℓ + 2𝑡 (𝑡 + 1),

which then yields the inequality (4.2.1). �

5. Principal radical systems

Our approach to Theorems 1.2 and 1.3 is via the technique of principal radical systems, developed
by Hochster and Eagon in [HE]. This is a method used to prove that a given homogeneous ideal in a
polynomial ring is prime and defines a Cohen–Macaulay ring, by constructing a finite family of radical
ideals that contains the ideal of interest and inductively prove primality and the Cohen–Macaulay
property for select ideals in the family — the desired properties are first proved for larger ideals in the
family. The power of the technique was first demonstrated in proving that generic determinantal rings are
Cohen–Macaulay, a result that we used in the proof of Theorem 3.1. It was also used in Huneke’s proof
[Hu] of Theorem 4.1. Kutz [Ku] used principal radical systems to prove that symmetric determinantal
rings are Cohen–Macaulay, while the corresponding result for Pfaffians is due to Kleppe–Laksov [KL]
and independently Marinov [Ma1, Ma2]. The technique uses the following lemma from [HE, Section
5]; the proof, being brief, is included for the convenience of the reader.

Lemma 5.1. Let S be anN-graded ring, finitely generated over a field 𝑆0. Let I be a homogeneous ideal,
and P a homogenous prime ideal such that 𝐼 ⊆ 𝑃. Suppose there exists a homogeneous element x of
positive degree such that 𝑥 ∉ 𝑃 and 𝐼 + 𝑥𝑆 is a radical ideal.

(1) If 𝑥𝑃 ⊆ 𝐼, then I is radical.
(2) If rad 𝐼 = 𝑃, then 𝐼 = 𝑃.

Proof. (1) Let u be a homogeneous element in the radical of I. Then, 𝑢 = 𝑖 + 𝑥𝑠 for homogeneous
elements i in I and s in S. Then, 𝑥𝑠 = 𝑢 − 𝑖 lies in the radical of I and therefore in P. Since x does not
belong to P, the element s must. But then 𝑥𝑠 is an element of 𝑥𝑃 ⊆ 𝐼, so 𝑢 = 𝑖 + 𝑥𝑠 belongs to I.

(2) Replacing S by 𝑆/𝐼, it suffices to prove that S is a domain; the prime ideal P is now the nilradical
of S. Let u be a homogeneous element in P. Since 𝑆/𝑥𝑆 is reduced, 𝑢 = 𝑥𝑣 for some 𝑣 ∈ 𝑆. But 𝑥𝑣 lies in
the prime ideal P and x does not, so 𝑣 ∈ 𝑃. Thus, 𝑃 = 𝑥𝑃 which, by the graded version of Nakayama’s
lemma, implies that P is zero. �

We will also need the following elementary lemma for inductively proving the Cohen–Macaulay
property along a principal radical system.

Lemma 5.2. Let S be an N-graded ring, finitely generated over a field 𝑆0. Let 𝑄1 and 𝑄2 be ideals such
that 𝑆/𝑄1 and 𝑆/𝑄2 are Cohen–Macaulay rings of equal dimension, say d, and such that 𝑆/(𝑄1 +𝑄2)
is Cohen–Macaulay of dimension 𝑑−1. Then the ring 𝑆/(𝑄1∩𝑄2) is Cohen–Macaulay of dimension d.

Proof. One has an exact sequence of the form

0 −−−−−−→ 𝑆/(𝑄1 ∩𝑄2) −−−−−−→ 𝑆/𝑄1 ⊕ 𝑆/𝑄2 −−−−−−→ 𝑆/(𝑄1 +𝑄2) −−−−−−→ 0.

The result follows from the local cohomology exact sequence obtained by applying the functor 𝐻•𝔪 (−),
where 𝔪 is the homogeneous maximal ideal of S. �
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The following result will be used in order to employ Lemma 5.1.

Lemma 5.3. Let M be a matrix with entries from a commutative ring. Fix an integer 𝑐 > 0, and set 𝑀 |𝑐
to be the submatrix consisting of the first c columns of M. Then, for each integer b with 𝑏 > 𝑐, one has

𝑚1𝑏 𝐼𝑘 (𝑀 |𝑐) ⊆ 𝐼𝑘+1(𝑀) + (𝑚11, 𝑚12, . . . , 𝑚1𝑐).

Proof. Working modulo the ideal 𝐼𝑘+1(𝑀) + (𝑚11, 𝑚12, . . . , 𝑚1𝑐), we reuse the notation M and 𝑚𝑖 𝑗 in
the quotient ring and show that 𝑚1𝑏 annihilates the ideal 𝐼𝑘 (𝑀 |𝑐). If c is less than k, then 𝐼𝑘 (𝑀 |𝑐) = 0.
Assume 𝑐 � 𝑘 , and fix b and a 𝑘 × 𝑘 minor of 𝑀 |𝑐 . If the minor involves the first row of M, it clearly
vanishes. Therefore, we may assume that the minor involves k rows other than the first row. Consider
the (𝑘 + 1) × (𝑘 + 1) submatrix of M that involves, additionally, the first row and the b-th column of M.
This matrix has determinant zero, so the result follows. �

6. Pfaffian rings

Let t be a positive integer, and X a 2𝑡 × 2𝑡 alternating matrix. The Pfaffian of X is

pf 𝑋 :=
∑
𝜎

sgn(𝜎)𝑥𝜎 (1)𝜎 (2)𝑥𝜎 (3)𝜎 (4) · · · 𝑥𝜎 (2𝑡−1)𝜎 (2𝑡) ,

where the sum is taken over permutations of {1, 2, . . . , 2𝑡} that satisfy

𝜎(1) < 𝜎(3) < · · · < 𝜎(2𝑡 − 1) and 𝜎(1) < 𝜎(2), . . . , 𝜎(2𝑡 − 1) < 𝜎(2𝑡).

It is readily seen that (pf 𝑋)2 = det 𝑋 .
For an alternating matrix X with entries from a commutative ring, we use Pf2𝑡 (𝑋) to denote the ideal

generated by the Pfaffians of the size 2𝑡 principal submatrices of X.
Suppose X is an 𝑛 × 𝑛 alternating matrix of indeterminates over a field K. In this case, the ring

𝐾 [𝑋]/Pf2𝑡+2 (𝑋) is a Gorenstein unique factorization domain of dimension(
𝑛

2

)
−

(
𝑛 − 2𝑡

2

)
,

with the convention that
( 𝑖
𝑗

)
= 0 if 𝑖 < 𝑗 . The ring 𝐾 [𝑋]/Pf2𝑡+2 (𝑋) is regular precisely if 𝑛 � 2𝑡 + 1,

for then Pf2𝑡+2(𝑋) = 0. The Cohen–Macaulay property is due to [KL] and [Ma1, Ma2]; the rings are
unique factorization domains by [Av], hence Gorenstein.

The ideal Pf4(𝑋) is generated by the elements

𝑥𝑖 𝑗𝑥𝑘𝑙 − 𝑥𝑖𝑘𝑥 𝑗𝑙 + 𝑥𝑖𝑙𝑥 𝑗𝑘 , for 1 � 𝑖 < 𝑗 < 𝑘 < 𝑙 � 𝑛.

These are precisely the Plücker relations for the Grassmannian𝐺 (2, 𝑛), and 𝐾 [𝑋]/Pf4(𝑋) is isomorphic
to the homogeneous coordinate ring for 𝐺 (2, 𝑛) from §3.

Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K. Set 𝑆 := 𝐾 [𝑌 ], and let Ω be the size 2𝑡
standard symplectic block matrix (1.0.1). Then 𝑌 trΩ𝑌 is an alternating matrix of rank min{2𝑡, 𝑛}. For
X an 𝑛 × 𝑛 alternating matrix of indeterminates, the entrywise map

𝑋 −→ 𝑌 trΩ𝑌

induces a K-algebra isomorphism between 𝐾 [𝑋]/Pf2𝑡+2 (𝑋) and the subring 𝑅 := 𝐾 [𝑌 trΩ𝑌 ] of S. Our
goal in this section is to determine when the inclusion 𝜑 : 𝑅 −→ 𝑆 is pure. The symplectic group
Sp2𝑡 (𝐾) acts K-linearly on S, where

𝑀 : 𝑌 ↦−→ 𝑀𝑌 for 𝑀 ∈ Sp2𝑡 (𝐾).
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Since 𝑀 trΩ𝑀 = Ω for 𝑀 ∈ Sp2𝑡 (𝐾), it follows that the entries of 𝑌 trΩ𝑌 are fixed by the group action;
when the field K is infinite, the invariant ring is precisely the subring R; see [DP, §6] or [Ha, Theorem
5.1]. When the field K has characteristic zero, the group Sp2𝑡 (𝐾) is linearly reductive and it follows that
the invariant ring R is a direct summand of S as an R-module; hence, 𝜑 : 𝑅 −→ 𝑆 is pure when K has
characteristic zero.

6.1. Symplectic forms and preliminaries

Let K be a field and V the vector space 𝐾2𝑡 with the standard basis. Then Ω determines the bilinear
form 𝐵 : 𝑉 ×𝑉 −→ 𝐾 given by

(𝑣1, 𝑣2) ↦−→ 𝑣tr
1Ω𝑣2. (6.0.1)

Note that B is nondegenerate and alternating, that is, 𝐵(𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑉 ; in other words, B is a
symplectic form on V. One has

𝐵(𝑣1, 𝑣2) = −𝐵(𝑣2, 𝑣1) for all 𝑣𝑖 ∈ 𝑉.

The matrix for B with respect to the chosen basis is Ω, while a change of basis results in a matrix of
the form 𝐶 trΩ𝐶. In view of this, matrices M and N are cogredient if there exists an invertible matrix C
such that

𝑁 = 𝐶 tr𝑀𝐶. (6.0.2)

A vector subspace W of V is isotropic if 𝐵(𝑤1, 𝑤2) = 0 for all 𝑤𝑖 ∈ 𝑊 , equivalently if 𝑊 ⊆ 𝑊⊥.
Since B is nondegenerate, for any subspace W one has

rank𝑊 + rank𝑊⊥ = 2𝑡.

Hence, an isotropic subspace of V has rank at most t. Any isotropic subspace of V is contained in one
that has maximal rank, which is a Lagrangian subspace.

Lemma 6.1. Let K be a field. Consider the vector space 𝐾2𝑡 equipped with a symplectic form. Let L be
a nonzero linear functional on 𝐾2𝑡 , and let

𝑉1 ⊆ 𝑉2 ⊆ · · · ⊆ 𝑉𝑚

be isotropic subspaces of 𝐾2𝑡 with rank𝑉 𝑗 � 𝑗 for each j, with𝑚 � 𝑡. Let k be an integer with 1 � 𝑘 � 𝑚.
Suppose L vanishes on 𝑉𝑘 . Then there exist isotropic subspaces

𝑊1 ⊂ 𝑊2 ⊂ · · · ⊂ 𝑊𝑚

such that, for each j, one has 𝑉 𝑗 ⊆ 𝑊 𝑗 and rank𝑊 𝑗 = 𝑗 , and L vanishes on 𝑊𝑘 .

Proof. It suffices to consider the case where 𝑚 = 𝑡. Denote the symplectic form by B, and set 𝐻 := ker 𝐿,
a codimension one subspace. We construct the subspaces 𝑊 𝑗 by reverse induction on j. If 𝑉𝑡 has
dimension t, simply choose 𝑊𝑡 to be 𝑉𝑡 itself. If 𝑉𝑡 has dimension less than t, then dim(𝑉⊥𝑡 ) > 𝑡, so
dim(𝑉⊥𝑡 ∩ 𝐻) � 𝑡.

If 𝑘 < 𝑡, take 𝑊𝑡 to be a Lagrangian subspace of 𝐾2𝑡 containing 𝑉𝑡 . If 𝑘 = 𝑡, since 𝑉𝑡 ⊂ 𝐻, there
exists a nonzero vector 𝑥 ∈ (𝑉⊥𝑡 ∩ 𝐻) \𝑉 . Then

𝑉𝑡 + 𝐾𝑥 ⊆ (𝑉𝑡 + 𝐾𝑥)
⊥ ∩ 𝐻.

Continuing in this manner, we can extend 𝑉𝑡 to a Lagrangian subspace of 𝐾2𝑡 on which L vanishes.
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Assume that the vector spaces 𝑊 𝑗+1,𝑊 𝑗+2, . . . ,𝑊𝑡 have been constructed satisfying the required
conditions. There are two cases: If j is different from k, simply choose 𝑊 𝑗 of dimension j such that
𝑉 𝑗 ⊆ 𝑊 𝑗 ⊆ 𝑊 𝑗+1. This can be done since 𝑉 𝑗 has dimension at most j and 𝑊 𝑗+1 has dimension 𝑗 + 1. If j
equals k, choose 𝑊𝑘 of dimension k such that 𝑉𝑘 ⊆ 𝑊𝑘 ⊆ 𝐻 ∩𝑊𝑘+1; this can indeed be done since 𝑉𝑘
has dimension at most k, and 𝐻 ∩𝑊𝑘+1 has dimension at least

(2𝑡 − 1) + (𝑘 + 1) − 2𝑡 = 𝑘.

Finally, since any subspace of an isotropic subspace is isotropic, we are done. �

Let M be a size 2𝑡×𝑛 matrix over K, satisfying 𝑀 trΩ𝑀 = 0. Then the columns of M span an isotropic
subspace, so rank 𝑀 � 𝑡, that is, 𝐼𝑡+1(𝑀) = 0. By the Nullstellensatz, if Y is a size 2𝑡 × 𝑛 matrix of
indeterminates over an algebraically closed field K, then

𝐼𝑡+1(𝑌 ) ⊆ rad (𝑌 trΩ𝑌 ),

where (𝑌 trΩ𝑌 ) is the ideal of 𝐾 [𝑌 ] generated by the entries of the matrix𝑌 trΩ𝑌 . We strengthen this next.

Lemma 6.2. Let Y be a size 2𝑡 × 𝑛 matrix of indeterminates over a field K. Then, in the polynomial ring
𝐾 [𝑌 ], one has

𝐼𝑡+1(𝑌 ) ⊆ (𝑌
trΩ𝑌 ).

Proof. If 𝑛 � 𝑡, there is nothing to prove. If𝑌 ′ is a truncation of Y obtained by deleting certain columns,
then the alternating matrix 𝑌 ′ trΩ𝑌 ′ is a truncation of the alternating matrix 𝑌 trΩ𝑌 obtained by deleting
the corresponding columns and rows; thus, it suffices to prove the lemma when Y is size 2𝑡 × (𝑡 + 1).

Next, note that any size 𝑡 + 1 minor of Y equals the determinants of a matrix of the form 𝑌#𝑍 , where
Z is a suitable size 2𝑡 × (𝑡 − 1) matrix with entries 0 and 1, and # denotes the concatenation of matrices;

for example, for the upper size 𝑡 + 1 minor, one may take Z to be the block matrix
(
0
1

)
.

Thus, it suffices to prove that for all matrices Z of size 2𝑡 × (𝑡 − 1), one has

det(𝑌#𝑍) ∈ (𝑌 trΩ𝑌 ).

Since det(𝑌#𝑍) = pf ((𝑌#𝑍)trΩ(𝑌#𝑍)), it suffices to prove that

pf((𝑌#𝑍)trΩ(𝑌#𝑍)) ∈ (𝑌 trΩ𝑌 ).

But (𝑌#𝑍)trΩ(𝑌#𝑍) is a size 2𝑡 alternating matrix, and𝑌 trΩ𝑌 its upper-left size 𝑡+1 submatrix. Working
modulo the entries of 𝑌 trΩ𝑌 , it suffices to check that the Pfaffian of a size 2𝑡 alternating matrix of the
form (

0 𝐴
−𝐴tr 𝐵

)
is zero, where A and B are size 𝑡 × 𝑡, and the first column of A is zero. This is immediate, as the
determinant of such a matrix is zero. �

When 𝑡 = 1 in Lemma 6.2, one has the equality 𝐼𝑡+1(𝑌 ) = (𝑌 trΩ𝑌 ), as we will see in the following
discussion.
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6.2. Secant varieties of Grassmannians

Let Y be a size 2𝑡 × 𝑛 matrix of indeterminates over a field K. Set 𝔓 to be the ideal generated by the
entries of 𝑌 trΩ𝑌 . While we will prove later that 𝔓 is prime and defines a Cohen–Macaulay ring, it is
worth mentioning that when 𝑡 = 1 one has

𝑌 trΩ𝑌 =
����
𝑦11 𝑦21
...

...
𝑦1𝑛 𝑦2𝑛

����
(

0 1
−1 0

) (
𝑦11 · · · 𝑦1𝑛
𝑦21 · · · 𝑦2𝑛

)

=

��������

0 Δ12 Δ13 . . . Δ1𝑛
−Δ12 0 Δ23 . . . Δ2𝑛
−Δ13 −Δ23 0 . . . Δ3𝑛
...

...
. . .

...
−Δ1𝑛 −Δ2𝑛 −Δ3𝑛 . . . 0

��������
,

that is, 𝑌 trΩ𝑌 is an alternating matrix where, for 𝑖 < 𝑗 , the matrix entry (𝑌 trΩ𝑌 )𝑖 𝑗 is

Δ 𝑖 𝑗 := 𝑦1𝑖𝑦2 𝑗 − 𝑦1 𝑗 𝑦2𝑖 .

It follows that 𝔓 coincides with the determinantal ideal 𝐼2(𝑌 ) that has height 𝑛−1, and defines a Cohen–
Macaulay ring 𝐾 [𝑌 ]/𝔓. The ring 𝐾 [𝑌 trΩ𝑌 ] is the homogeneous coordinate ring of the Grassmannian
𝐺 (2, 𝑛) under the Plücker embedding in P(

𝑛
2)−1.

More generally, for 𝑡 � 1, the ring 𝐾 [𝑌 trΩ𝑌 ] is the homogeneous coordinate ring of the order 𝑡 − 1
secant variety 𝐺 (2, 𝑛)𝑡−1, which is the closure of the union of linear spaces spanned by t points of
𝐺 (2, 𝑛): For 1 � 𝑖 < 𝑗 � 𝑛, the alternating matrix 𝑌 trΩ𝑌 has 𝑖 𝑗-th entry 𝐵(𝑣𝑖 , 𝑣 𝑗 ), where 𝑣𝑖 and 𝑣 𝑗 are
the i-th and j-th columns of Y, and B is the symplectic form (6.0.1); specifically,

(𝑌 trΩ𝑌 )𝑖 𝑗 = (𝑦1𝑖𝑦𝑡+1, 𝑗 − 𝑦1 𝑗 𝑦𝑡+1,𝑖) + · · · + (𝑦𝑡𝑖𝑦2𝑡 , 𝑗 − 𝑦𝑡 𝑗 𝑦2𝑡 ,𝑖).

In particular,

dim𝐺 (2, 𝑛)𝑡−1 =

(
𝑛

2

)
−

(
𝑛 − 2𝑡

2

)
− 1.

Recall that for an irreducible closed projective variety X of dimension d in P𝑁 , the expected dimension
of the order s secant variety 𝑋𝑠 is min{𝑁, 𝑑𝑠+ 𝑑 + 𝑠}; when dim 𝑋𝑠 is less than the expected dimension,
𝑋𝑠 is defective. Using the formula above, it is readily seen that 𝐺 (2, 𝑛)𝑡−1 is defective precisely if 𝑡 � 2
and 𝑛 � 2𝑡+2, confer [CGG, Theorem 2.1]. The dimension and the defining equations of secant varieties
of other Grassmannians are largely unknown.

6.3. The complete intersection property

The ideal 𝔓 has
(𝑛
2
)

minimal generators corresponding to the upper triangular entries of the alternating
matrix 𝑌 trΩ𝑌 . We next prove that in the case 𝑛 � 𝑡 + 1, these generators form a regular sequence, in
other words, that 𝐾 [𝑌 ]/𝔓 is a complete intersection ring.
Theorem 6.3. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K, where 𝑛 � 𝑡 + 1. Set 𝑆 := 𝐾 [𝑌 ]
and 𝔓 := (𝑌 trΩ𝑌 )𝑆. Then 𝑆/𝔓 is a complete intersection ring.
Proof. It suffices to prove that 𝐾 [𝑌 ]/𝔓 is a complete intersection ring after specializing the entries of
the rows indexed

1, 2, . . . , 𝑡 + 1 − 𝑛, 𝑡 + 1, 𝑡 + 2, . . . , 2𝑡 + 1 − 𝑛
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to zero since this leaves the number of defining equations unchanged. We may hence assume that the
matrix Y has 2𝑡 − 2(𝑡 + 1− 𝑛) = 2𝑛− 2 rows, that is, Y is size 2(𝑛− 1) × 𝑛, equivalently, size 2𝑡 × (𝑡 + 1).
Next, specialize the entries of Y to the corresponding entries of the matrix

𝑌 :=

�������������������

0 𝑦12 𝑦13 · · · 𝑦1𝑡 𝑦1,𝑡+1
0 0 𝑦23 · · · 𝑦2𝑡 𝑦2,𝑡+1
0 0 0 𝑦3𝑡 𝑦3,𝑡+1
...

...
...

. . .
...

0 0 0 · · · 0 𝑦𝑡 ,𝑡+1
𝑦12 𝑦13 𝑦14 · · · 𝑦1𝑛 0
𝑦23 𝑦24 𝑦25 0 0
𝑦34 𝑦35 𝑦34 0 0
... . .

.
. .
. ...

...
𝑦𝑡 ,𝑡+1 0 0 · · · 0 0

�������������������

.

This entails killing (
𝑡 + 1

2

)
+ 𝑡 (𝑡 + 1) = 2𝑡 (𝑡 + 1) −

(
𝑡 + 1

2

)
linear forms in 𝐾 [𝑌 ]. As 𝐾 [𝑌 ]/(𝑌 tr

Ω𝑌 ) is Artinian, 𝐾 [𝑌 ]/𝔓 is a complete intersection ring. �

Corollary 6.4. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K, where 𝑛 � 𝑡. Set 𝑆 := 𝐾 [𝑌 ]
and 𝔓 := (𝑌 trΩ𝑌 )𝑆. Let 𝔞 be an ideal generated by k distinct entries from rows 1 and 𝑡 + 1 of the matrix
Y. Then

dim 𝑆/(𝔓 + 𝔞) = 2𝑛𝑡 −
(
𝑛

2

)
− 𝑘,

so, in particular, 𝑆/(𝔓 + 𝔞) is a complete intersection ring.

Proof. As seen in the previous proof, the generators of the ideal 𝔞 form part of a system of parameters
for the ring 𝑆/𝔓. �

The following lemma will be used to prove the irreducibility of certain algebraic sets of the form
𝑉 (𝔓 + 𝔞) in Proposition 6.6.

Lemma 6.5. Let Y be a 2𝑡 × 𝑡 matrix of indeterminates over a field K. Set 𝑆 := 𝐾 [𝑌 ] and

𝐼 := (𝑌 trΩ𝑌 )𝑆 + (𝑦12, . . . , 𝑦1𝑡 , 𝑦𝑡+1,1, . . . , 𝑦𝑡+1,𝑡 )𝑆.

Let Δ be the upper 𝑡 × 𝑡 minor of Y. Then Δ is a nonzerodivisor on 𝑆/𝐼.

Proof. It suffices to consider the case where the field K is algebraically closed. Since 𝑆/𝐼 is a complete
intersection ring by the corollary above, we need to show that Δ does not belong to any minimal prime
of the ideal I.

Let G be the subgroup of Sp2𝑡 (𝐾) consisting of matrices 𝑀 := (𝑚𝑖 𝑗 ) with

𝑚11 = 1 = 𝑚𝑡+1,𝑡+1

𝑚1𝑖 = 0 = 𝑚𝑖1 for 𝑖 ≠ 1
𝑚𝑡+1,𝑖 = 0 = 𝑚𝑖,𝑡+1 for 𝑖 ≠ 𝑡 + 1.

Deleting rows and columns 1 and 𝑡+1 shows that G is isomorphic to Sp2𝑡−2 (𝐾) and is hence a connected
algebraic group. The action of G on S via 𝑀 : 𝑌 ↦−→ 𝑀𝑌 induces an action on 𝑆/𝐼 and thus on the
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(necessarily finite) set of minimal primes of 𝑆/𝐼. Since G is connected the action must be trivial, that
is, G stabilizes each minimal prime of I.

Suppose a minimal prime P of I contains Δ . Using the fact that G stabilizes P, we shall first show
that P contains each maximal minor of Y that involves the first row. Since row 𝑡 + 1 of Y is contained in
I, hence in P, we need only consider maximal minors of Y that involve the first row and not row 𝑡 + 1.
We use 𝑀 · Δ to denote the image of Δ under an element M of G.

Let 𝛼 be a size t subset of the row indices {1, . . . , 2𝑡} such that 1 ∈ 𝛼 and 𝑡 + 1 ∉ 𝛼. We use 𝑌𝛼 for
the square submatrix with rows 𝛼, and set ℓ(𝛼) to be the number of indices 𝑎 ∈ 𝛼 such that 𝑎 � 𝑡 and
𝑎 + 𝑡 ∈ 𝛼. The proof that det(𝑌𝛼) ∈ 𝑃 is by induction on ℓ(𝛼).

For the case ℓ(𝛼) = 0, proceed by induction on the number w of 𝑎 ∈ 𝛼 with 𝑎 > 𝑡. When 𝑤 = 0, one
has det(𝑌𝛼) = Δ , which is an element of P. For the inductive step, consider the 2𝑡 × 2𝑡 matrix M with

𝑀𝑖 𝑗 :=

{
1 if 𝑖 = 𝑗 , or if 𝑗 = 𝑖 + 𝑡 ∈ 𝛼,

0 otherwise.

Observe that 𝑀 ∈ 𝐺, and that the matrix 𝑀𝑌 is obtained from Y by the row operations where row 𝑖 + 𝑡
is added to row i whenever 𝑖 � 𝑡 and 𝑖 + 𝑡 ∈ 𝛼. It follows that 𝑀 ·Δ is the determinant of the 𝑡 × 𝑡 matrix
whose i-th row is the sum of rows i and 𝑖 + 𝑡 of Y if 𝑖 � 𝑡 and 𝑖 + 𝑡 ∈ 𝛼, and is row i of Y otherwise. By the
linearity of determinants along a row, 𝑀 ·Δ is the sum of 𝑡 × 𝑡 minors of Y, each of which is indexed by
a set of rows 𝛽 with ℓ(𝛽) = 0. One of these is det(𝑌𝛼), while the others have fewer indices greater than
t. Using 𝑀 · Δ ∈ 𝑃 and the inductive hypothesis, it follows that det(𝑌𝛼) ∈ 𝑃, settling the case ℓ(𝛼) = 0.

Next, fix 𝛼 with ℓ(𝛼) > 0. Let 𝑖, 𝑗 ∈ {1, . . . , 𝑡} be such that 𝑖, 𝑖 + 𝑡 ∈ 𝛼 and 𝑗 , 𝑗 + 𝑡 ∉ 𝛼; such a j exists
by cardinality reasons. Let 𝛼′ = 𝛼 \ {𝑖, 𝑖 + 𝑡}. Observe that each of

ℓ(𝛼′ ∪ {𝑖, 𝑗}), ℓ(𝛼′ ∪ {𝑖, 𝑗 + 𝑡}), ℓ(𝛼′ ∪ {𝑖 + 𝑡, 𝑗}), ℓ(𝛼′ ∪ {𝑖 + 𝑡, 𝑗 + 𝑡})

is strictly less than ℓ(𝛼). Let M be the 2𝑡 × 2𝑡 matrix with

𝑀𝑎𝑏 :=

{
1 if 𝑎 = 𝑏, or (𝑎, 𝑏) = (𝑖, 𝑗 + 𝑡), or (𝑎, 𝑏) = ( 𝑗 , 𝑖 + 𝑡),
0 otherwise.

Note that 𝑀 ∈ 𝐺, and that the matrix 𝑀𝑌 is obtained from Y by row operations where the ( 𝑗 + 𝑡)-th row
is added to the i-th row, and the (𝑖 + 𝑡)-th row is added to the j-th row. Hence, up to choices of signs,
𝑀 · det(𝑌𝛼′∪{𝑖, 𝑗 }) is the sum of

det(𝑌𝛼′∪{𝑖, 𝑗 }), det(𝑌𝛼′∪{𝑖,𝑖+𝑡 }), det(𝑌𝛼′∪{ 𝑗 , 𝑗+𝑡 }), det(𝑌𝛼′∪{𝑖+𝑡 , 𝑗+𝑡 }).

By the inductive hypothesis, det(𝑌𝛼′∪{𝑖, 𝑗 }) and det(𝑌𝛼′∪{𝑖+𝑡 , 𝑗+𝑡 } are elements of the prime P, as is
det(𝑌𝛼′∪{𝑖, 𝑗 }) and hence 𝑀 · det(𝑌𝛼′∪{𝑖, 𝑗 }). It follows that, with a sign choice, one of

det(𝑌𝛼′∪{𝑖,𝑖+𝑡 }) ± det(𝑌𝛼′∪{ 𝑗 , 𝑗+𝑡 }) (6.5.1)

is an element of P. We claim that there exists a Plücker relation in 𝐾 [𝑌 ] of the form

det(𝑌𝛼′∪{𝑖,𝑖+𝑡 }) det(𝑌𝛼′∪{ 𝑗 , 𝑗+𝑡 }) ± det(𝑌𝛼′∪{𝑖, 𝑗 }) det(𝑌𝛼′∪{𝑖+𝑡 , 𝑗+𝑡 })
± det(𝑌𝛼′∪{𝑖, 𝑗+𝑡 }) det(𝑌𝛼′∪{𝑖+𝑡 , 𝑗 }) = 0. (6.5.2)

This may be verified, for example, by passing to a dense open subset of matrices where the rows
𝛼′ ∪ {𝑖, 𝑖 + 𝑡} form a basis for 𝐾 𝑡 , and multiplying on the right by an invertible matrix so as reduce to
the case where these rows are the standard basis for 𝐾 𝑡 . The equality is now readily checked.
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Since the other terms in (6.5.2) belong to P by the induction hypothesis, one obtains

det(𝑌𝛼′∪{𝑖,𝑖+𝑡 }) det(𝑌𝛼′∪{ 𝑗 , 𝑗+𝑡 }) ∈ 𝑃. (6.5.3)

Combining (6.5.1) and (6.5.3), bearing in mind that P is prime, it follows that

det(𝑌𝛼) = det(𝑌𝛼′∪{𝑖,𝑖+𝑡 }) ∈ 𝑃,

completing the proof that P contains each 𝑡 × 𝑡 minor of Y that involves the first row.
If P contains 𝑦11, Corollary 6.4 gives a contradiction. It follows that the prime ideal P must contain

each size 𝑡 − 1 minor of the last 𝑡 − 1 columns of Y.
Let 𝑌 ′ be the 2(𝑡 − 1) × 𝑡 submatrix obtained by deleting rows 1 and 𝑡 + 1 of Y, and Ω′ be the size

2𝑡 − 2 standard symplectic block matrix. Set 𝐼 ′ to be the ideal of 𝐾 [𝑌 ′] generated by the entries of
𝑌 ′ trΩ′𝑌 ′ along with the size 𝑡 − 1 minors of the last 𝑡 − 1 columns of 𝑌 ′. On an open dense subset of
𝑉 (𝐼 ′), the last column belongs to the span of colums 2, 3, . . . , 𝑡 − 1. Since the dimension of the Pfaffian
nullcone corresponding to a 2(𝑡 − 1) × (𝑡 − 1) matrix is

2(𝑡 − 1)2 −
(
𝑡 − 1

2

)
by Corollary 6.4, it follows that

dim𝑉 (𝐼 ′) � 2(𝑡 − 1)2 −
(
𝑡 − 1

2

)
+ (𝑡 − 2).

Accounting for the matrix entry 𝑦11, this implies

dim𝑉 (𝑃) � 2(𝑡 − 1)2 −
(
𝑡 − 1

2

)
+ (𝑡 − 2) + 1 = 2𝑡2 −

(
𝑡

2

)
− 2𝑡.

But then

dim𝑉 (𝑃) < dim𝑉 (𝐼) = 2𝑡2 −
(
𝑡

2

)
− (2𝑡 − 1),

where the equality uses, again, Corollary 6.4. This is not possible since P is a minimal prime of I. �

The following proposition serves as a building block in the proof of Theorem 6.7; the primality of
𝐼𝑎 or 𝐼 ′𝑎 does not follow immediately from the proof here, in view of the initial reduction step, though
it will be obtained later as part of Theorem 6.7.

Proposition 6.6. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over an algebraically closed field K, where
𝑛 � 𝑡. Set 𝑆 := 𝐾 [𝑌 ] and 𝔓 := (𝑌 trΩ𝑌 )𝑆. For a with 0 � 𝑎 � 𝑛 − 1, set

𝐼𝑎 := 𝔓 + (𝑦11, . . . , 𝑦1𝑎) and 𝐼 ′𝑎 := 𝔓 + (𝑦11, . . . , 𝑦1𝑛, 𝑦𝑡+1,1, . . . , 𝑦𝑡+1,𝑎).

Then the algebraic sets 𝑉 (𝐼𝑎) and 𝑉 (𝐼 ′𝑎) are irreducible.

Proof. Since the projection map onto the first n columns provides a surjection of algebraic sets, it
suffices to prove each result in the case 𝑛 = 𝑡. Let Δ be the upper 𝑡 × 𝑡 minor of Y.

We first consider 𝐼𝑎. In this case, Corollary 6.4 and Lemma 6.5—after permuting columns—show
that Δ is a nonzerodivisor modulo 𝐼𝑎. Write Y as(

𝑌1
𝑌2

)
,
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where 𝑌1 and 𝑌2 are size 𝑡 × 𝑡. Since 𝑌1 is invertible over the ring 𝑆Δ , one has 𝑆Δ = 𝐾 [𝑌1, 𝑍]Δ , where
the entries of 𝑌1 and 𝑍 := 𝑌2𝑌

−1
1 are algebraically independent over K. Note that

𝑌𝑌−1
1 =

(
1
𝑍

)
,

so the ideal (𝑌 trΩ𝑌 )𝑆Δ is generated by the entries of

(𝑌𝑌−1
1 )

trΩ(𝑌𝑌−1
1 ) =

(
1 𝑍 tr) ( 0 1

−1 0

) (
1
𝑍

)
= 𝑍 − 𝑍 tr.

It follows that

𝐼𝑎𝑆Δ = (𝑍 − 𝑍 tr)𝑆Δ + (𝑦11, . . . , 𝑦1𝑎)𝑆Δ .

Since 𝐼𝑎𝑆Δ is generated by linear forms belonging to the polynomial ring 𝐾 [𝑌1, 𝑍], it is a prime ideal
of 𝑆Δ ; as Δ is a nonzerodivisor modulo 𝐼𝑎, there is a bijection between the minimal primes of 𝐼𝑎 and
those of 𝐼𝑎𝑆Δ . It follows that 𝐼𝑎 has a unique minimal prime, so 𝑉 (𝐼𝑎) is irreducible.

In the case of 𝐼 ′𝑎, working again with 𝑛 = 𝑡, the ring 𝑆/𝐼 ′𝑎 is a polynomial extension of

𝐾 [𝑌 ′]/(𝑌 ′ trΩ′𝑌 ′),

where 𝑌 ′ is the (2𝑡 − 2) × 𝑡 matrix of indeterminates obtained by deleting rows 1 and 𝑡 + 1 of Y, and
𝑆′ := 𝐾 [𝑌 ′], and Ω′ is the size 2𝑡 − 2 standard symplectic block matrix. It suffices to prove that the ring
𝑆′/(𝑌 ′ trΩ′𝑌 ′) has a unique minimal prime. Let Δ ′ be the upper left size 𝑡 − 1 minor of 𝑌 ′. Lemma 6.5
implies that Δ ′ is a nonzerodivisor on 𝑆′/(𝑌 ′ trΩ′𝑌 ′). Writing the matrix 𝑌 ′ as

𝑌 ′ =

(
𝑌1 𝑊1
𝑌2 𝑊2

)
,

where 𝑌1 and 𝑌2 are square matrices of size 𝑡 − 1, one has(
𝑌1 𝑊1
𝑌2 𝑊2

) (
𝑌−1

1 −𝑌−1
1 𝑊1

0 1

)
=

(
1 0

𝑌2𝑌
−1
1 𝑊2 − 𝑌2𝑌

−1
1 𝑊1

)
.

The entries of 𝑌1, 𝑊1, 𝑍1 := 𝑌2𝑌
−1
1 and 𝑍2 := 𝑊2 − 𝑌2𝑌

−1
1 𝑊1 are algebraically independent over K, and

𝑆′Δ′ may be viewed as 𝐾 [𝑌1, 𝑊1, 𝑍1, 𝑍2]Δ′ . Since(
1 𝑍 tr

1
0 𝑍 tr

2

) (
0 1
−1 0

) (
1 0
𝑍1 𝑍2

)
=

(
𝑍1 − 𝑍 tr

1 𝑍2
−𝑍 tr

2 0

)
,

it follows that

𝑆′Δ′/(𝑌
′ trΩ′𝑌 ′)Δ′ = 𝐾 [𝑌1, 𝑊1, 𝑍1, 𝑍2]Δ′/(𝑍1 − 𝑍 tr

1 , 𝑍2),

and is hence a domain. In particular, it has a unique minimal prime. �

6.4. Nullcones of Pfaffian rings are Cohen–Macaulay

We now set up the principal radical system needed to study the nullcones of Pfaffian rings. Let Y be a
2𝑡 × 𝑛 matrix of indeterminates over a field K, and set 𝔓 to be the ideal generated by the entries of the
matrix 𝑌 trΩ𝑌 . Let

𝜎 := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚)
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be a sequence of integers with 0 � 𝑠𝑘 � 𝑛 for each k, and 𝑠𝑚 = 𝑛. Set

𝐼𝜎 := 𝔓 + 𝐼1
(
𝑌 |𝑠0

)
+ 𝐼2

(
𝑌 |𝑠1

)
+ 𝐼3

(
𝑌 |𝑠2

)
+ · · · + 𝐼𝑚+1

(
𝑌 |𝑠𝑚

)
,

where 𝐼𝑘+1
(
𝑌 |𝑠𝑘

)
denotes the ideal generated by the size 𝑘 + 1 minors of the submatrix consisting of the

first 𝑠𝑘 columns of Y.
In studying 𝐾 [𝑌 ]/𝐼𝜎 , there is little loss of generality in assuming 𝑠0 = 0 since one may replace Y by

a smaller matrix. In light of Lemma 6.2, one may also stipulate 𝑚 � 𝑡. Note that for positive integers j
and k, one has

𝐼𝑘+1
(
𝑌 | 𝑗+1

)
⊆ 𝐼𝑘

(
𝑌 | 𝑗

)
,

so one may restrict to 𝜎 where the entries are strictly increasing. We say 𝜎 is standard if

0 = 𝑠0 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑚 = 𝑛 and 𝑚 � 𝑡.

The ideal 𝔓 indeed equals 𝐼𝜎 for a choice of 𝜎 that is standard: Take

𝜎 =

{
(0, 1, 2, . . . , 𝑛 − 1, 𝑛) if 𝑛 � 𝑡,

(0, 1, 2, . . . , 𝑡 − 1, 𝑛) if 𝑛 > 𝑡.

For integers a with 0 � 𝑎 � 𝑛, set

𝐽𝑎 := (𝑦11, 𝑦12, . . . , 𝑦1𝑎) and 𝐽 ′𝑎 := (𝑦11, 𝑦12, . . . , 𝑦1𝑛, 𝑦𝑡+1,1, 𝑦𝑡+1,2, . . . , 𝑦𝑡+1,𝑎).

Note that if 𝜎 := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚) is standard, 𝑚 = 𝑡 and 𝑠𝑚−1 < 𝑎 < 𝑠𝑚, then

𝐼𝜎 + 𝐽
′
𝑎 = 𝐼𝜎′ + 𝐽

′
𝑎 for 𝜎′ := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚−2, 𝑎, 𝑠𝑚)

since rows 1 and 𝑡 + 1 of 𝑌 |𝑎 are zero modulo 𝐽 ′𝑎, so Lemma 6.2 gives

𝐼𝑡 (𝑌 |𝑎) ⊆ (𝑌
trΩ𝑌 ) + 𝐽 ′𝑎 .

With this notation, we prove:
Theorem 6.7. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K, and set 𝑆 := 𝐾 [𝑌 ]. Let
𝜎 := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚) be a sequence of integers with 0 � 𝑠𝑘 � 𝑛 for each k, and 𝑠𝑚 = 𝑛. Let a be an
integer with 0 � 𝑎 � 𝑛. Then:
(1) If 𝜎 is standard, then the algebraic sets𝑉 (𝐼𝜎 + 𝐽𝑠𝑘 ) and 𝑉 (𝐼𝜎 + 𝐽 ′𝑠𝑘 ) are irreducible for each k with

0 � 𝑘 � 𝑚.
(2) The ideals 𝐼𝜎 + 𝐽𝑎 and 𝐼𝜎 + 𝐽

′
𝑎 are radical. If 𝜎 is standard, then the ideals 𝐼𝜎 + 𝐽𝑠𝑘 and 𝐼𝜎 + 𝐽

′
𝑠𝑘

are prime for each k with 0 � 𝑘 � 𝑚.
(3) Suppose 𝜎 is standard. If 𝑎 = 𝑠𝑘 for some k with 0 � 𝑘 � 𝑚, then 𝑆/(𝐼𝜎 +𝐽𝑎) is a Cohen–Macaulay

integral domain of dimension

𝑚(2𝑡 + 𝑛 − 𝑚) − 𝑘 −
𝑚−1∑
𝑗=1

𝑠 𝑗 .

If 𝑎 = 𝑠𝑘 for some k with 0 � 𝑘 � 𝑚 − 1, then 𝑆/(𝐼𝜎 + 𝐽
′
𝑎) is a Cohen–Macaulay integral domain

of dimension

𝑚(2𝑡 + 𝑛 − 𝑚 − 1) − 𝑘 −
𝑚−1∑
𝑗=1

𝑠 𝑗 .
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Proof. It suffices to prove the assertions when K is algebraically closed; we indeed work under this
assumption. We begin by proving (1) for the algebraic set 𝑉 (𝐼𝜎 + 𝐽𝑠𝑘 ). Consider matrices B of size
2𝑡 ×𝑚 for which the columns span an isotropic subspace, and the first k entries of the first row are zero.
Since 𝑚 � 𝑡, Proposition 6.6 implies that the matrices B are the points of an irreducible algebraic set
that we denote V0.

For 1 � 𝑗 � 𝑚, let 𝐶 𝑗 be a matrix of size 𝑗 × (𝑠 𝑗 − 𝑠 𝑗−1), and set A to be the matrix

(𝐵 |1𝐶1) # (𝐵 |2𝐶2) # · · · # (𝐵 |𝑚𝐶𝑚), (6.7.1)

where # denotes the concatenation of matrices. It is readily seen that A is an element of the algebraic set
𝑉 (𝐼𝜎 + 𝐽𝑠𝑘 ). The matrices 𝐶1, . . . , 𝐶𝑚 may be regarded as the points of an affine space V1 of dimension

𝑚∑
𝑗=1

𝑗 (𝑠 𝑗 − 𝑠 𝑗−1),

so that the construction (6.7.1) gives a map

V0 × V1 −→ 𝑉 (𝐼𝜎 + 𝐽𝑠𝑘 ).

Since the image of an irreducible algebraic set is irreducible, it suffices to verify that this map is
surjective.

Let A be a matrix in the algebraic set 𝑉 (𝐼𝜎 + 𝐽𝑠𝑘 ). For 1 � 𝑗 � 𝑚, let 𝑉 𝑗 denote the span of
the columns of the truncated matrix 𝐴|𝑠 𝑗 . Consider the symplectic form (6.0.1) on 𝐾2𝑡 and the linear
functional L that is projection to the first coordinate. By Lemma 6.1, there exist isotropic subspaces

𝑊1 ⊂ 𝑊2 ⊂ · · · ⊂ 𝑊𝑚

such that 𝑉 𝑗 ⊆ 𝑊 𝑗 for each j, and 𝑊 𝑗 has rank j. Consider a size 2𝑡 ×𝑚 matrix B such that 𝐵 | 𝑗 spans 𝑊 𝑗

for each j. Then the columns of 𝐴|𝑠 𝑗 belong to the column span of 𝐵 | 𝑗 for each j, so there exist matrices
𝐶 𝑗 using which A may be obtained as in (6.7.1).

The proof that 𝑉 (𝐼𝜎 + 𝐽 ′𝑠𝑘 ) is irreducible is similar: We consider instead matrices B of size 2𝑡 × 𝑚,
where the columns span an isotropic subspace, and for which the first row is zero, and the first k entries of
row 𝑡 + 1 are zero. Proposition 6.6 implies that such matrices B are the points of an irreducible algebraic
set. The linear functional used when applying Lemma 6.1 is now projection to the 𝑡 + 1 coordinate.

The proof of (2) is via induction, assuming the result for matrices Y of smaller size, as well as for
larger ideals in the family, and applying Lemma 5.1. Set I to be either 𝐼𝜎 + 𝐽𝑎 or 𝐼𝜎 + 𝐽 ′𝑎. In the latter
case, assume that 𝑎 < 𝑛 since otherwise 𝐾 [𝑌 ]/(𝐼𝜎 + 𝐽

′
𝑎) arises from the smaller matrix obtained by

deleting rows 1 and 𝑡 + 1 of Y. To apply Lemma 5.1, choose

𝑥 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦1,𝑎+1 if 𝐼 = 𝐼𝜎 + 𝐽𝑎, and 𝑎 < 𝑛,

𝑦𝑡+1,1 if 𝐼 = 𝐼𝜎 + 𝐽𝑛,

𝑦𝑡+1,𝑎+1 if 𝐼 = 𝐼𝜎 + 𝐽
′
𝑎 .

Specializing x to 1 and each other entry to 0, we obtain a matrix in 𝑉 (𝐼) \ 𝑉 (𝐼 + 𝑥𝑆), from which it
follows that 𝐼 + 𝑥𝑆 is a larger ideal in the family, and hence radical by the inductive hypothesis. If 𝑎 = 𝑠𝑘
for some k, then 𝑃 := rad 𝐼 is prime by (1); since 𝑥 ∉ 𝑃, Lemma 5.1 implies that 𝐼 = 𝑃, so I is prime.

In the remaining cases, there exists an integer k with 𝑠𝑘 < 𝑎 < 𝑠𝑘+1 and the element x is either 𝑦1,𝑎+1
or 𝑦𝑡+1,𝑎+1. Set

𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑘−1, 𝑎, 𝑠𝑘+1, . . . , 𝑠𝑚),
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and take P to be the prime ideal 𝐼𝜎′ + 𝐽𝑎 or 𝐼𝜎′ + 𝐽 ′𝑎 in the respective cases; if 𝑘 = 0, then

𝜎′ = (𝑎, 𝑠1, . . . , 𝑠𝑚)

is not standard, but the primality follows nonetheless from the case of a matrix of size 2𝑡 × (𝑛 − 𝑎). The
specialization used earlier shows that 𝑥 ∉ 𝑃. Using Lemma 5.3, one has

𝑦1,𝑎+1𝐼𝑘+1(𝑌 |𝑎) ⊆ 𝐼𝑘+2(𝑌 |𝑎+1) + 𝐽𝑎 ⊆ 𝐼𝑘+2(𝑌 |𝑠𝑘+1 ) + 𝐽𝑎 ⊆ 𝐼𝜎 + 𝐽𝑎

and

𝑦𝑡+1,𝑎+1𝐼𝑘+1(𝑌 |𝑎) ⊆ 𝐼𝑘+2(𝑌 |𝑎+1) + 𝐽
′
𝑎 ⊆ 𝐼𝑘+2(𝑌 |𝑠𝑘+1 ) + 𝐽

′
𝑎 ⊆ 𝐼𝜎 + 𝐽

′
𝑎,

so 𝑥𝑃 ⊆ 𝐼 in either case. It follows that I is radical by Lemma 5.1.
For (3), let V denote the algebraic set 𝑉 (𝐼𝜎 + 𝐽𝑎) or 𝑉 (𝐼𝜎 + 𝐽 ′𝑎). We first compute the dimension

of V. In each case, V has an open subset U in which each matrix has the property that the submatrix
consisting of the columns indexed

𝑠0 + 1, 𝑠1 + 1, . . . , 𝑠𝑚−1 + 1 (6.7.2)

has rank exactly m. Note that 𝑚 � 𝑡 and that 𝑚 � 𝑛. This open set U is nonempty, hence dense, for it
contains the matrix in which the columns indexed (6.7.2) are, respectively, the standard basis vectors

𝑒𝑡+2, 𝑒𝑡+3, . . . , 𝑒𝑡+𝑚, 𝑒𝑡+1,

and all other columns are zero. The order of the standard basis vectors above accounts for the possibility
that V may be𝑉 (𝐼𝜎 + 𝐽 ′𝑛−1), though it cannot be𝑉 (𝐼𝜎 + 𝐽 ′𝑛), given our hypotheses. It suffices to compute
the dimension of U.

Given a matrix A in the open set U, let B denote the 2𝑡 × 𝑚 submatrix consisting of the columns
indexed (6.7.2). For each j with 1 � 𝑗 � 𝑚, the submatrix 𝐷 𝑗 of A consisting of the columns indexed
𝑠 𝑗−1 + 1, . . . , 𝑠 𝑗 can be uniquely written as a linear combination of the columns of 𝐵 | 𝑗 . The coefficients
needed comprise the columns of a size 𝑗 × (𝑠 𝑗 − 𝑠 𝑗−1) matrix that we denote𝐶 𝑗 . The first column of𝐶 𝑗 is

(0, 0, . . . , 0, 1)tr

while the other 𝑗 (𝑠 𝑗 − 𝑠 𝑗−1 − 1) entries are arbitrary scalars. In the case 𝑉 (𝐼𝜎 + 𝐽𝑎), the matrices B vary
in a space of dimension

2𝑚𝑡 −

(
𝑚

2

)
− 𝑘

by Corollary 6.4, and it follows that U has dimension

2𝑚𝑡 −

(
𝑚

2

)
− 𝑘 + 1(𝑠1 − 𝑠0 − 1) + 2(𝑠2 − 𝑠1 − 1) + · · · + 𝑚(𝑠𝑚 − 𝑠𝑚−1 − 1)

= 𝑚(2𝑡 + 𝑛 − 𝑚) − 𝑘 −
𝑚−1∑
𝑗=1

𝑠 𝑗 .
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The dimension count for 𝑉 (𝐼𝜎 + 𝐽 ′𝑎) is similar, bearing in mind that in this case the matrices B vary in
a space of dimension

2𝑚𝑡 −

(
𝑚

2

)
− 𝑚 − 𝑘.

The proof of the Cohen–Macaulay property is again via induction, assuming the result for matrices
Y of smaller size, as well as for larger ideals in the family. Consider a prime of the form 𝐼𝜎 + 𝐽𝑠𝑘 , where
𝑘 � 𝑚 − 1. Since 𝑦1,𝑠𝑘+1 is a nonzerodivisor on 𝑆/(𝐼𝜎 + 𝐽𝑠𝑘 ), it suffices to prove that

𝑆/(𝐼𝜎 + 𝐽𝑠𝑘 + 𝑦1,𝑠𝑘+1𝑆) = 𝑆/(𝐼𝜎 + 𝐽𝑠𝑘+1)

is Cohen–Macaulay. If 𝑠𝑘 + 1 = 𝑠𝑘+1, then this is immediate from the inductive hypothesis. Else,
𝑠𝑘 + 1 < 𝑠𝑘+1, and we claim that 𝐼𝜎 + 𝐽𝑠𝑘+1 has minimal primes

𝑄1 := 𝐼𝜎 + 𝐽𝑠𝑘+1 and 𝑄2 := 𝐼𝜎′ + 𝐽𝑠𝑘+1,

where

𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑘−1, 𝑠𝑘 + 1, 𝑠𝑘+1, . . . , 𝑠𝑚);

if 𝑘 = 0, then 𝜎′ = (1, 𝑠1, . . . , 𝑠𝑚) is not standard, but 𝑄2 is prime by the case of a matrix of size
2𝑡 × (𝑛 − 1), and the dimension of 𝑆/𝑄2 is readily computed. Since 𝐼𝜎 + 𝐽𝑠𝑘+1 is radical and contained
in each 𝑄𝑖 , it suffices to verify that

𝑄1𝑄2 ⊆ 𝐼𝜎 + 𝐽𝑠𝑘+1.

This is straightforward since

𝑦1𝑏 𝐼𝑘+1(𝑌 |𝑠𝑘+1) ⊆ 𝐼𝑘+2(𝑌 |𝑠𝑘+1 ) + 𝐽𝑠𝑘+1 ⊆ 𝐼𝜎 + 𝐽𝑠𝑘+1

for each b with 𝑏 � 𝑠𝑘+1 by Lemma 5.3. By the inductive hypothesis, each 𝑄𝑖 is prime, defining a
Cohen–Macaulay ring 𝑆/𝑄𝑖 . Moreover,

𝑄1 +𝑄2 = 𝐼𝜎′ + 𝐽𝑠𝑘+1

is prime, and Lemma 5.2 applies since

dim 𝑆/𝑄1 = dim 𝑆/𝑄2 = 𝑚(2𝑡 + 𝑛 − 𝑚) − 𝑘 − 1 −
𝑚−1∑
𝑗=1

𝑠 𝑗 = dim 𝑆/(𝑄1 +𝑄2) + 1.

This concludes the argument that

𝑆/(𝐼𝜎 + 𝐽𝑠𝑘+1) = 𝑆/(𝑄1 ∩𝑄2)

is Cohen–Macaulay. The proof for a prime ideal of the form 𝐼𝜎 + 𝐽
′
𝑠𝑘 , with 𝑘 � 𝑚 − 1, is similar.

The remaining case is a prime of the form 𝐼𝜎 + 𝐽𝑛, where it suffices to prove that

𝑆/(𝐼𝜎 + 𝐽𝑛 + 𝑦𝑡+1,1𝑆) = 𝑆/(𝐼𝜎 + 𝐽
′
1)

is Cohen–Macaulay. This follows from the inductive hypothesis if 𝑠1 = 1. If 𝑠1 > 1, we claim that
𝐼𝜎 + 𝐽

′
1 has minimal primes

𝑄1 := 𝐼𝜎 + 𝐽
′
𝑠1 and 𝑄2 := 𝐼𝜎 + 𝐽𝑛 + (𝑦21, 𝑦31, . . . , 𝑦2𝑡 ,1)𝑆.
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For this, it suffices to verify that 𝑄1𝑄2 ⊆ 𝐼𝜎 + 𝐽
′
1, which follows using 𝐼2(𝑌 |𝑠1 ) ⊆ 𝐼𝜎 . Note that 𝑆/𝑄2

and 𝑆/(𝑄1 + 𝑄2) are Cohen–Macaulay using the case of a smaller matrix, namely the matrix with the
first column of Y deleted. Since

dim 𝑆/𝑄1 = dim 𝑆/𝑄2 = 𝑚(2𝑡 + 𝑛 − 𝑚 − 1) − 1 −
𝑚−1∑
𝑗=1

𝑠 𝑗 = dim 𝑆/(𝑄1 +𝑄2) + 1,

Lemma 5.2 allows us to conclude that

𝑆/(𝐼𝜎 + 𝐽
′
1) = 𝑆/(𝑄1 ∩𝑄2)

is Cohen–Macaulay. �

We single out the main case of the previous theorem.

Theorem 6.8. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K, where t and n are positive
integers. Set 𝑆 := 𝐾 [𝑌 ] and 𝔓 := (𝑌 trΩ𝑌 )𝑆, that is, 𝔓 is the ideal generated by the entries of the matrix
𝑌 trΩ𝑌 . Then 𝑆/𝔓 is a Cohen–Macaulay integral domain, and

dim 𝑆/𝔓 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑛𝑡 −

(
𝑛

2

)
if 𝑛 � 𝑡 + 1,

𝑛𝑡 +

(
𝑡 + 1

2

)
if 𝑛 � 𝑡.

Proof. The formulae for the dimension coincide when n equals t or 𝑡 + 1.
If 𝑛 � 𝑡, take 𝜎 = (0, 1, 2, . . . , 𝑛 − 1, 𝑛) in Theorem 6.7.3, to obtain

dim 𝑆/𝔓 = 𝑛(2𝑡 + 𝑛 − 𝑛) − (1 + 2 + · · · + (𝑛 − 1)) = 2𝑛𝑡 −
(
𝑛

2

)
,

while if 𝑛 > 𝑡, take 𝜎 = (0, 1, 2, . . . , 𝑡 − 1, 𝑛), in which case the theorem gives

dim 𝑆/𝔓 = 𝑡 (2𝑡 + 𝑛 − 𝑡) − (1 + 2 + · · · + 𝑡 − 1) = 𝑛𝑡 +

(
𝑡 + 1

2

)
,

completing the proof. �

6.5. The purity of the embedding

Using this, we settle the Sp2𝑡 (𝐾) case of Theorem 1.1.

Theorem 6.9. Let K be a field of positive characteristic. Fix positive integers n and t, and consider the
inclusion 𝜑 : 𝐾 [𝑌 trΩ𝑌 ] −→ 𝐾 [𝑌 ], where Y is a size 2𝑡 × 𝑛 matrix of indeterminates. Then 𝜑 is pure if
and only if 𝑛 � 𝑡 + 1.

Proof. We claim that if the inclusion 𝜑 : 𝐾 [𝑌 trΩ𝑌 ] −→ 𝐾 [𝑌 ] is pure for fixed (𝑛, 𝑡), then purity holds
as well for the inclusion of the K-algebras corresponding to (𝑛′, 𝑡) with 𝑛′ � 𝑛.

Set 𝑌 ′ := 𝑌 |𝑛′ , that is, 𝑌 ′ is the submatrix consisting of the first 𝑛′ columns of Y. Consider the
N-grading on 𝐾 [𝑌 ], where the indeterminates from 𝑌 ′ have degree 0, as does K, while the remaining
indeterminates have degree 1. Then

𝐾 [𝑌 trΩ𝑌 ]0 = 𝐾 [𝑌 ′ trΩ𝑌 ′],
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so 𝐾 [𝑌 ′ trΩ𝑌 ′] is a pure subring of 𝐾 [𝑌 ]. It follows that the composition

𝐾 [𝑌 ′ trΩ𝑌 ′] ⊆ 𝐾 [𝑌 trΩ𝑌 ] ⊆ 𝐾 [𝑌 ]

is pure as well, but then so is 𝐾 [𝑌 ′ trΩ𝑌 ′] ⊆ 𝐾 [𝑌 ′].
Set 𝑆 := 𝐾 [𝑌 ] and 𝑅 := 𝐾 [𝑌 trΩ𝑌 ]. We next prove that 𝜑 is pure in the case 𝑛 = 𝑡 +1. In this case, the

ring R is regular, with the upper triangular entries of 𝑌 trΩ𝑌 forming a regular homogeneous system of
parameters for R. As dim 𝑅 =

(𝑛
2
)
, it suffices by Theorem 2.1 to verify that the local cohomology module

𝐻
(𝑛2)
𝔪𝑅
(𝑆)

is nonzero, where 𝔪𝑅 is the homogeneous maximal ideal of R. This is immediate from Theorem 6.8,
which implies that 𝔪𝑅𝑆 is an ideal of height

(𝑛
2
)
.

It remains to prove that 𝜑 : 𝑅 −→ 𝑆 is not pure if 𝑛 � 𝑡 +2. By the reduction step, this comes down to
the case 𝑛 = 𝑡 +2. In this case, the ring 𝑅 = 𝐾 [𝑌 trΩ𝑌 ] is again regular, of dimension

(𝑛
2
)
, so by Theorem

2.1 it suffices to verify the vanishing of 𝐻 (
𝑛
2)

𝔪𝑅
(𝑆). This follows from Theorem 6.8, which implies that

𝔪𝑅𝑆 is an ideal of height (
𝑛

2

)
− 1,

defining a Cohen–Macaulay ring 𝑆/𝔪𝑅𝑆. �

7. Symmetric determinantal rings

Let X be an 𝑛 × 𝑛 symmetric matrix of indeterminates over a field K. For d a positive integer, the ring
𝐾 [𝑋]/𝐼𝑑+1 (𝑋) is a Cohen–Macaulay normal domain of dimension(

𝑛 + 1
2

)
−

(
𝑛 + 1 − 𝑑

2

)
,

with the convention that
( 𝑖
𝑗

)
= 0 if 𝑖 < 𝑗 . The Cohen–Macaulay property is due to Kutz [Ku]. The ring

𝐾 [𝑋]/𝐼𝑑+1 (𝑋) is regular precisely if 𝑛 � 𝑑. When that is not the case, it has class group Z/2, and is
Gorenstein precisely if 𝑛 ≡ 𝑑 + 1 mod 2, [Go1, Go2].

Let Y be a 𝑑 × 𝑛 matrix of indeterminates over a field K, and set 𝑆 := 𝐾 [𝑌 ]. For X as above, the
entrywise map of matrices

𝑋 −→ 𝑌 tr𝑌

induces a K-algebra isomorphism between 𝐾 [𝑋]/𝐼𝑑+1(𝑋) and the subring 𝑅 := 𝐾 [𝑌 tr𝑌 ] of S. Our goal
in this section is to determine when the inclusion 𝜑 : 𝑅 −→ 𝑆 is pure. The orthogonal group O𝑑 (𝐾)
acts K-linearly on S via

𝑀 : 𝑌 ↦−→ 𝑀𝑌 for 𝑀 ∈ O𝑑 (𝐾).

Since 𝑀 tr𝑀 equals the identity matrix for 𝑀 ∈ O𝑑 (𝐾), the entries of𝑌 tr𝑌 are fixed by the group action.
When the field K is infinite, of characteristic other than two, the invariant ring is precisely the subring
R, see [DP, §5]. When K is an infinite field of characteristic two, the invariant ring is

𝐾 [𝑌 tr𝑌,
𝑑∑
𝑖=1

𝑦𝑖 𝑗 | 1 � 𝑗 � 𝑛],
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as proved by Richman [Ri, §5]. This corrects an error in [DP, pp. 353–354]. A presentation for the
invariant ring in this case is provided by [Ri, Proposition 23].

If K has characteristic zero, then O𝑑 (𝐾) is linearly reductive, and it follows that the invariant ring R is
a direct summand of S as an R-module; specifically, 𝜑 : 𝑅 −→ 𝑆 is pure when K has characteristic zero.

7.1. The complete intersection property

We work out the analogue of Theorem 6.3 in the symmetric case. The ideal (𝑌 tr𝑌 ) has(
𝑛 + 1

2

)
minimal generators, coming from the distinct entries of the symmetric matrix 𝑌 tr𝑌 . We next prove that
in the case 𝑛 � (𝑑 + 1)/2, these generators form a regular sequence, in other words, that 𝐾 [𝑌 ]/(𝑌 tr𝑌 )
is a complete intersection ring. More generally:

Theorem 7.1. Let Y be a 𝑑×𝑛 matrix of indeterminates over a field K, where d and n are positive integers
with 𝑛 � (𝑑 + 1)/2. For 𝑘 < 𝑛, let 𝔞 be an ideal generated by k distinct entries from the first row. Then

dim𝐾 [𝑌 ]/((𝑌 tr𝑌 ) + 𝔞) = 𝑑𝑛 −

(
𝑛 + 1

2

)
− 𝑘,

so, in particular, 𝐾 [𝑌 ]/((𝑌 tr𝑌 ) + 𝔞) is a complete intersection ring.

Proof. It suffices to prove the assertion after specializing the entries of the last 𝑑 − 2𝑛 + 1 rows to zero.
We may hence assume that 𝑛 = (𝑑 + 1)/2, that is, Y is size (2𝑛 − 1) × 𝑛.

First, suppose 𝑘 = 0. Specialize the entries of Y to the corresponding entries of the matrix

𝑌 :=

�������������������������

𝑦11 0 0 0 · · · 0 0 0
𝑦21 𝑦21 0 0 · · · 0 0 0
𝑦31 𝑦32 𝑦31 0 · · · 0 0 0
𝑦41 𝑦42 𝑦42 𝑦41 0 0 0
...

...
...

...
...

𝑦𝑛−1,1 𝑦𝑛−1,2 𝑦𝑛−1,3 𝑦𝑛−1,4 · · · 𝑦𝑛−1,2 𝑦𝑛−1,1 0
𝑦𝑛1 𝑦𝑛2 𝑦𝑛3 𝑦𝑛4 · · · 𝑦𝑛3 𝑦𝑛2 𝑦𝑛1
0 𝑦𝑛+1,2 𝑦𝑛+1,3 𝑦𝑛+1,4 · · · 𝑦𝑛+1,4 𝑦𝑛+1,3 𝑦𝑛+1,2
0 0 𝑦𝑛+2,3 𝑦𝑛+2,4 · · · 𝑦𝑛+2,5 𝑦𝑛+2,4 𝑦𝑛+2,3
...

...
...

...
...

0 0 0 0 𝑦2𝑛−3,𝑛−2 𝑦2𝑛−3,𝑛−1 𝑦2𝑛−3,𝑛−2
0 0 0 0 · · · 0 𝑦2𝑛−2,𝑛−1 𝑦2𝑛−2,𝑛−1
0 0 0 0 · · · 0 0 𝑦2𝑛−1,𝑛

�������������������������

.

A routine—albeit tedious—count shows that this specialization entails killing

3𝑛(𝑛 − 1)/2

linear forms in 𝐾 [𝑌 ]. The ideal (𝑌 tr𝑌 ) has
(𝑛+1

2
)

minimal generators; since

dim𝐾 [𝑌 ] = (2𝑛 − 1)𝑛 =

(
𝑛 + 1

2

)
+

3
2
𝑛(𝑛 − 1),
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it suffices to verify that

𝐾 [𝑌 ]/(𝑌
tr
𝑌 )

has dimension zero. The (1, 𝑛) entry of the matrix 𝑌
tr
𝑌 is 𝑦2

𝑛1. Modulo 𝑦𝑛1, the (2, 𝑛) entry is 𝑦2
𝑛+1,2.

Proceeding in this order, examining the last column of 𝑌 tr
𝑌 , we see that

𝑦𝑛1, 𝑦𝑛+1,2, 𝑦𝑛+2,3, . . . , 𝑦2𝑛−2,𝑛−1, 𝑦2𝑛−1,𝑛

are nilpotent in 𝐾 [𝑌 ]/(𝑌
tr
𝑌 ). Modulo these elements, the last column and the last two rows of 𝑌 are

zero; proceed inductively.
Since the displayed specialization𝑌 entails killing 𝑛−1 entries from the first row, the case 0 < 𝑘 < 𝑛

follows as well. �

7.2. Nullcones of symmetric determinantal rings in characteristic two

Let Y be a matrix of indeterminates of size 𝑑 × 𝑛, over a field K of characteristic two. The diagonal
entries of the product matrix 𝑌 tr𝑌 are

𝑦2
11 + · · · + 𝑦

2
𝑑1, . . . , 𝑦

2
1𝑛 + · · · + 𝑦

2
𝑑𝑛 .

Working in the ring 𝑆 := 𝐾 [𝑌 ], the ideal

𝔖 := (𝑌 tr𝑌 )𝑆 + (𝑦11 + · · · + 𝑦𝑑1, . . . , 𝑦1𝑛 + · · · + 𝑦𝑑𝑛)𝑆

agrees with (𝑌 tr𝑌 )𝑆 up to radical. We prove next that 𝔖 is a prime ideal, defining a Cohen–Macaulay
ring.

Theorem 7.2. Let Y be a 𝑑×𝑛matrix of indeterminates over a field K of characteristic two. Set 𝑆 := 𝐾 [𝑌 ]
and let 𝔖 be as above. Write d as 2𝑡 + 1 or 2𝑡 + 2, where t is a nonnegative integer. Then 𝑆/𝔖 is a
Cohen–Macaulay integral domain, and

dim 𝑆/𝔖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛𝑑 −

(
𝑛 + 1

2

)
if 𝑛 � 𝑡 + 1,

𝑛𝑡 +

(
𝑡 + 1

2

)
if 𝑑 = 2𝑡 + 1 and 𝑛 � 𝑡,

𝑛(𝑡 + 1) +
(
𝑡 + 1

2

)
if 𝑑 = 2𝑡 + 2 and 𝑛 � 𝑡.

Proof. Let 𝑌 denote the upper (𝑑 − 1) × 𝑛 submatrix of Y. In the ring 𝑆/𝔖, one has

𝑦𝑑𝑖 = 𝑦1𝑖 + · · · + 𝑦𝑑−1,𝑖

for each i, so 𝑆/𝔖 is a homomorphic image of 𝐾 [𝑌 ]. Making the substitutions using the equation
displayed above, one sees that

𝑆/𝔖 � 𝐾 [𝑌 ]/(𝑌 trΨ𝑌 ),
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where Ψ is the (𝑑 − 1) × (𝑑 − 1) alternating matrix

Ψ =

��������

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 1
...
...

. . .

1 1 1 0

��������
.

It is readily checked that Ψ is invertible if 𝑑 − 1 is even and that it has rank 𝑑 − 2 otherwise. Since
alternating matrices of the same size are cogredient as in (6.0.2) precisely if they have the same rank, if
𝑑 − 1 is even, then Ψ is cogredient to the standard symplectic block matrix Ω, whereas, if 𝑑 − 1 is odd,
then Ψ is cogredient to (

Ω 0
0 0

)
,

where Ω is size 𝑑 − 2. This largely reduces the proof to an application of Theorem 6.8:
If 𝑑 = 2𝑡+1, the ring 𝑆/𝔖 is isomorphic to𝐾 [𝑍]/(𝑍 trΩ𝑍), where Z is a 2𝑡×𝑛matrix of indeterminates.

It follows that 𝑆/𝔖 is a Cohen–Macaulay integral domain, with

dim 𝑆/𝔖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑛𝑡 −

(
𝑛

2

)
= 𝑛𝑑 −

(
𝑛 + 1

2

)
if 𝑛 � 𝑡 + 1,

𝑛𝑡 +

(
𝑡 + 1

2

)
if 𝑛 � 𝑡.

If 𝑑 = 2𝑡 + 2, then 𝑆/𝔖 is isomorphic to a polynomial ring in n indeterminates over the ring
𝐾 [𝑍]/(𝑍 trΩ𝑍), where Z is a matrix of indeterminates of size 2𝑡 × 𝑛. It follows that 𝑆/𝔖 is again a
Cohen–Macaulay integral domain and that

dim 𝑆/𝔖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛 + 2𝑛𝑡 −

(
𝑛

2

)
= 𝑛𝑑 −

(
𝑛 + 1

2

)
if 𝑛 � 𝑡 + 1,

𝑛 + 𝑛𝑡 +

(
𝑡 + 1

2

)
if 𝑛 � 𝑡,

which completes the proof. �

7.3. Nullcones of symmetric determinantal rings in characteristic other than two

Throughout this section, K will denote a field of characteristic other than two. We study the nullcone
𝐾 [𝑌 ]/(𝑌 tr𝑌 ), where Y is a matrix of indeterminates of size 𝑑 × 𝑛.

Let V be the vector space 𝐾𝑑 with the standard basis. Let 𝐵 : 𝑉 ×𝑉 −→ 𝐾 be the symmetric bilinear
form given by

(𝑣1, 𝑣2) ↦−→ 𝑣tr
1 𝑣2. (7.2.1)

A subspace W of V is isotropic if 𝐵(𝑤1, 𝑤2) = 0 for all 𝑤𝑖 ∈ 𝑊 . Since B is nondegenerate, an isotropic
subspace W has rank at most 𝑑/2, where V has rank d.

Let M be a size 𝑑 × 𝑛 matrix over K with 𝑀 tr𝑀 = 0. Then the columns of M span an isotropic
subspace, so rank 𝑀 � 𝑑/2. Setting 𝑡 := �𝑑/2�, it follows that 𝐼𝑡+1(𝑀) = 0. If K is algebraically closed,
the Nullstellensatz implies that

𝐼𝑡+1(𝑌 ) ⊆ rad (𝑌 tr𝑌 )
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in the polynomial ring 𝐾 [𝑌 ]. In view of this, set

𝔖 := (𝑌 tr𝑌 ) + 𝐼𝑡+1(𝑌 ).

When the size of Y needs to be referenced, we use the notation 𝔖𝑑×𝑛. When d is odd, we shall prove
that the ideal 𝔖 is prime and defines a Cohen–Macaulay ring 𝐾 [𝑌 ]/𝔖. When d is even with 𝑑 � 2𝑛, it
turns out that𝔖 has minimal primes 𝔓 and 𝔔 (see Definition 7.7) with the rings 𝐾 [𝑌 ]/𝔓 and 𝐾 [𝑌 ]/𝔔
being Cohen–Macaulay. All of this will be proved using principal radical systems.

The proof of the following is much the same as that of Lemma 6.1.

Lemma 7.3. Let K be a field. Consider the vector space 𝐾𝑑 equipped with a nondegenerate symmetric
bilinear form. Let L be a nonzero linear functional on 𝐾𝑑 , and let

𝑉1 ⊆ 𝑉2 ⊆ · · · ⊆ 𝑉𝑚

be isotropic subspaces of 𝐾𝑑 with rank𝑉 𝑗 � 𝑗 for each j, where 𝑚 � �𝑑/2�.
Suppose L vanishes on 𝑉𝑘 for some k. Then there exist isotropic subspaces

𝑊1 ⊂ 𝑊2 ⊂ · · · ⊂ 𝑊𝑚

such that, for each j, one has 𝑉 𝑗 ⊆ 𝑊 𝑗 and rank𝑊 𝑗 = 𝑗 , and L vanishes on 𝑊𝑘 .

Remark 7.4. Let K be an algebraically closed field of characteristic other than two. The orthogonal
group O𝑛 (𝐾) is the group of 𝑛 × 𝑛 matrices M over K with 𝑀 tr𝑀 = 1. It follows that O𝑛 (𝐾) is an
algebraic group; it has two connected components, the special orthogonal group SO𝑛 (𝐾) consisting of
elements with determinant 1 and its complement consisting of orthogonal matrices of determinant −1.

Let W be an 𝑛×𝑛matrix of indeterminates over K, in which case O𝑛 (𝐾)may be viewed as the algebraic
set 𝑉 (𝑊 tr𝑊 − 1). The ideal (𝑊 tr𝑊 − 1) is radical in 𝐾 [𝑊], minimally generated by

(𝑛+1
2
)

polynomials
that form a regular sequence; see, for example, [Pr, page 238]. Since O𝑛 (𝐾) is nonsingular, being an
algebraic group, each irreducible component is nonsingular. By Serre’s criterion, 𝐾 [𝑊]/(𝑊 tr𝑊 − 1) is
a normal ring; it is a product of normal domains corresponding to the two connected components.

For an integer k with 𝑘 < 𝑛, let 𝑍 := 𝑊 |𝑘 denote the submatrix consisting of the first k columns
of W. A minimal generating set for the ideal (𝑍 tr𝑍 − 1) extends to one for the ideal (𝑊 tr𝑊 − 1), so
𝐾 [𝑍]/(𝑍 tr𝑍 − 1) is also a normal complete intersection ring. The map

SO𝑛 (𝐾) −→ 𝑉 (𝑍 tr𝑍 − 1)

given by truncating columns is surjective since each matrix in 𝑉 (𝑍 tr𝑍 − 1) can be extended to one in
SO𝑛 (𝐾). Since SO𝑛 (𝐾) is irreducible, so is its image. It follows that

𝐾 [𝑍]/(𝑍 tr𝑍 − 1)

is a normal domain.

Definition 7.5. Let 𝛼 be a subset of {1, . . . , 𝑛}, and 𝛼c its complement. Set sgn(𝛼) to be the sign of the
permutation that sends the n-tuple (1, . . . , 𝑛) to the n-tuple (𝛼, 𝛼c), where the entries of each of 𝛼 and
𝛼c are in ascending order.

For a matrix M, a subset 𝛼 of the row indices, and a subset 𝛽 of the column indices, set 𝑀𝛼 |𝛽 to
be the submatrix with rows 𝛼 and columns 𝛽. The following lemma appears to be well known, but we
include a proof based on [Ja].

Lemma 7.6. Let 𝑄 ∈ O𝑛 (𝐾). Let 𝛼 and 𝛽 be subsets of {1, . . . , 𝑛} of cardinality k, where 1 � 𝑘 � 𝑛−1.
Then

det(𝑄𝛼 |𝛽) = sgn(𝛼) sgn(𝛽) det(𝑄) det(𝑄𝛼c |𝛽c).
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Proof. First, consider the case 𝛼 = {1, . . . , 𝑘} = 𝛽. Let

𝑄 =

(
𝐴 𝐵
𝐶 𝐷

)
,

where A is a square matrix of size k, and D is a square matrix of size 𝑛 − 𝑘 . Then(
1𝑘 0
0 1𝑛−𝑘

)
= 𝑄𝑄tr =

(
𝐴 𝐵
𝐶 𝐷

) (
𝐴tr 𝐶 tr

𝐵tr 𝐷tr

)
=

(
𝐴𝐴tr + 𝐵𝐵tr 𝐴𝐶 tr + 𝐵𝐷tr

𝐶𝐴tr + 𝐷𝐵tr 𝐶𝐶 tr + 𝐷𝐷tr

)
,

using which one has (
𝐴 𝐵
𝐶 𝐷

) (
1𝑘 𝐶 tr

0 𝐷tr

)
=

(
𝐴 𝐴𝐶 tr + 𝐵𝐷tr

𝐶 𝐶𝐶 tr + 𝐷𝐷tr

)
=

(
𝐴 0
𝐶 1𝑛−𝑘

)
.

Taking determinants gives

det𝑄 det 𝐷 = det 𝐴,

which is precisely the assertion of the lemma in this case.
For arbitrary 𝛼, 𝛽, permute the rows of Q by sending the rows indexed (𝛼, 𝛼c) to the rows indexed

(1, . . . , 𝑛), and the columns indexed (𝛽, 𝛽c) to the columns indexed (1, . . . , 𝑛). This yields an orthogonal
matrix with determinant sgn(𝛼) sgn(𝛽) det(𝑄). The result now follows from the previous case. �

Definition 7.7. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K of characteristic other than
two, where 𝑡 � 𝑛. Assume that K contains an element i with 𝑖2 = −1.

Set 𝔓 to be the ideal of 𝐾 [𝑌 ] generated by 𝔖 and the polynomials

det(𝑌𝛼 |𝛽) − 𝑖 𝑡 sgn(𝛼) det(𝑌𝛼c |𝛽),

for all subsets 𝛼 ⊆ {1, . . . , 2𝑡} and 𝛽 ⊆ {1, . . . , 𝑛} of size t.
Similarly, set 𝔔 to be the ideal generated by 𝔖 and the polynomials

det(𝑌𝛼 |𝛽) + 𝑖 𝑡 sgn(𝛼) det(𝑌𝛼c |𝛽),

for all 𝛼 and 𝛽 as before. We use 𝔓2𝑡×𝑛 and 𝔔2𝑡×𝑛 when the size of Y needs clarification.

It is readily seen that

𝔓 ⊆ (𝑌 tr𝑌 ) + 𝐼𝑡 (𝑌 ) and 𝔔 ⊆ (𝑌 tr𝑌 ) + 𝐼𝑡 (𝑌 ) (7.7.1)

in 𝐾 [𝑌 ], and that setting 𝐽𝑛 := (𝑦11, 𝑦12, . . . , 𝑦1𝑛) one has

𝔓 + 𝐽𝑛 = (𝑌 tr𝑌 ) + 𝐼𝑡 (𝑌 ) + 𝐽𝑛 = 𝔔 + 𝐽𝑛. (7.7.2)

Lemma 7.8. Suppose M and Q are 𝑛 × 𝑛 matrices over a field K, where 𝑄 ∈ O𝑛 (𝐾). Let 𝛼 be a size n
subset of {1, . . . , 2𝑛}, and 𝛼c its complement. Then

det
[(

𝑀
−𝑖𝑄𝑀

)
𝛼

]
= 𝑖𝑛 sgn(𝛼) (det𝑄) det

[(
𝑀
−𝑖𝑄𝑀

)
𝛼c

]
,

where ( )𝛼 denotes the submatrix with rows 𝛼, and sgn(𝛼) is as in Definition 7.5.
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Proof. Using
(

𝑀
−𝑖𝑄𝑀

)
=

(
1𝑛
−𝑖𝑄

)
𝑀 , it suffices to prove the result when M is the identity matrix. First,

consider the case

𝛼 := {1, 2, . . . , 𝑘, 𝑛 + 𝑘 + 1, 𝑛 + 𝑘 + 2, . . . , 2𝑛},

and write

(
1𝑛
−𝑖𝑄

)
=

�����
1𝑘 0
0 1𝑛−𝑘
−𝑖𝐴 −𝑖𝐵
−𝑖𝐶 −𝑖𝐷

�����,
where 𝑄 =

(
𝐴 𝐵
𝐶 𝐷

)
for square matrices A and D of size k and 𝑛 − 𝑘 respectively. Then

det
[(

1𝑛
−𝑖𝑄

)
𝛼

]
= det

(
1𝑘 0
−𝑖𝐶 −𝑖𝐷

)
= (−𝑖)𝑛−𝑘 det 𝐷

and

det
[(

1𝑛
−𝑖𝑄

)
𝛼c

]
= det

(
0 1𝑛−𝑘
−𝑖𝐴 −𝑖𝐵

)
= (−1)𝑘 (𝑛−𝑘) det

(
1𝑛−𝑘 0
−𝑖𝐵 −𝑖𝐴

)
= (−1)𝑘 (𝑛−𝑘) (−𝑖)𝑘 det 𝐴.

The required verification is now

(−𝑖)𝑛−𝑘 det 𝐷 = 𝑖𝑛 sgn(𝛼) (det𝑄) (−1)𝑘 (𝑛−𝑘) (−𝑖)𝑘 det 𝐴,

which follows since sgn(𝛼) = (−1)𝑛(𝑛−𝑘) and det𝑄 det 𝐷 = det 𝐴 by Lemma 7.6.
For an arbitrary 𝛼, permute rows and columns, keeping track of sign changes, so as to reduce to the

case settled above. �

The following proposition is the analogue of Proposition 6.6 in the symmetric case:

Proposition 7.9. Let d and n be positive integers with 𝑛 � 𝑑/2. Let Y be a 𝑑×𝑛 matrix of indeterminates
over an algebraically closed field K of characteristic other than two. For a an integer with 0 � 𝑎 � 𝑛, set

𝐽𝑎 := (𝑦11, 𝑦12, . . . , 𝑦1𝑎)𝑆

and 𝐼 := (𝑌 tr𝑌 )𝑆 + 𝐽𝑎, where 𝑆 := 𝐾 [𝑌 ].

(1) If 𝑛 < 𝑑/2 and 𝑎 < 𝑛, then 𝑉 (𝐼) is irreducible.
(2) If 𝑛 = 𝑑/2 and 𝑎 < 𝑛, then 𝑉 (𝐼) has irreducible components 𝑉 (𝔓 + 𝐽𝑎), 𝑉 (𝔔 + 𝐽𝑎).

Proof. Let Δ be the upper 𝑛 × 𝑛 minor of Y. We claim that Δ is a nonzerodivisor on 𝑆/𝐼. Since 𝑆/𝐼 is
a complete intersection ring by Theorem 7.1, it suffices to show that Δ does not belong to any minimal
prime of I.

Let G be a copy of SO𝑑−1 (𝐾), embedded in SO𝑑 (𝐾) as(
1 0
0 𝑄

)
, for 𝑄 ∈ SO𝑑−1 (𝐾).

The action of G on S with 𝑀 : 𝑌 ↦−→ 𝑀𝑌 induces an action on 𝑆/𝐼, and hence on the set of minimal
primes of 𝑆/𝐼. Since G is connected, this action must be trivial, that is, G stabilizes each minimal prime
of 𝑆/𝐼.

https://doi.org/10.1017/fms.2023.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.67


32 M. Hochster et al.

Up to sign changes, rows of Y other than the first row may be permuted using an element of G. It
follows that under the action of G on S, each maximal minor of Y that involves the first row is in the
orbit of Δ , so any minimal prime of I containing Δ also contains each maximal minor involving the first
row. Said otherwise, if Δ vanishes on an irreducible component of 𝑉 (𝐼), then so does each such minor.

For a 𝑑 × 𝑛 matrix over K, if each maximal minor that involves the first row is zero, and some other
maximal minor is nonzero, then the first row must be zero. Hence if Δ vanishes on some irreducible
component of 𝑉 (𝐼), then either 𝐽𝑛 or 𝐼𝑛 (𝑌 ) vanishes on that component. In other words, any minimal
prime of I containing Δ must contain either 𝐽𝑛 or each maximal minor of Y. Since 𝑎 < 𝑛, one has

dim𝑉 (𝐼) = 𝑑𝑛 −

(
𝑛 + 1

2

)
− 𝑎 dim𝑉 (𝐼 + 𝐽𝑛) = (𝑑 − 1)𝑛 −

(
𝑛 + 1

2

)
,

so no minimal prime of I contains 𝐽𝑛. It follows that any minimal prime of I that contains Δ also contains
𝐼𝑛 (𝑌 ).

Let 𝑌 ′ be the submatrix consisting of the first 𝑛 − 1 columns of Y, and consider the ideal

𝐼 ′ := (𝑌 ′ tr𝑌 ′) + (𝑦11, 𝑦12, . . . , 𝑦1𝑎)

of 𝐾 [𝑌 ′]. Viewing a point of 𝑉 (𝐼 ′) as columns (𝑣1, . . . , 𝑣𝑛−1), the image of the map

𝑉 (𝐼 ′) × 𝐾𝑛−1 −→ 𝑉 (𝐼 + 𝐼𝑛 (𝑌 ))

((𝑣1, . . . , 𝑣𝑛−1) , (𝑐1, . . . , 𝑐𝑛−1)) ↦−→ (𝑣1, . . . , 𝑣𝑛−1,
∑

𝑐𝑖𝑣𝑖)

includes the open subset of 𝑉 (𝐼 + 𝐼𝑛 (𝑌 )) where the first 𝑛 − 1 columns are linearly independent. Hence,

dim𝑉 (𝐼 + 𝐼𝑛 (𝑌 )) � dim𝑉 (𝐼 ′) + (𝑛 − 1) = 𝑑 (𝑛 − 1) −
(
𝑛

2

)
− 𝑎 + (𝑛 − 1) < dim𝑉 (𝐼).

It follows that a minimal prime of I cannot contain 𝐼𝑛 (𝑌 ) and hence that Δ is not in any minimal prime
of I. The completes the proof that Δ is a nonzerodivisor on 𝑆/𝐼. In light of this, there is a bijection
between the minimal primes of 𝑆/𝐼 and those of 𝑆Δ/𝐼.

Write the matrix Y as
(
𝑌1
𝑌2

)
, where 𝑌1 is the upper 𝑛 × 𝑛 submatrix so that Δ = det𝑌1. Since 𝑌1 is an

invertible matrix over 𝑆Δ , one has

𝑆Δ = 𝐾 [𝑌1, 𝑌2]Δ = 𝐾 [𝑌1, 𝑌2𝑌
−1
1 ]Δ ,

so the entries of 𝑌2𝑌
−1
1 , and hence of 𝑍 := 𝑖𝑌2𝑌

−1
1 , are algebraically independent over the fraction field

of 𝐾 [𝑌1]. Since

𝑌𝑌−1
1 =

(
𝑌1
𝑌2

)
𝑌−1

1 =

(
1
−𝑖𝑍

)
,

the ideal (𝑌 tr𝑌 )𝑆Δ agrees with the ideal generated by the entries of

(𝑌−1
1 )

tr𝑌 tr𝑌𝑌−1
1 =

(
1 −𝑖𝑍 tr) ( 1

−𝑖𝑍

)
= 1 − 𝑍 tr𝑍,

that is, 𝑆Δ/(𝑌 tr𝑌 ) = 𝐾 [𝑌1, 𝑍]Δ/(𝑍
tr𝑍−1). As 𝐽𝑎 is generated by indeterminates from the matrix𝑌1, the

minimal primes of 𝑆Δ/𝐼 correspond to those of 𝐾 [𝑍]/(𝑍 tr𝑍 − 1), and it suffices to prove the theorem
in the case 𝑎 = 0.

If 𝑛 < 𝑑/2, one has 𝑛 < 𝑑 − 𝑛, so 𝐾 [𝑍]/(𝑍 tr𝑍 −1) is a domain by Remark 7.4, completing the proof
of (1). When 𝑛 = 𝑑/2, the matrix Z is 𝑛 × 𝑛, so 𝑉 (𝑌 tr𝑌 ) has two irreducible components corresponding
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to the two components of O𝑛 (𝐾) = 𝑉 (𝑍 tr𝑍 − 1), though it remains to verify that these are precisely
𝑉 (𝔓) and 𝑉 (𝔔).

The homomorphism

𝐾 [𝑌 ] = 𝐾 [𝑌1, 𝑌2] −→ 𝐾 [𝑌1, 𝑍]/(𝑍
tr𝑍 − 1)

with 𝑌2 ↦−→ −𝑖𝑍𝑌1 kills (𝑌 tr𝑌 ), giving a homomorphism

𝐾 [𝑌 ]/(𝑌 tr𝑌 ) −→ 𝐾 [𝑌1, 𝑍]/(𝑍
tr𝑍 − 1),

that is an isomorphism upon inverting Δ . Since Δ is nonzerodivisor in 𝐾 [𝑌 ]/(𝑌 tr𝑌 ), the ideal (𝑌 tr𝑌 ) is
radical. The homomorphism above gives a map

A𝑛
2
× O𝑛 (𝐾) −→ 𝑉 (𝑌 tr𝑌 )

(𝐴 , 𝑄) ↦−→

(
𝐴
−𝑖𝑄𝐴

)
.

Using Lemma 7.8, the matrix
(

𝐴
−𝑖𝑄𝐴

)
lies in the algebraic set𝑉 (𝔓) if𝑄 ∈ SO𝑛 (𝐾), and in the algebraic

set 𝑉 (𝔔) otherwise. Hence, the map displayed above restricts to maps

A𝑛
2
× SO𝑛 (𝐾) −→ 𝑉 (𝔓) and A𝑛

2
× O𝑛 (𝐾) \ SO𝑛 (𝐾) −→ 𝑉 (𝔔).

Since 𝑉 (𝔓) ∪𝑉 (𝔔) contains 𝑉 (𝑌 tr𝑌 ) \𝑉 (Δ), we have

𝔓 ∩𝔔 ⊆ (𝑌 tr𝑌 )𝐾 [𝑌 ]Δ .

Using again that Δ is nonzerodivisor in 𝐾 [𝑌 ]/(𝑌 tr𝑌 ), it follows that 𝔓 ∩𝔔 = (𝑌 tr𝑌 ). �

Corollary 7.10. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over an algebraically closed field of
characteristic other than two. Then the algebraic set 𝑉 (𝑌 tr𝑌 ) equals 𝑉 (𝔓) ∪𝑉 (𝔔).

Proof. One containment is immediate as the ideals𝔓 and𝔔 contain (𝑌 tr𝑌 ). Let M be a matrix in𝑉 (𝑌 tr𝑌 ).
If M has rank less than t, then it belongs to each of 𝑉 (𝔓) and 𝑉 (𝔔). In the remaining case, M has rank
exactly t; assume without loss of generality that the first t columns of M are linearly independent. Then
the 2𝑡 × 𝑡 submatrix 𝑀 |𝑡 belongs to 𝑉 (𝔓|𝑡 ) or 𝑉 (𝔔 |𝑡 ) by Proposition 7.9. Since the remaining columns
of M are linear combinations of the columns of 𝑀 |𝑡 , it follows that M belongs to 𝑉 (𝔓) or 𝑉 (𝔔). �

We now set up the principal radical system needed to study the ideals 𝔓, 𝔔 and 𝔖. Let Y be a 𝑑 × 𝑛
matrix of indeterminates over K; recall that

𝔖 := (𝑌 tr𝑌 ) + 𝐼𝑡+1(𝑌 ),

where 𝑡 := �𝑑/2�. Let 𝜎 := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚) be a sequence of integers with 0 � 𝑠𝑘 � 𝑛 for each k,
and 𝑠𝑚 = 𝑛. Set

𝐼𝜎 := 𝔖 + 𝐼1
(
𝑌 |𝑠0

)
+ 𝐼2

(
𝑌 |𝑠1

)
+ 𝐼3

(
𝑌 |𝑠2

)
+ · · · + 𝐼𝑚+1

(
𝑌 |𝑠𝑚

)
,

where, as earlier, 𝐼𝑘+1
(
𝑌 |𝑠𝑘

)
denotes the ideal generated by the size 𝑘 + 1 minors of the submatrix

consisting of the first 𝑠𝑘 columns of Y. If 𝑑 = 2𝑡, set

𝐼 ′𝜎 := 𝔓 + 𝐼1
(
𝑌 |𝑠0

)
+ 𝐼2

(
𝑌 |𝑠1

)
+ 𝐼3

(
𝑌 |𝑠2

)
+ · · · + 𝐼𝑚+1

(
𝑌 |𝑠𝑚

)
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and

𝐼 ′′𝜎 := 𝔔 + 𝐼1
(
𝑌 |𝑠0

)
+ 𝐼2

(
𝑌 |𝑠1

)
+ 𝐼3

(
𝑌 |𝑠2

)
+ · · · + 𝐼𝑚+1

(
𝑌 |𝑠𝑚

)
.

Note that if 𝑚 < 𝑡, then both 𝐼 ′𝜎 and 𝐼 ′′𝜎 contain 𝐼𝑡 (𝑌 ), and hence equal 𝐼𝜎 .
We say 𝜎 is standard if

0 = 𝑠0 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑚 = 𝑛, and 𝑚 � 𝑡.

For integers a with 0 � 𝑎 � 𝑛, set

𝐽𝑎 := (𝑦11, 𝑦12, . . . , 𝑦1𝑎).

Suppose 𝜎 := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚) is standard, 𝑑 = 2𝑡, 𝑚 = 𝑡 and 𝑠𝑚−1 < 𝑎 < 𝑠𝑚. Define

𝜎′ := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚−2, 𝑎, 𝑠𝑚).

We claim that

𝐼 ′𝜎 + 𝐽𝑎 = 𝐼 ′𝜎′ + 𝐽𝑎 and 𝐼 ′′𝜎 + 𝐽𝑎 = 𝐼 ′′𝜎′ + 𝐽𝑎 .

For the first equality, it suffices to verify that

𝐼𝑡 (𝑌 |𝑎) ⊆ 𝔓 + 𝐽𝑎,

which holds by equation (7.7.2) since the first row of 𝑌 |𝑎 is zero modulo 𝐽𝑎. The second is similar.
With the notation as above, we prove:

Theorem 7.11. Let Y be a 𝑑 × 𝑛 matrix of indeterminates over an algebraically closed field K of
characteristic other than two, and set 𝑆 := 𝐾 [𝑌 ]. Let 𝜎 := (𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑚) be a sequence of integers
with 0 � 𝑠𝑘 � 𝑛 for each k and 𝑠𝑚 = 𝑛. Fix a with 0 � 𝑎 � 𝑛.

(1) Suppose 𝜎 is standard and 𝑎 = 𝑠𝑘 , where 0 � 𝑘 � 𝑚−1. If d is odd, then𝑉 (𝐼𝜎 + 𝐽𝑎) is irreducible;
if d is even, then 𝑉 (𝐼 ′𝜎 + 𝐽𝑎) and 𝑉 (𝐼 ′′𝜎 + 𝐽𝑎) are irreducible.

(2) The ideal 𝐼𝜎 + 𝐽𝑎 is radical. If d is even, the ideals 𝐼 ′𝜎 + 𝐽𝑎 and 𝐼 ′′𝜎 + 𝐽𝑎 are radical.
(3) Suppose 𝜎 is standard and 𝑎 = 𝑠𝑘 , where 0 � 𝑘 � 𝑚 − 1. If d is odd, then 𝐼𝜎 + 𝐽𝑎 defines a Cohen–

Macaulay integral domain. If d is even, 𝐼 ′𝜎 + 𝐽𝑎 and 𝐼 ′′𝜎 + 𝐽𝑎 both define Cohen–Macaulay integral
domains. In each case, the domain has dimension

𝑚(𝑑 + 𝑛 − 𝑚 − 1) − 𝑘 −
𝑚−1∑
𝑗=1

𝑠 𝑗 .

Proof. Let V denote one of the algebraic sets 𝑉 (𝐼𝜎 + 𝐽𝑠𝑘 ) or 𝑉 (𝐼 ′𝜎 + 𝐽𝑠𝑘 ) or 𝑉 (𝐼 ′′𝜎 + 𝐽𝑠𝑘 ) under the
hypotheses of (1). We first prove that V is irreducible. Take V0 to be the set of 𝑑 × 𝑚 matrices lying in
either 𝑉 (𝔖𝑑×𝑚) or 𝑉 (𝔓𝑑×𝑚) or 𝑉 (𝔔𝑑×𝑚), in the respective cases, with the additional condition that the
first k entries of the first row are 0. Note that 𝑚 � 𝑑/2 and 𝑘 < 𝑚, soV0 is irreducible by Proposition 7.9.

Let B be an element of V0. For 1 � 𝑗 � 𝑚, let 𝐶 𝑗 be a matrix of size 𝑗 × (𝑠 𝑗 − 𝑠 𝑗−1) and set A to be
the matrix

(𝐵 |1𝐶1) # (𝐵 |2𝐶2) # · · · # (𝐵 |𝑚𝐶𝑚), (7.11.1)
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where # denotes concatenation. It is readily seen that A is an element of the algebraic setV. The matrices
𝐶1, . . . , 𝐶𝑚 may be regarded as the points of an affine space V1 of dimension

𝑚∑
𝑗=1

𝑗 (𝑠 𝑗 − 𝑠 𝑗−1)

so that the construction (7.11.1) gives a mapV0×V1 −→ V. Since the image of an irreducible algebraic
set is irreducible, it suffices to verify that this map is surjective.

Let A be a matrix in the algebraic set V. For 1 � 𝑗 � 𝑚, let 𝑉 𝑗 denote the span of the columns of the
truncated matrix 𝐴|𝑠 𝑗 . Consider the linear functional L that is projection to the first coordinate, and the
symmetric bilinear form is as defined in (7.2.1). By Lemma 7.3, there exist isotropic subspaces

𝑊1 ⊂ 𝑊2 ⊂ · · · ⊂ 𝑊𝑚

such that 𝑉 𝑗 ⊆ 𝑊 𝑗 for each j, and 𝑊 𝑗 has rank j. Consider a size 𝑑 ×𝑚 matrix B such that 𝐵 | 𝑗 spans 𝑊 𝑗

for each j. Then the columns of 𝐴|𝑠 𝑗 belong to the column span of 𝐵 | 𝑗 for each j, so there exist matrices
𝐶 𝑗 using which A may be obtained as in (7.11.1). This concludes the proof of (1).

Set 𝐼∗𝜎 to be one of 𝐼𝜎 , 𝐼 ′𝜎 , 𝐼 ′′𝜎 and 𝐼 := 𝐼∗𝜎 + 𝐽𝑎. To show I is radical or prime, we assume the result
for matrices Y of smaller size, as well as for larger ideals in the family, and apply Lemma 5.1. The three
families are interlaced in the inductive process, since

𝐾 [𝑌2𝑡×𝑛]/(𝔓2𝑡×𝑛 + 𝐽𝑛) � 𝐾 [𝑌2𝑡−1×𝑛]/𝔖2𝑡−1×𝑛 � 𝐾 [𝑌2𝑡×𝑛]/(𝔔2𝑡×𝑛 + 𝐽𝑛)

using equation (7.7.2), and Corollary 7.10 gives

𝐾 [𝑌2𝑡+1×𝑛]/rad (𝔖2𝑡+1×𝑛 + 𝐽𝑛) � 𝐾 [𝑌2𝑡×𝑛]/rad (𝔓2𝑡×𝑛 ∩𝔔2𝑡×𝑛).

Assume 𝑎 < 𝑛, since otherwise 𝐾 [𝑌 ]/𝐼 effectively involves a matrix of size (𝑑 − 1) × 𝑛. In applying
Lemma 5.1, set

𝑥 := 𝑦1,𝑎+1.

Specializing Y such that 𝑦1,𝑎+1 ↦−→ 1, and 𝑦2,𝑎+1 ↦−→ ±𝑖, and every other entry maps to 0, we obtain a
matrix in 𝑉 (𝐼) \ 𝑉 (𝐼 + 𝑥𝑆). The choice of sign in ±𝑖 is relevant when 𝑑 = 2 and depends on whether I
contains 𝔓 or 𝔔. It follows that 𝐼 + 𝑥𝑆 is a strictly larger ideal: In particular, for 𝑎 < 𝑛 − 1 we have

𝐼 + 𝑥𝑆 = 𝐼∗𝜎 + 𝐽𝑎+1,

and for 𝑎 = 𝑛 − 1 we have 𝐼 + 𝑥𝑆 = 𝐼∗𝜎 + 𝐽𝑛, which effectively puts us in the case of a smaller matrix.
Hence, in each case, 𝐼 + 𝑥𝑆 is radical by the inductive hypothesis. If a is as in (1), the ideal 𝑃 := rad 𝐼
is prime. Since 𝑥 ∉ 𝑃, Lemma 5.1 implies that 𝐼 = 𝑃, and hence that I is prime. Else, there exists an
integer k with 𝑠𝑘 < 𝑎 < 𝑠𝑘+1. Set

𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑘−1, 𝑎, 𝑠𝑘+1, . . . , 𝑠𝑚),

and take P to be the prime 𝐼∗𝜎′ + 𝐽𝑎; if 𝑘 = 0, then 𝜎′ = (𝑎, 𝑠1, . . . , 𝑠𝑚) is not standard, but the primality
still holds from the case of a smaller matrix. The specialization used earlier shows that 𝑥 ∉ 𝑃. To
conclude that I is radical by Lemma 5.1, it remains to verify that 𝑥𝑃 ⊆ 𝐼. For this, note that

𝑦1,𝑎+1𝐼𝑘+1(𝑌 |𝑎) ⊆ 𝐼𝑘+2(𝑌 |𝑎+1) + 𝐽𝑎 ⊆ 𝐼𝑘+2(𝑌 |𝑠𝑘+1 ) + 𝐽𝑎 ⊆ 𝐼,

where the first inclusion is using Lemma 5.3.
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For a as in (3), we next compute the dimension of the algebraic set V := 𝑉 (𝐼𝜎 + 𝐽𝑎). Consider the
open subset U of V in which each matrix has the property that the submatrix consisting of the columns
indexed

𝑠0 + 1, 𝑠1 + 1, . . . , 𝑠𝑚−1 + 1 (7.11.2)

has rank exactly m. This open set U is nonempty hence dense, for it contains the matrix in which the
columns indexed (7.11.2) are the first m columns of the matrix

��������������

0 0 . . . 0
1 0 . . . 0
𝑖 0 . . . 0
0 1 0
0 𝑖 0
...
0 0 1
0 0 𝑖

��������������
or

����������������

0 0 . . . 0 1
0 0 . . . 0 𝑖
1 0 . . . 0 0
𝑖 0 . . . 0 0
0 1 0 0
0 𝑖 0 0
...

...
0 0 1 0
0 0 𝑖 0

����������������
,

depending on whether d is odd or even, respectively, and the remaining columns are zero.
It suffices to compute the dimension of U. Given a matrix A in the U, let B denote the 𝑑×𝑚 submatrix

consisting of the columns indexed (7.11.2). For each j with 1 � 𝑗 � 𝑚, the submatrix 𝐷 𝑗 of A consisting
of the columns indexed 𝑠 𝑗−1 + 1, . . . , 𝑠 𝑗 can be uniquely written as a linear combination of the columns
of 𝐵 | 𝑗 . The coefficients needed comprise the columns of a size 𝑗 × (𝑠 𝑗 − 𝑠 𝑗−1) matrix that we denote
𝐶 𝑗 . The first column of 𝐶 𝑗 is

(0, 0, . . . , 0, 1)tr

while the other 𝑗 (𝑠 𝑗 − 𝑠 𝑗−1 − 1) entries are arbitrary scalars. By Proposition 7.9, the matrices B vary in
a space of dimension

𝑑𝑚 −

(
𝑚 + 1

2

)
− 𝑘,

so U has dimension

𝑑𝑚 −

(
𝑚 + 1

2

)
− 𝑘 + 1(𝑠1 − 𝑠0 − 1) + 2(𝑠2 − 𝑠1 − 1) + · · · + 𝑚(𝑠𝑚 − 𝑠𝑚−1 − 1)

= 𝑚(𝑑 + 𝑛 − 𝑚 − 1) − 𝑘 −
𝑚−1∑
𝑗=1

𝑠 𝑗 .

It follows that 𝑉 (𝐼𝜎 + 𝐽𝑎) has the dimension as claimed. When d is even, 𝑉 (𝐼 ′𝜎 + 𝐽𝑎) and 𝑉 (𝐼 ′′𝜎 + 𝐽𝑎)
also have the dimension displayed above.

The proof of the Cohen–Macaulay property is again via induction, assuming the result for smaller
matrices and for larger ideals in the family. Consider first a prime ideal of the form 𝐼𝜎 + 𝐽𝑎, where
𝑎 := 𝑠𝑘 < 𝑛, and d is odd. Since the element 𝑦1,𝑎+1 is a nonzerodivisor on 𝑆/(𝐼𝜎 + 𝐽𝑎), it suffices to
verify that

𝑆/(𝐼𝜎 + 𝐽𝑎 + 𝑦1,𝑎+1𝑆) = 𝑆/(𝐼𝜎 + 𝐽𝑎+1)

is a Cohen–Macaulay ring. The proof of this, for d odd, is split into five cases:
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Case (i): Suppose 𝑘 � 𝑚−2. If 𝑎 +1 = 𝑠𝑘+1, then 𝑆/(𝐼𝜎 + 𝐽𝑎+1) is Cohen–Macaulay by the inductive
hypothesis. If 𝑎 + 1 < 𝑠𝑘+1, we claim that 𝐼𝜎 + 𝐽𝑎+1 is the intersection of the prime ideals

𝑄1 := 𝐼𝜎 + 𝐽𝑠𝑘+1 and 𝑄2 := 𝐼𝜎′ + 𝐽𝑎+1,

where 𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑘−1, 𝑎 + 1, 𝑠𝑘+1, . . . , 𝑠𝑚). If 𝑘 = 0, then 𝑄2 is prime by the case of a matrix of
size 𝑑 × (𝑛 − 1). Since 𝐼𝜎 + 𝐽𝑎+1 is radical and contained in each 𝑄𝑖 , it suffices to verify that

𝑄1𝑄2 ⊆ 𝐼𝜎 + 𝐽𝑎+1,

which comes down to

𝐽𝑠𝑘+1 𝐼𝜎′ ⊆ 𝐼𝜎 + 𝐽𝑎+1.

This is straightforward, since for each b with 𝑏 � 𝑠𝑘+1, one has

𝑦1𝑏 𝐼𝑘+1(𝑌 |𝑎+1) ⊆ 𝐼𝑘+2(𝑌 |𝑠𝑘+1 ) + 𝐽𝑎+1 ⊆ 𝐼𝜎 + 𝐽𝑎+1

using Lemma 5.3. By the inductive hypothesis, each prime 𝑄𝑖 defines a Cohen–Macaulay ring 𝑆/𝑄𝑖 .
Moreover,

𝑄1 +𝑄2 = 𝐼𝜎′ + 𝐽𝑠𝑘+1

is prime, and Lemma 5.2 applies since

dim 𝑆/𝑄1 = dim 𝑆/𝑄2 = 𝑚(𝑑 + 𝑛 − 𝑚 − 1) − 𝑘 − 1 −
𝑚−1∑
𝑗=1

𝑠 𝑗 = dim 𝑆/(𝑄1 +𝑄2) + 1.

It follows that

𝑆/(𝐼𝜎 + 𝐽𝑎+1) = 𝑆/(𝑄1 ∩𝑄2)

is Cohen–Macaulay.
Case (ii): Next suppose 𝑘 = 𝑚 − 1, and 𝑚 < �𝑑/2� and 𝑎 + 1 = 𝑛. Set 𝑡 := (𝑑 − 1)/2, and let 𝑌 ′

denote the lower 2𝑡 × 𝑛 submatrix of Y. Since 𝐼𝜎 contains the ideal 𝐼𝑚+1(𝑌 ) and hence 𝐼𝑡 (𝑌 ), it follows
that 𝐼𝜎 + 𝐽𝑛 contains 𝔓2𝑡×𝑛 (𝑌

′) and 𝔔2𝑡×𝑛 (𝑌
′) by (7.7.1). But then

𝑆/(𝐼𝜎 + 𝐽𝑛) = 𝐾 [𝑌 ′]/(𝐼 ′𝜎) = 𝐾 [𝑌 ′]/(𝐼 ′′𝜎),

which is Cohen–Macaulay by the case of a smaller matrix.
Case (iii): Suppose 𝑘 = 𝑚 − 1, and 𝑚 < �𝑑/2�, and 𝑎 + 1 < 𝑛. Then 𝐼𝜎 + 𝐽𝑎+1 is the intersection of

the prime ideals

𝑄1 := 𝐼𝜎 + 𝐽𝑛 and 𝑄2 := 𝐼𝜎′ + 𝐽𝑎+1,

where 𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑘−1, 𝑎 + 1, 𝑠𝑘+1, . . . , 𝑠𝑚). The ring 𝑆/𝑄1 is Cohen–Macaulay by the case of a
smaller matrix, and the proof proceeds along the lines of Case (i).

Case (iv): Suppose 𝑘 = 𝑚 − 1, and 𝑚 = �𝑑/2�, and 𝑎 + 1 = 𝑛. Then

𝐼𝜎 + 𝐽𝑎+1 = 𝐼𝜎 + 𝐽𝑛

is the intersection of the prime ideals

𝑄1 := 𝐼𝜎 + 𝐽𝑛 +𝔓 and 𝑄2 := 𝐼𝜎 + 𝐽𝑛 +𝔔,
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where 𝔓 := 𝔓2𝑚×𝑛 (𝑌
′) and 𝔔 := 𝔔2𝑚×𝑛 (𝑌

′), with 𝑌 ′ the lower 2𝑚 × 𝑛 submatrix of Y. The rings 𝑆/𝑄1
and 𝑆/𝑄2 are Cohen–Macaulay by the inductive hypothesis, of dimension

𝑚(𝑚 + 𝑛 − 1) −
𝑚−1∑
𝑗=1

𝑠 𝑗 .

Moreover,

𝑄1 +𝑄2 = 𝐼𝜎 + 𝐽𝑛 +𝔓 +𝔔 = 𝐼𝜎 + 𝐽𝑛 + 𝐼𝑚(𝑌 ) = 𝐼𝜎′ + 𝐽𝑛,

where 𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑚−2, 𝑛), so 𝑆/(𝑄1 +𝑄2) is Cohen–Macaulay of dimension

(𝑚 − 1) (𝑚 + 𝑛) −
𝑚−2∑
𝑗=1

𝑠 𝑗 .

But then

dim 𝑆/𝑄1 = dim 𝑆/𝑄2 = dim 𝑆/(𝑄1 +𝑄2) + 1,

so Lemma 5.2 implies that 𝑆/(𝑄1 ∩𝑄2) is Cohen–Macaulay.
Case (v): Lastly, suppose 𝑘 = 𝑚−1, and 𝑚 = �𝑑/2�, and 𝑎 +1 < 𝑛. We claim that the ideal 𝐼𝜎 + 𝐽𝑎+1

is the intersection of three prime ideals

𝑄1 := 𝐼𝜎 + 𝐽𝑛 +𝔓, 𝑄2 := 𝐼𝜎 + 𝐽𝑛 +𝔔, 𝑄3 := 𝐼𝜎′ + 𝐽𝑎+1,

where 𝔓 := 𝔓2𝑚×𝑛 (𝑌
′) and 𝔔 := 𝔔2𝑚×𝑛 (𝑌

′), with 𝑌 ′ the lower 2𝑚 × 𝑛 submatrix of Y, and

𝜎′ := (𝑠0, 𝑠1, . . . , 𝑠𝑚−2, 𝑎 + 1, 𝑠𝑚).

Since 𝑄1 ∩𝑄2 = 𝐼𝜎 + 𝐽𝑛 and 𝐼𝜎 + 𝐽𝑎+1 is radical, it suffices to verify that

(𝐼𝜎 + 𝐽𝑛) (𝐼𝜎′ + 𝐽𝑎+1) ⊆ 𝐼𝜎 + 𝐽𝑎+1,

which is a now-routine application of Lemma 5.3.
Towards proving that 𝑆/(𝑄1 ∩𝑄2 ∩𝑄3) is Cohen–Macaulay, first note that

𝑄1 +𝑄3 = 𝐼𝜎′ + 𝐽𝑛 +𝔓 and 𝑄2 +𝑄3 = 𝐼𝜎′ + 𝐽𝑛 +𝔔,

so the dimension formula proved earlier gives

dim 𝑆/𝑄1 = dim 𝑆/𝑄2 = dim 𝑆/𝑄3 = dim 𝑆/(𝑄1 +𝑄3) + 1 = dim 𝑆/(𝑄2 +𝑄3) + 1.

Lemma 5.2 implies that 𝑆/(𝑄1 ∩𝑄3) is Cohen–Macaulay. Next, we claim that

(𝑄1 ∩𝑄3) +𝑄2 = 𝑄3 +𝑄2.

Assuming the claim, one has

dim 𝑆/(𝑄1 ∩𝑄3) = dim 𝑆/𝑄2 = dim 𝑆/((𝑄1 ∩𝑄3) +𝑄2) + 1,

so Lemma 5.2 shows that 𝑆/(𝑄1 ∩𝑄2 ∩𝑄3) is Cohen–Macaulay.
The verification of the claim reduces immediately to

𝑄3 ⊆ (𝑄1 ∩𝑄3) +𝑄2,
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which, in turn reduces to

𝐼𝑚(𝑌 |𝑎+1) ⊆ (𝑄1 ∩𝑄3) +𝑄2.

Since the ideals on the right contain 𝐽𝑎+1, it suffices to show that

𝐼𝑚(𝑌
′ |𝑎+1) ⊆ (𝑄1 ∩𝑄3) +𝑄2.

But

𝐼𝑚(𝑌
′ |𝑎+1) = 𝔓2𝑚×𝑎+1(𝑌

′ |𝑎+1) +𝔔2𝑚×𝑎+1(𝑌
′ |𝑎+1),

and

𝔓2𝑚×𝑎+1(𝑌
′ |𝑎+1) ⊆ (𝑄1 ∩𝑄3), while 𝔔2𝑚×𝑎+1(𝑌

′ |𝑎+1) ⊆ 𝑄2.

This concludes the proof that 𝑆/(𝐼𝜎 + 𝐽𝑎) is Cohen–Macaulay for 𝜎 standard, 𝑎 = 𝑠𝑘 < 𝑛, and d odd.
When d is even, the proof that the rings 𝑆/(𝐼 ′𝜎 + 𝐽𝑎) and 𝑆/(𝐼 ′′𝜎 + 𝐽𝑎) are Cohen–Macaulay resembles
the proof in Case (i); one does not have to separately consider the cases where 𝑘 = 𝑚 − 1. �

We record the main consequences of Theorem 7.11.

Theorem 7.12. Let Y be a (2𝑡 + 1) × 𝑛 matrix of indeterminates over a field K of characteristic other
than two. Set 𝑆 := 𝐾 [𝑌 ] and

𝔖 := (𝑌 tr𝑌 )𝑆 + 𝐼𝑡+1(𝑌 ).

Then 𝑆/𝔖 is a Cohen–Macaulay integral domain, with

dim 𝑆/𝔖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑛𝑡 −

(
𝑛

2

)
if 𝑛 � 𝑡 + 1,

𝑛𝑡 +

(
𝑡 + 1

2

)
if 𝑛 � 𝑡.

Proof. If 𝑛 � 𝑡, take 𝜎 = (0, 1, 2, . . . , 𝑛 − 1, 𝑛) in Theorem 7.12, so 𝑚 = 𝑛 and

dim 𝑆/𝔖 = 𝑛((2𝑡 + 1) + 𝑛 − 𝑛 − 1) − (1 + 2 + · · · + (𝑛 − 1)) = 2𝑛𝑡 −
(
𝑛

2

)
.

If 𝑛 > 𝑡, take 𝜎 = (0, 1, 2, . . . , 𝑡 − 1, 𝑛), in which case 𝑚 = 𝑡, and the theorem gives

dim 𝑆/𝔖 = 𝑡 ((2𝑡 + 1) + 𝑛 − 𝑡 − 1) − (1 + 2 + · · · + (𝑡 − 1)) = 𝑛𝑡 +

(
𝑡 + 1

2

)
. �

In the case of a symmetric bilinear form of even rank, that is, when the number of rows of Y is even,
we have the following theorem. Note that if 𝑛 � 𝑡 − 1, then 𝔓 =𝔖 = 𝔔.

Theorem 7.13. Let Y be a 2𝑡 × 𝑛 matrix of indeterminates over a field K of characteristic other than
two. Set 𝑆 := 𝐾 [𝑌 ] and 𝔖 := (𝑌 tr𝑌 ) + 𝐼𝑡+1(𝑌 ), and let 𝔓 and 𝔔 be as in Definition 7.7.

If 𝑛 � 𝑡 − 1, then 𝔓 =𝔖 = 𝔔, and 𝑆/𝔖 is a Cohen–Macaulay integral domain with

dim 𝑆/𝔖 = 2𝑛𝑡 −
(
𝑛 + 1

2

)
.
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If 𝑛 � 𝑡, then 𝑆/𝔓, 𝑆/𝔔, and 𝑆/(𝔓 +𝔔) are Cohen–Macaulay integral domains with

dim 𝑆/𝔓 = 𝑛𝑡 +

(
𝑡

2

)
= dim 𝑆/𝔔, and dim 𝑆/(𝔓 +𝔔) = 𝑛𝑡 − 𝑛 − 1 +

(
𝑡 + 1

2

)
.

Proof. If 𝑛 � 𝑡 − 1, take 𝜎 = (0, 1, 2, . . . , 𝑛 − 1, 𝑛) in Theorem 7.11, so 𝑚 = 𝑛 and

dim 𝑆/𝔖 = 𝑛(2𝑡 + 𝑛 − 𝑛 − 1) − (1 + 2 + · · · + (𝑛 − 1)) = 2𝑛𝑡 −
(
𝑛 + 1

2

)
.

If 𝑛 � 𝑡, take 𝜎 = (0, 1, 2, . . . , 𝑡 − 1, 𝑛), in which case 𝑚 = 𝑡, and

dim 𝑆/𝔓 = 𝑡 (2𝑡 + 𝑛 − 𝑡 − 1) − (1 + 2 + · · · + (𝑡 − 1)) = 𝑛𝑡 +

(
𝑡

2

)
.

The case of 𝑆/𝔔 is similar. Next, note that

𝔓 +𝔔 = (𝑌 tr𝑌 ) + 𝐼𝑡 (𝑌 )

and that, if 𝑛 � 𝑡, taking 𝜎 = (0, 1, 2, . . . , 𝑡 − 2, 𝑛) in Theorem 7.11 gives

dim 𝑆/(𝔓 +𝔔) = (𝑡 − 1) (2𝑡 + 𝑛 − (𝑡 − 1) − 1) − (1 + 2 + · · · + (𝑡 − 2)) = 𝑛𝑡 − 𝑛 − 1 +
(
𝑡 + 1

2

)
,

which completes the proof. �

7.4. The purity of the embedding

Finally, we are in a position to settle the O𝑑 (𝐾) case of Theorem 1.1.

Theorem 7.14. Let K be a field of positive characteristic p. Fix positive integers d and n, and consider
the inclusion 𝜑 : 𝐾 [𝑌 tr𝑌 ] −→ 𝐾 [𝑌 ], where Y is a size 𝑑 × 𝑛 matrix of indeterminates. Then 𝜑 is pure if
and only if

(1) 𝑑 = 1, or
(2) 𝑑 = 2 and p is odd, or
(3) 𝑝 = 2 and 𝑛 � (𝑑 + 1)/2, or
(4) p is odd and 𝑛 � (𝑑 + 2)/2.

Proof. As with the other matrix families, if 𝜑 : 𝐾 [𝑌 tr𝑌 ] −→ 𝐾 [𝑌 ] is pure for fixed (𝑛, 𝑑), then purity
holds as well for the inclusion of the K-algebras corresponding to (𝑛′, 𝑑) with 𝑛′ � 𝑛. Set 𝑆 := 𝐾 [𝑌 ]
and 𝑅 := 𝐾 [𝑌 tr𝑌 ], and note that 𝔪𝑅𝑆 = (𝑌 tr𝑌 )𝑆.

When 𝑑 = 1, the ring R coincides with the Veronese subring 𝑆 (2) and is hence a pure subring of S.
Next, consider the case where 𝑑 = 2 and p is odd. In proving the purity, one may enlarge K so as to

assume that it is algebraically closed. The special orthogonal group SO2(𝐾) is then isomorphic to the
torus 𝐾×, so O2(𝐾) is the extension of Z/2 by a torus, hence linearly reductive; see also [JS, Remark
8.2]. It follows that purity holds in case (2).

When 𝑛 � (𝑑 + 1)/2, Theorem 7.1 implies that the ideal 𝔪𝑅𝑆 is generated by a regular sequence of
length

(𝑛+1
2
)
. Since this is also the dimension of R, it follows that 𝜑 is pure.

If 𝑝 = 2, suppose first that d is odd, say 𝑑 = 2𝑡 + 1. We need to verify that 𝜑 is not pure if 𝑛 = 𝑡 + 2.
This follows from Theorem 7.2 since 𝑆/(rad 𝔪𝑅𝑆) is Cohen–Macaulay and

dim 𝑅 − ht𝔪𝑅𝑆 =

(
𝑛 + 1

2

)
−

[
𝑑𝑛 − 𝑛𝑡 −

(
𝑡 + 1

2

)]
= 1. (7.14.1)
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Similarly, when 𝑑 = 2𝑡 + 2, it suffices to verify that 𝜑 is not pure in the case 𝑛 = 𝑡 + 2. Theorem 7.2
implies that 𝑆/rad 𝔪𝑅𝑆 is Cohen–Macaulay and that

dim 𝑅 − ht𝔪𝑅𝑆 =

(
𝑛 + 1

2

)
−

[
𝑑𝑛 − 𝑛(𝑡 + 1) −

(
𝑡 + 1

2

)]
= 1,

which completes the case 𝑝 = 2. Specifically, the argument above is valid in the case 𝑑 = 2, where one
has 𝑡 = 0.

In the remaining cases, p is an odd prime, and d is at least 3. When 𝑑 = 2𝑡 + 1, we need to check
that 𝜑 is not pure in the case 𝑛 = 𝑡 + 2. This is much the same as equation (7.14.1), with Theorem 7.12
providing the needful.

Suppose 𝑑 = 2𝑡 and 𝑡 � 2. It suffices to verify that 𝜑 is pure in the case 𝑛 = 𝑡 + 1, and that it is not
pure in the case 𝑛 = 𝑡 + 2. In either case, the ring R is regular, with dim 𝑅 =

(𝑛+1
2
)
, so the critical local

cohomology module is

𝐻
(𝑛+12 )
𝔪𝑅
(𝑆) = 𝐻

(𝑛+12 )
𝔓∩𝔔 (𝑆).

By Theorem 7.13, the ideals 𝔓, 𝔔 and 𝔓 +𝔔, define Cohen–Macaulay rings, and

ht𝔓 = 𝑛𝑡 −

(
𝑡

2

)
= ht𝔔 and ht(𝔓 +𝔔) = 𝑛𝑡 + 𝑛 + 1 −

(
𝑡 + 1

2

)
.

When 𝑛 = 𝑡 + 1, the Mayer–Vietoris sequence

−−−−−−→ 𝐻
(𝑛+12 )
𝔓∩𝔔 (𝑆) −−−−−−→ 𝐻

(𝑛+12 )+1
𝔓+𝔔 (𝑆) −−−−−−→ 𝐻

(𝑛+12 )+1
𝔓 (𝑆) ⊕ 𝐻

(𝑛+12 )+1
𝔔 (𝑆) −−−−−−→

shows that 𝐻 (
𝑛+1

2 )
𝔓∩𝔔 (𝑆) is nonzero since the middle term is nonzero and the term to the right vanishes.

When 𝑛 = 𝑡 + 2, the vanishing of 𝐻 (
𝑛+1

2 )
𝔓∩𝔔 (𝑆) follows from the vanishing of the outer terms in the exact

sequence

−−−−−−→ 𝐻
(𝑛+12 )
𝔓 (𝑆) ⊕ 𝐻

(𝑛+12 )
𝔔 (𝑆) −−−−−−→ 𝐻

(𝑛+12 )
𝔓∩𝔔 (𝑆) −−−−−−→ 𝐻

(𝑛+12 )+1
𝔓+𝔔 (𝑆) −−−−−−→ . �

In the case that the field K has characteristic two, it is also reasonable to ask when the inclusion
𝐾 [𝑌 tr𝑌,

∑
𝑖 𝑦𝑖 𝑗 | 1 � 𝑗 � 𝑛] ⊆ 𝐾 [𝑌 ] is pure; we record the answer.

Theorem 7.15. Let K be a field of characteristic two. Fix positive integers d and n, and consider a 𝑑 × 𝑛
matrix of indeterminates Y. Then the inclusion

𝐾 [𝑌 tr𝑌,
∑
𝑖

𝑦𝑖 𝑗 | 1 � 𝑗 � 𝑛] ⊆ 𝐾 [𝑌 ]

is pure if and only if 𝑑 = 1 or 𝑛 � (𝑑 + 1)/2.

Proof. The ring 𝑅 := 𝐾 [𝑌 tr𝑌,
∑
𝑖 𝑦𝑖 𝑗 | 1 � 𝑗 � 𝑛] is an integral extension of the symmetric determi-

nantal ring 𝐾 [𝑌 tr𝑌 ], and hence has the same dimension as 𝐾 [𝑌 tr𝑌 ]. Also, when 𝐾 [𝑌 tr𝑌 ] is regular, so
is R. Set 𝑆 := 𝐾 [𝑌 ]. By Theorem 7.2, the ideal

𝔪𝑅𝑆 = (𝑌 tr𝑌 )𝑆 + (𝑦11 + · · · + 𝑦𝑑1, . . . , 𝑦1𝑛 + · · · + 𝑦𝑑𝑛)𝑆

defines a Cohen–Macaulay ring 𝑆/𝔪𝑅𝑆.
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If 𝑑 = 1, then 𝑅 = 𝑆. Assume 𝑑 � 2, and express d as 2𝑡 + 1 or 2𝑡 + 2, for t an integer. Using the
reduction as in the proof of Theorem 7.14, it suffices to verify that 𝑅 ⊆ 𝑆 is pure in the case 𝑛 = 𝑡 + 1
and that it is not pure in the case 𝑛 = 𝑡 + 2. In either case, the ring R is regular with dim 𝑅 =

(𝑛+1
2
)
, and

the critical local cohomology module is 𝐻dim𝑅
𝔪𝑅𝑆
(𝑆). Using Theorem 7.2, this module is nonzero in the

case 𝑛 = 𝑡 + 1 since ht𝔪𝑅𝑆 =
(𝑛+1

2
)
, whereas, if 𝑛 = 𝑡 + 2, then

dim 𝑅 − ht𝔪𝑅𝑆 =

(
𝑛 + 1

2

)
−

[
𝑛(𝑡 + 1) −

(
𝑡 + 1

2

)]
= 1,

so 𝐻dim𝑅
𝔪𝑅𝑆
(𝑆) = 0. �
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