PRODUCT OF TWO COMMUTATORS AS A SQUARE IN A FREE GROUP

BY
JONELL A. COMERFORD AND Y. LEE

Abstract

We show that, if $[s, t][u, v]=x^{2}$ in a free group, x need not be a commutator. We arrive at our example by use of a result of D. Piollet which characterizes solutions of such equations using an algebraic interpretation of the mapping class group of the corresponding surface.

1. Introduction. In his survey on equations in groups [2], R. C. Lyndon records the following question of C. C. Edmunds: If an element of a free group is a product of two commutators, and is also a square, must it then be the square of a commutator? In this paper we produce an example that shows that the answer to this question is negative.

We are led to our example by a result of D. Piollet [3] which gives the solutions to equations $W=1$ in a free group with $W=x_{1}^{2} \ldots x_{g}^{2}$ or $W=\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right]$ in terms of the outer automorphisms of

$$
G_{N}=\left\langle x_{1}, \ldots, x_{g} ; x_{1}^{2} \ldots x_{g}^{2}\right\rangle
$$

or

$$
G_{O}=\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g} ;\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right]\right\rangle
$$

and by an algebraic interpretation of the generators for the mapping class groups given topologically by J. Birman and D. Chillingworth [1] as outer automorphisms of G_{O} or G_{N}. These generators for $\operatorname{Out}(G)$, in combination with Piollet's results, may be useful in discovering other facts about solutions to quadratic equations in free groups. While we focus on the case of G_{N} for $g=5$ in this paper, the appendix lists generators for the general case.

The word $[s, t][u, v] x^{-2}$ is an automorphic image of $s^{2} t^{2} u^{2} v^{2} x^{2}$ in the free group $F=\langle s, t, u, v, x\rangle$, so that the group $G=\left\langle s, t, u, v, x ;[s, t][u, v] x^{-2}\right\rangle$ is isomorphic to G_{N} for $g=5$. We produce generators for the outer automorphism group of G in Section 2. In Section 3, we state Piollet's characterization of solutions to quadratic equations in a free group, and construct a solution to the equation $[s, t][u, v]=x^{2}$ in which x is not a commutator.

[^0]

Figure 1
2. Let $F=\langle s, t, u, v, x\rangle$ be the free group on five generators and W be the word st $s^{-1} t^{-1} u v u^{-1} v^{-1} x^{2}$ in F. Let N be the normal subgroup of F generated by W and let $G=F / N$.

Let M be the non-orientable surface defined by the word W as in Figure 1, where the edges are identified using the word. Then $G \cong \pi_{1}\left(M, x_{0}\right)$.

It is well known that each element of $\operatorname{Out}(G)$ is represented by an element of the homeotopy group of $M, H(M)$, (or the mapping class group of M) through a canonical homomorphism ψ defined as follows. For any $[f] \in H(M)$ and $\alpha \in \pi_{1}\left(M, x_{0}\right) \cong G$, $\psi([f])(\alpha)=\left[\beta_{f}^{-1} * f \alpha * \beta_{f}\right]$, where β_{f} is an arbitrary path from x_{0} to $f\left(x_{0}\right)$.

The group $H(M)$ has been studied by several authors. We use the description of a set of generators of $H(M)$ obtained in [1] to find a set of generators of $\operatorname{Out}(G)$. Let T be a torus with 4 holes. There exists an involution J on T (see [1] for the details) such that T / J is homeomorphic to M as in Figure 2, where $P: T \rightarrow M$ is the projection map induced by the involution. In the figure, M is represented as a torus with 2 holes with the interior of a disk removed. To construct M, one must identify the boundary circle by the antipodal map.

Let a_{i}, b_{i}, c_{i} and e be the homeomorphisms of T induced by a right hand full twist along the oriented circles $\alpha_{i}, \beta_{i}, \gamma_{i}$ and ϵ in Figure 2, respectively. A set of generators of $H(M)$ is represented by the homeomorphisms $\bar{a}_{1}=P a_{1} a_{4}^{-1} P^{-1}, \bar{a}_{2}=P a_{2} a_{3}^{-1} P^{-1}$, $\bar{b}_{1}=P b_{1} b_{4}^{-1} P^{-1}, \bar{b}_{2}=P b_{2} b_{3}^{-1} P^{-1}, \bar{c}_{1}=P c_{1} c_{3}^{-1} P^{-1}$, and $y_{4}=P\left(c_{2} a_{2} a_{3}\right)^{2} e^{-1} P^{-1}$, where the maps are composed from the right. By abusing notation, we will regard \bar{a}_{1}, $\bar{a}_{2}, \bar{b}_{1}, \bar{b}_{2}, \bar{c}_{1}$ and y_{4} as generators of $H(M)$.

The loops, s, t, u, v and x on M in Figure 1, representing generators of $\pi_{1}\left(M, x_{0}\right) \cong$

Figure 2
G, appear in M as in Figure 2. We may assume that the base point x_{0} does not intersect the image under P of any circles drawn in T. Therefore, we may assume that each generator of $H(M)$ fixes x_{0}. Thus each generator induces an automorphism of $\pi_{1}\left(M, x_{0}\right)$; we denote the automorphisms induced by $\bar{a}_{1}, \bar{a}_{2}, \bar{b}_{1}, \bar{b}_{2}, \bar{c}_{1}, y_{4}$ by σ_{1}, σ_{2}, $\sigma_{3}, \sigma_{4}, \sigma_{5}$ and σ_{6}, respectively. Then $\sigma_{i}, 1 \leqq i \leqq 6$, are generators of $\operatorname{Out}(G)$.

We give a description of $\sigma_{i}, 1 \leqq i \leqq 6$, in the following list. Each homomorphism is described on the generators which are not fixed under the homomorphism.

$$
\begin{align*}
\sigma_{1}(t) & =t s \tag{2.1}\\
\sigma_{2}(u) & =u v^{-1} \tag{2.2}\\
\sigma_{3}(s) & =s t^{-1} \tag{2.3}\\
\sigma_{4}(v) & =x^{-2} v u \tag{2.4}\\
\sigma_{4}(x) & =x^{-2} v u v^{-1} x v u^{-1} v^{-1} x^{2} \\
\sigma_{5}(s) & =t^{-1} u s \tag{2.5}\\
\sigma_{5}(v) & =t^{-1} u v \\
\sigma_{5}(x) & =t^{-1} u x u^{-1} t \\
\sigma_{6}(u) & =v^{-1} x v u^{-1} v^{-1} x v \tag{2.6}\\
\sigma_{6}(v) & =v^{-1} x^{-1} v t s t^{-1} s^{-1} x^{-1} v \\
\sigma_{6}(x) & =v^{-1} x^{-1} v t s t^{-1} s^{-1}
\end{align*}
$$

We demonstrate in two cases how we arrive at the above description.

$$
\begin{equation*}
\sigma_{4}(x)=x^{-2} v u v^{-1} x v u^{-1} v^{-1} x^{2} \tag{2.4}
\end{equation*}
$$

We need to read $\bar{b}_{2}(x)=P b_{2} b_{3}^{-1} P^{-1}(x)$ as an element of $\pi_{1}\left(M, x_{0}\right)$. The following diagram gives $\bar{b}_{2}(x)$ step by step.

Figure 3
From the last picture in the above diagram, we see easily that $\bar{b}_{2}(x)=\left(x^{-2} v u v^{-1}\right) x\left(v u^{-1} v^{-1} x^{2}\right)$.

$$
\begin{align*}
\sigma_{6}(u) & =v^{-1} x v u^{-1} v^{-1} x v \tag{2.6}\\
y_{4}(u) & =P\left(c_{2} a_{2} a_{3}\right)^{2} e^{-1} P^{-1}(u)
\end{align*}
$$

Figure 4
Finally, $y_{4}(u)=\left(v^{-1} x v\right)\left(u^{-1} v^{-1} x v\right)$.
3. Recall that $G=F / N$ where $F=\langle s, t, u, v, x\rangle$ is a free group and N is the normal subgroup of F generated by $W=s t s^{-1} t^{-1} u v u^{-1} v^{-1} x^{2}$. Let $X=\{s, t, u, v, x\}$, $X^{-1}=\left\{s^{-1}, t^{-1}, u^{-1}, v^{-1}, x^{-1}\right\}$ and $X^{ \pm}=X \cup X^{-}$. We define a literal solution as one which maps X into $X^{ \pm} \cup\{1\}$.

Piollet provides a characterization of the solutions of $W=1$ in [3]. The set of all solutions to the equation $W=1$ in F is comprised of all the homomorphisms of the form $h g f$ where h is an arbitrary homomorphism of F in G, g is a literal solution, and f is an outer automorphism of G. Since there are only finitely many literal solutions, a description of the group of outer automorphisms of $G, \operatorname{Out}(G) \cong \operatorname{Aut}(G) / \operatorname{Inn}(G)$, completes the information we need to find the solutions to the equation.

Our example has been found through the use of computer. Let $f=\sigma_{1} \sigma_{5} \sigma_{6} \sigma_{5} \sigma_{6}$ and let g fix $u^{ \pm 1}$ and $s^{ \pm 1}$ and send the remaining variables to 1 . We find that

$$
\begin{align*}
g f(s) & =s^{-1} u^{-1} s^{-1} u s, \tag{3.1}\\
g f(t) & =s, \tag{3.2}\\
g f(u) & =u^{-1} \text { suus } s^{-1}, \tag{3.3}\\
g f(v) & =s u^{-1} s^{-1} s^{-1} u s^{-1}, \tag{3.4}\\
g f(x) & =s u^{-1} s^{-1} s^{-1} u s^{-1} u^{-1} \text { sus. } \tag{3.5}
\end{align*}
$$

M. J. Wicks [4] proved that an element in a free group is a commutator if and only if cyclically it can be represented as either $a^{-1} b^{-1} a b$ or $a^{-1} b^{-1} c^{-1} a b c$. This result easily demonstrates that the image of x, (3.5), is not a commutator.

Appendix. Let $N_{g+1}(g \geqq 2)$ be the non-orientable closed surface obtained by taking a connected sum of $(g+1)$ copies of projective 2 -space. A set of generators of the mapping class group $H\left(N_{g+1}\right)$ of N_{g+1} is given in [1]. We describe how these generators act on the fundamental group of N_{g+1}.

Using the notation of [1], we describe the generators. Let O_{g} be the closed orientable surface of genus g. Then there exists a free involution J on O_{g} such that the projection map $P: O_{g} \rightarrow O_{g} / J=N_{g+1}$ is a double covering projection (see Figure 5).

Define homeomorphisms $a_{i}, b_{i}, c_{j}, d_{j}, e, f$ on O_{g} as the right hand full twist of O_{g} along the oriented circles $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j}, \epsilon$ and ϕ given in Figure 5, respectively.

Let

$$
\begin{aligned}
\bar{a}_{i} & =P a_{i} a_{g+1-i}^{-1} P^{-1}, \bar{b}_{i}=P b_{i} b_{g+1-i}^{-1} P^{-1}, \bar{c}_{j}=P c_{j} c_{g-j}^{-1} P^{-1}, \\
\bar{b}_{r+1} & =P d_{1} d_{2}^{-1} P, y_{2 r+1}=P\left(a_{r+1} c_{r} c_{r+1}\right)^{2} f^{-1} P^{-1}
\end{aligned}
$$

and $y_{2 r}=P\left(c_{r} a_{r} a_{r+1}\right)^{2} e^{-1} P^{-1}$. These are homeomorphisms of N_{g+1} and the homeotopy classes will be denoted by the same notation. According to [1] $H\left(N_{g+1}\right)=$ $\left\langle\bar{a}_{i}, \bar{b}_{i}, \bar{c}_{j}, \bar{b}_{r+1} y_{2 r+1}: 1 \leqq i, j \leqq r\right\rangle$ if $g=2 r+1$ and $H\left(N_{g+1}\right)=\left\langle\bar{a}_{i}, \bar{b}_{i}, \bar{c}_{j} y_{2 r}: 1 \leqq i \leqq r\right.$, $1 \leqq j \leqq r-1\rangle$ if $g=2 r$. (J. Birman has informed us that the generator \bar{b}_{r+1} was overlooked in [1].)

Choose the generators of the fundamental group $\pi_{1}\left(N_{g+1}, \dot{x}\right)$ as the elements represented by the oriented loops in N_{g+1} (Figure 5). Then the group is isomorphic to $\left\langle s_{i}, t_{i}, 1 \leqq i \leqq r+1 ; \prod_{1 \leqq i \leq r}\left[s_{i}, t_{i}\right] s_{r+1} t_{r+1} s_{r+1}^{-1} t_{r+1}=1\right\rangle$ if $g=2 r+1$ and $\left\langle s_{i}, t_{i}, v, 1 \leqq i \leqq r ; \prod_{1 \leqq i \leqq r}\left[s_{i}, t_{i}\right] v^{2}=1\right\rangle$ if $g=2 r$, where $\left[s_{i}, t_{i}\right]=s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}$.

$$
g=2 r+1: \text { odd }
$$

$$
g=2 r: \text { even }
$$

Figure 5

The generators of $H\left(N_{g+1}\right)$ induce the following homomorphisms on the fundamental group, where the homomorphisms are described only on the elements which are not fixed under the homomorphisms. The indices vary over the positive integers as long as the identities make sense.

$$
\begin{align*}
& \bar{a}_{i^{*}}\left(t_{i}\right)=t_{i} s_{i}^{-1} \tag{1}\\
& \bar{b}_{i^{*}}\left(s_{i}\right)=s_{i} t_{i} \tag{2}
\end{align*}
$$

$$
\begin{align*}
\bar{c}_{j^{*}}\left(s_{j}\right) & =s_{j} s_{j+1} t_{j+1}^{-1} s_{j+1}^{-1} t_{j} \tag{3}\\
\bar{c}_{j^{*}}\left(s_{j+1}\right) & =t_{j}^{-1} s_{j+1} t_{j+1} \\
\bar{c}_{j^{*}}\left(t_{j}\right) & =t_{j}^{-1} s_{j+1} t_{j+1} s_{j+1}^{-1} t_{j} s_{j+1} t_{j+1}^{-1} s_{j+1}^{-1} t_{j} \\
y_{(2 r+1)^{*}}\left(s_{r}\right) & =s_{r} s_{r+1}^{2} t_{r+1}^{-1} s_{r+1} t_{r+1}^{-1} s_{r+1}^{-1} t_{r} \tag{4}\\
y_{(2 r+1)^{*}}\left(s_{s+1}\right) & =t_{r}^{-1} s_{r+1} t_{r+1} s_{r+1}^{-1} t_{r+1} s_{r+1}^{-2} t_{r} s_{r+1} \\
y_{(2 r+1)^{*}}\left(t_{r}\right) & =t_{r}^{-1} s_{r+1} t_{r+1} s_{r+1}^{-1} t_{r+1} s_{r+1}^{-2} t_{r} s_{r+1}^{2} t_{r+1}^{-1} s_{r+1} t_{r+1}^{-1} s_{r+1}^{-1} t_{r} \\
y_{(2 r+1)^{*}}\left(t_{r+1}\right) & =t_{r}^{-1} s_{r+1} t_{r+1} s_{r+1}^{-2} t_{r} s_{r+1} \\
y_{(2 r)^{*}}\left(s_{r}\right) & =v^{-1} t_{r} s_{r} t_{r}^{-1} v \tag{5}\\
y_{(2 r)^{*}}\left(t_{r}\right) & =v^{-1} t_{r} s_{r}^{-1} t_{r}^{-1} v s_{r} t_{r} s_{r}^{-1} t_{r}^{-1} v s_{r} t_{r}^{-1} v \\
y_{(2 r)^{*}}(v) & =v^{-1} t_{r} s_{r}^{-1} t_{r}^{-1} v s_{r} v
\end{align*}
$$

References

1. J. Birman and D. Chillingworth, On the homeotopy group of a non-orientable surface Proc. Camb. Phil. Soc. 71 (1972), 437-448.
2. R. C. Lyndon, Equations in groups. Bol. Soc. Bras. Mat., Vol. 11, No. 1 (1980), 79-102.
3. D. Piollet, Solutions d'une equation quadratique dans le groupe libre. Discrete Mathematics 59 (1986), 115-123.
4. M. J. Wicks, Commutators in free products. J. London Math. Soc. 37 (1962), 433-444.

Department of Mathematics

Eastern Illinois University
Charleston, IL 61920
Department of Mathematics
University of Wisconsin-Parkside
Kenosha, WI 53141

[^0]: Received by the editors September 26, 1988.
 AMS 1980 Subject Classification: 20E05, 57M20.
 (c) Canadian Mathematical Society 1988.

