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Abstract

If M2" is a cohomology CP" and p is an odd prime, let Gp be the cyclic group of order p. A Type IIo

Gp action on M2" is an action with fixed point set a codimension-2 submanifold and an isolated point. A
Type //o Gp action is standard if it is regular and the degree of the fixed codimension-2 submanifold is
one. If /! is odd and M2" admits a standard Gp action of Type //0, then every Type Ho Gp action on M2"
is standard and so, if n is odd, C P" admits a Gp action of Type / /o if and only if the action is standard.

1991 Mathematics subject classification (Amer. Math. Soc): primary 57S17, 57S25.

1. Introduction

A cohomology complex projective n-space is a smooth, closed, orientable 2n-
manifold, M2", such that there is a class x e H2(M; T) with the property that
H*(M; T) = Z[x]/ (xn+[). Let p be an odd prime and let Gp denote the cyclic group
of order p. If M2" admits a smooth Gp action, then the number of components of
the fixed point set is at most p ([2], p. 378). Actions of Type// are actions with
a fixed point set, MGp, consisting of two components, F,2*' and F^2. Note that
n — \ = kt+k2 ([2], p. 378) and so we will say that M2" admits an action of Type IIk

if MG- = F,2*1 U F;,2*2 and k = min(/t,, k2). The focus of this paper will be Gp actions
of Type//0, that is, Gp actions fixing a codimension-2 submanifold F2""2, and an
isolated point.

Two invariants are associated with a Gp action of Type //0: the degree of F2""2,
the codimension-2 component of the fixed point set, and the complex representation
of Gp determined by the tangent space at the isolated fixed point, r.CM2"). If i :
K2"'2 c A/2" is the inclusion map of a closed, connected, orientable submanifold
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52 Robert D. Little [2]

and d is an integer, we say that the degree of K2"'2 is d if i*[K] is dual to dx. The
degree of K2"'2 depends on the choice of a generator x € H2(M\ Z) and orientations
of K2n~2 and M2n. The orientations of M2" and K2"'2 are chosen as follows. A
generator x € H2{M;T) is chosen and then M2" is oriented by requiring that x"[M]
is positive; K2"'2 is oriented by requiring that (i*x)"~l [K] is positive if it is nonzero.
With these conventions, the degree of K2"'2 is positive if it is nonzero. The degree
of F2"'2, d, is one invariant associated with a Gp action of Type//0. The normal
bundle of F2""2 C M2" has a complex structure and the eigenvalue of the action of
a generator g of Gp on the normal bundle of F2"'2 c M2" is X = e\p(2ni/p) if g
is chosen properly. The second invariant associated with a Gp action of Type 7/0, the
tangent space at the isolated fixed point, r.CM2"), is a complex representation of Gp,
and with the right choice of complex structure, the eigenvalues of the differential of
g are contained in the set {kj : 1 < j < fx\, where // = (p — l)/2. Let m; be the
multiplicity of the eigenvalue kJ, 1 < j < fu.. Note that m\ + m2 + • • • + mM = n.
A (fj. + l)-tuple of integers, (d;m\, m 2 , . . . , mM) is associated in this way with a Gp

action of Type / /0 on M2".
A Gp action of Type / 70 on M2" is said to be regular if the (/n. + l)-tuple associated

with the action has the form (d; n, 0 , . . . , 0), that is, m.\ = n and m, = 0,2 < j < /x.
Note that a G3 action of Type / 70 is automatically regular since fi = 1. A Gp action of
Type / 70 on M2" is standard if the action is regular and d = 1, that is, the (n +1 )-tuple
associated with the action has the form (1; n, 0 , . . . ,0). AG3 action of Type 77O is
standard if d = 1. It is not known if every Gp action of Type 77O on C7"\ complex
projective n-space, is standard. Our first result will allow us to settle this question
about CP" if n is odd.

THEOREM A. Suppose that M2" is a cohomology complex projective n-space and
that p is an odd prime. Ifn is odd and M2" admits a standard Gp action of Type 7/0,
then every Type 770 Gp action on M2" is a standard action.

Ifn is arbitrary, then CP" admits standard Gp actions of Type 77* for every prime
p and every k such that 0 < k < [(n — l)/2]. Our next theorem follows from this
observation and Theorem A.

THEOREM B. Suppose that p is an odd prime. Ifn is odd, then CP" admits a Gp

action of Type 77O if and only if the action is standard.

A cohomology projective n-space, M2", is said to have a standard Pontrjagin class
p^M2") € 7/*(M; 2) if p^M2") = (1 + x2)n+K Note that CP" has a standard
Pontrjagin class but not every smooth manifold in the homotopy type of CP" has a
standard Pontrjagin class ([11], [7], Theorem 3.1). If n < 4 and M2" admits a Gp

action of Type 770, then it is a standard action and the Pontrjagin class of M2" is
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standard ([3], Theorem A (i) (ii) (n < 3, p > 3, n = 4, p > 3), [5] Theorem E
(n = 4, p = 3)). For some primes p, the existence of a Gp action of Type 7/0 on a
cohomology CP5, M>0, implies that the action is a standard action and the Pontrjagin
class of M10 is standard ([3], Theorem A (iii)). In our next theorem, for an arbitrary
integer n, we find a set of odd primes p such that the existence of a standard or a regular
Gp action of Type II0 on M2" implies that the Pontrjagin class of M2" is standard.

THEOREM C. Suppose that M2" is a cohomology complex projective n-space and
that p is an odd prime. Ifn < p+3 and M2" admits a standard Gp action of Type / Io,
then the Pontrjagin class ofM2" is standard. Ifn < p + 1 and M2" admits a regular
Gp action of Type IIQ, then the action is a standard action and the Pontrjagin class
ofM2" is standard.

Theorem C is sharp in the sense that if n > p + 3, then there are infinitely many
PL homotopy complex projective n-spaces, X2", such that each X2" admits a standard
locally linear PL Gp action of Type IIQ and the Pontrjagin class of X2" is not standard
and if n > 2p+9, then there are infinitely many smooth homotopy complex projective
n-spaces, M2", such that each M2" admits a standard smooth Gp action of Type II0

and the Pontrjagin class of M2" is not standard ([3], Proposition 0.3 and Theorem 0.3).
Theorem C can be combined with Theorem A to yield information about cohomol-

ogy CP" with a regular Gp action of Type 7/0 if n is odd and n < p + 1. This is new
information in the case n = 5 and p > 3 which can be extended to include the case
p = 3 because G3 actions of Type II0 on M2" are standard if n < 7 ([8], Theorem
1.7).

THEOREM D. Suppose that M2" is a cohomology complex projective n-space and
that p is an odd prime. If n is odd and n < p + 1 and M2" admits a regular Gp

action of Type IIQ, then every Type IIQ GP action on M2" is a standard action and
the Pontrjagin class ofM2" is standard.

THEOREM E. Suppose that M]0 is a cohomology complex projective 5-space and
that p is an odd prime. If M10 admits a regular Gp action of Type II0, then every
Type IIQ GP action on M10 is standard and the Pontrjagin class ofMi0 is standard.

There is a constant which depends only on the Pontrjagin class of M2", cM^, such
that if M2" admits a Gp action of Type//0 and p > cM*, then the action and the
Pontrjagin class of M2" are standard ([4], Theorem A). It is known that cM*. >n + 2
([4], Corollary 2.4). Theorem C says that if M2" admits a regular Gp action of Type
/ 70, then the action and the Pontrjagin class of M2" are standard if p > n — 1. Theorem
D states that if n is odd and M2" admits a regular Gp action of Type IIQ, then every
Gp action of Type IIQ is standard and the Pontrjagin class of A/2" is standard if p > n.
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It is possible to prove theorems like Theorem A which include some even values of
n. If n # 0, 8 or 14 (mod 16) and M2" is a homotopy CP" with a standard Type 7/0

Gp action, then every regular Type//0 Gp action is standard (Theorem A and [6],
Theorem 1.4). It follows that if n ^ 0, 8 or 14 (mod 16) and M2" is a homotopy
CP" with a standard G3 action of Type 7/0, then every Type 770 G3 action on M2" is
standard and so n # 0, 8, or 14 (mod 16) means every G3 action of Type / / 0 on CP"
is standard. Our last two results are stronger theorems about G3 actions of Type 77O.

THEOREM F. Suppose that M2" is a homotopy complexprojective n-space. Ifn 0 0,
16, or 30 (mod 32) and M2" admits a standard G3 action of Type / 70, then every
Type / 70 G3 action on M2" is standard.

THEOREM G. Ifn # 0, 16, or 30 (mod 32) orn < 30, then CP" admits a G3

action of Type 7/0 if and only if the action is standard.

This paper is organized as follows. Section 2 contains a discussion of the Atiyah-
Singer g-Signature Formula for Gp actions of Type 7 70 (Theorems 2.1 and 2.6) as well
as the proofs of Theorem A (Theorem 2.12), Theorem B (Corollary 2.13), Theorem
C (Theorem 2.21), and Theorems D and E (Corollary 2.23). Section 3 contains more
discussion of the Atiyah-Singer g-Signature Formula for Gp actions of Type 7 70 (Table
3.5) as well as a numerical congruence (formula (3.13)) which is useful in the study
of G3 actions of Type 77O. Section 4 contains some combinatorial results which will
be used with the numerical congruence developed in Section 3. Section 5 contains the
applications of the materials in Sections 3 and 4 to the proofs of Theorem F (Corollary
5.7) and G (Corollary 5.8).

2. Degrees, eigenvalues, and an Atiyah-Singer g-signature formula

Berend and Katz have formulated the Atiyah-Singer g-Signature Formula in a way
which separates topology and number theory ([1], Theorem 2.2). Topology appears
in the formula as integer valued quasi-signatures and number theory is represented in
the formula by the complex numbers or,- = (XJ + l)(Ay — I)"1,1 < j' < /x. The quasi-
signatures are signatures of self-intersections in the special case of a component of
the fixed point set of codimension-2. If K2"'2 c M2", let Kis) be the 5-fold transverse
self-intersection of K2"'2 with itself in M2", 0 < s < n. Recall that the dimension of
K(s) is 2(n - s), Km = M2" and K(l) = K2"-2. If K2"'2 C M2" is dual to a class
y e H2(M; 1), we will write A"2""2 = K2"'2.

THEOREM 2.1. Suppose that M2" is a cohomology CP" and that p is an odd prime.
IfM2" admits a Gp action of Type 7 Io fixing a submanifold, F2"'2 C A/2", and having
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eigenvalue multiplicities mu m2, • • • ,mll at the isolated fixed point, then

55

(2.2)
1 + (a? - 1) « = 2m,

or, + (a? - a,) E Sign F(2i+I)af-2, n = 2m + 1.
k=\

PROOF. TO begin with, suppose that M2" is an arbitrary smooth, closed, orientable
2n-manifold which admits a Gp action with fixed point set MCp = F2""2 U pt. If the
action of Gp on the normal bundle of F is such that the eigenvalue of the generator g
is k, then the ^-signature Sign(g, M) ([1], formula (2.1)) is given by

(2.3) , M) =

where y € H2(F; 2) is the image of y € H2(M; Z) and Lt(F) is the Hirzebruch
L-class of F ([10], p. 224). Berend and Katz ([1], formula (8.1)) have shown that

(2.4)
+ 1

Zk-2

k=\

a. Sign F + (aj - a,) E Sign

Formulas (2.3) and (2.4) together imply that

(2.5) ± o7'o£2 • • • < " - Sign(g, M)

(a2 - 1 ) E Sign F(Zt)af-2,

- a , Sign F - (o» - a,) E Sign F(2*+I)af-2,

n = 2m,

n = 2m + 1.

« = 2m,

n = 2m + 1.

If M2" is a cohomology <CP", then we know that if the orientations are chosen in the
way described in the introduction, then Sign(g, M) = SignM = +1 , n = 2m, and
Sign(g, M) = 0, Sign F = +1 , « = 2m + 1 ([5], Lemma 4.1), and so (2.5) is (2.2).

•

If M2" is a cohomology CP", let DEpiM2") be the set of (fi + l)-tuples (d;
m,, m2,.. •, m^) defined by the condition that (d;ml, m 2 , . . . , mM) e DEpiM2") if
M2" admits a Gp action of Type / /0 fixing a codimension-2 submanifold of degree d
and having eigenvalue multiplicities m{, m2,..., mM at the isolated fixed point. Let
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DpiM2") be the projection of DEpiM2") on the first factor, that is, d € DP(M**) if
M2" admits a Gp action of Type II0 fixing a codimension-2 submanifold of degree
d. Note that if d e Dp(M2n), then d # 0 (mod />) ([2], pp. 378-383) and we agree
that d > 0. There are polynomial functions of a complex variable z with integer
coefficients, P(z), and <2<*(z) ([6], Definition 4.1), which can be used to expose the
degree of F in (2.2). If n is a positive integer, let f(n) be n! divided by a maximal
power of 2.

THEOREM 2.6. ([6], Theorem 4.4) Suppose that M2" is a cohomology LP" and that
p is an odd prime. If(d; mum2, . . . , /nM) € DEpiM2"), then

(2.7)

We will not need an explicit formula for P(z) (formula (2.14)) until we prove
Theorem C and we will not need an explicit formula for Qd(z) (formula (3.4)) until
w c prove Theorems F and G. We record (2.7) in the case p = 3 where fi = 1 and
a = — / / A / 3 . Note that the plus sign in (2.7) holds in the case p = 3 because
vkc will see in the proof of Lemma 2.15 that the plus sign in (2.7) holds when the
option is regular and G3 actions of Type 7/0 are automatically regular. If t is a
positive integer, let e{t) = (3' + (-l) '~')/4, andputa(n) = f(n)s([n/2]). Note that
l>t i.\f-") = £)3(M

2").

COROLLARY 2.8. Suppose that M2" is a cohomology CP". Ifd e D3(M
2"), then

f(2m)d23m-iP ( 4 ) +<*2(1 -d2)T-'Qd ( 4 ) , n = 2m,

/(2m + l )d 3 3 m - 'P^ j+r f 3 ( l -rf2)3m-'i2rf(4j, n = 2#n + l.

Because of the multiplication by 3ln/2]~l, the polynomials in (2.9) are polynomials
in dr with integer coefficients, and so (2.9) implies that d2 divides a(n), if n is even,
and rf3 divides a(n), if n is odd. It follows from these divisibility conditions and the
fact that elements of D^M2") are not divisible by 3 ([2], pp. 378-383) that if n < 7,
then D3(M

2") is either empty or D^M2") = {1} ([8], Theorems 1.6 and 1.7).
Our next lemma, when used in concert with (2.7), will enable us to show that if

A/2" admits a regular Gp action of Type I Io fixing a codimension-2 submanifold of
degree d, then every Type I Io Gp action which fixes a codimension-2 submanifold of
degree d is regular, that is, if (d; n, 0 , . . . , 0) and (d;mu m2,..., mM) both belong to

), then wi] = n and m; = 0, 2 < j < fi.
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LEMMA 2.10. Suppose that n is a positive integer, p is an odd prime, and that
fi = (p- D/2. IfZU mJ = n> mJ >0,l<j<ix,and±a"l = a? a? • • • o£*,
then m\ = n, m.j = 0,2<j<fi.

PROOF. Note that a, = — i cotijn/p), 1 < j < \i. Since fj.n/p < n/2, we have
{jn/p : 1 < j < n] C (0 , JT/2) , and so |a i | > la^l > ••• > |a^|. The lemma

follows immediately from this chain of inequalities. •

LEMMA 2.11. Suppose that M2" is a cohomology €P". If id; n, 0 , . . . , 0) and
(d\ml, m2,..., mM) both belong to DEpiM2"), then mx = n, nij = 0, 2 < j < fj,.

PROOF. If {d; n, 0 , . . . , 0) and {d\m\,m2,..., m^) both belong to DEpiM2"), then
it follows from (2.7) used twice that ± a" = a™'a™2 • • • a™*, since the right hand side
of (2.7) depends only on d and «) and M2" because P(z) and Qd{z) depend only on d
and M2" ([6], Definition 4.1 or formulas (2.14) and (3.4) in this paper). Lemma 2.11
now follows immediately from Lemma 2.10. •

Lemma 2.11 shows that if there exists a regular Gp action of Type/ / 0 on M2"
fixing a codimension-2 submanifold of degree d, then every Type / / 0 Gp action on
M2" which fixes a codimension-2 submanifold of degree d is regular. Our next result
is Theorem A stated in terms of D£P(M2").

THEOREM 2.12. Suppose that M2" is a cohomology CP" and that p is an odd
prime. Ifn isoddand(l; n, 0 , . . . , 0) e DEpiM2"), then DEpiM2") = {(1; n, 0 , . . . ,
0)}.

PROOF. Suppose that (1; n, 0 , . . . , 0) € DEpiM2"). This means that 1 e DpiM2")
and so, if n is odd, DpiM2") = {1} ([6], Theorem 1.1(2)). In other words, if
(1: n. 0 , . . . , 0) € DEpiM2") and n is odd, then every element in DEpiM1") has the
form ( l ;m , ,m 2 , . . . , m M ) . If (1; mu m2,..., znM) e DEpiM2") and (1; n, 0 , . . . , 0)
e DEpiM2"), it follows from Lemma 2.11 that m, = n and m, = 0, 2 < j < /x. This
completes the proof. •

COROLLARY 2.13. Ifn is odd, then DEpiCP") = {(1; n, 0 , . . . , 0)}.

PROOF. This follows immediately from Theorem 2.12 since for arbitrary «,
( l ; n , 0 , . . . , 0) € D£ p (CP") . •

Note that Theorem A is equivalent to Theorem 2.12 and Theorem B is equivalent
to Corollary 2.13 since we have chosen our generator of Gp in such a way that
id; m 1, m2, • • •, mM) is determined by a regular action if and only if mx = n, mj = 0,
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2 < j< M, and (d;mu m-i,... ,mll) comes from a standard action if and only if d = 1
and mi = n and mj•, = 0, 2 < j < ix. It has been conjectured that either DEpiM2")
is empty or DEpiM2") = {(1; n, 0 , . . . , 0)} ([6], Conjecture 1.2). Corollary 2.13
affirms this conjecture in the special case M2" = CP", n odd.

In our next lemma, we prepare for the proof of Theorem C by studying the effect
of the existence of a standard action on the signatures Sign Kx

s), 1 < s < n, where
Kf~2 c A/2" is a submanifold of degree 1, that is, dual to the generator* e H2(M;1).
Recall ([6], formula (4.2)) that the polynomial P(z) satisfies the equation below.

_ ~\ n = 2m,
(2.14) /»(*)={*«'

£ Sign ATG*+1>2
a-2, n = 2m + 1.

LEMMA 2.15. Suppose that M2" is a cohomology €P". If (1; n, 0 , . . . ,0) €
2n), r/ien J/AZ W odd, Sign X* = +1, and

J2 (Sign ATj2*' - \)af-2 = 0, n = 2m,

E (Sign A-^+" - l)af-2 = 0, n = 2m + 1.
(2.16)

PROOF. If (1; n, 0 , . . . , 0) € DEpiM2"), then 1 6 D/Af2") and so if n is odd,
Sign AT, = ± 1 ([6], Corollary 2.4(1)). We can conclude that Sign Kx = 1 if
M2" and K^"~2 are oriented in the fashion described in the second paragraph of the
introduction. The next step is to observe that if the action is regular, then (2.2) and (2.7)
must hold with the plus sign. To see this, recall that there are ring homomorphisms
rj : l[aua2,..., aM] —> 2/42 with the properties that r?(l) = 1 and 17(0,) = ±1,
1 < j < M ([1], Lemma 7.8). It follows that there is such an rj with the properties
that r)il) = 1 and 77(a,) = ± L If this 77 is applied to (2.2) or (2.7) with m, = n,
nij = 0, 2 < j < fi and with the minus sign, a contradiction mod 4 is obtained since
rjia2 - 1) = 0. Therefore, if n is arbitrary and (1; n, 0 , . . . , 0) € DEpiM2"), then
(2.7) holds with d = 1 and/?/*** sign and so P(a,) = (afn/21 - l)(a2 - I)"1. Formula
(2.16) follows from this last observation about Pia^) together with (2.14) and the fact
that Piz) is a monic polynomial since Sign K(

x
n) = 1 because Kl

x
n) is a single point

and M2n and K^'2 are oriented in the way described in the introduction. •

Before proceeding we record the version of Lemma 2.15 which holds in the special
case where A/2" is a homotopy CP". If M2" is a homotopy CP" and n > 3, then the
PL homeomorphism type of M2" is determined by an n-2-tuple of splitting invariants
(CT2, 0-3,..., <TB_I) [11]- The splitting invariants are integers and mod 2 integers and
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ok often appears as s^ ([12], p. 191). The splitting invariants with even subscript
a2, CT4, . . . , 02[<n-o/2]» are integers which determine the Pontijagin class of M2" ([11],
[7] Theorem 3.1). If n — s is even, then Sign K<s) — 1 + &an-s and <r0 = 0 because
K^ is a point and Sign K™ = 1 [11]. The next corollary follows immediately from
these remarks and Lemma 2.15.

COROLLARY 2.17. Suppose that n > 3 and M2" is a homotopy C P " with integral
splitting invariants o2, a 4 , . . . , ff2[(<i-D/2]- If(\\ n, 0 , . . . , 0) € DEpiM2"), then ifn is
odd, crn_i = 0, and for any n,

[n/2]-l

(2.18) J2 CT2([n/2]-*)«f-2 = 0 .

Equation (2.18) is a sufficient condition for the existence of a standard Gp action of
Type II0 on a PL homotopy CP" with integral splitting invariants o2,oA,..., or2<[i/2]-n
if n > p + 3 ([3], Theorem 0.3 Note that ak = S-& and the equation here is in terms
of a|~2). Our next lemma studies the effect of the existence of a standard Gp action of
Type 7/0 ifn < p + 3.

LEMMA 2.19. Suppose that M2" is a cohomology CP". If n < p + 3 and
(1; n, 0 , . . . , 0) e DEpiM2"), then Sign Kf = 1 /or every s such that n - s is
even and 0 < s < n.

PROOF. The degree of the minimal polynomial of a2 is (p - l ) / 2 ([12], pp. 220-
221) and so (1; it, 0 , . . . . 0) € DE^M2") and n < p + 3 imply that Sign AT]2*' = 1,
1 < k < m, if n = 2m, and Sign ^ 2 * + 1 ) = 1, 1 < k < m, if n = 2m + 1 in view of
(2.16). If (1; n, 0 , . . . . 0) € DE^M2") and n is odd, then Sign Kx = +1 by Lemma
2.15 and the fact that Sign K^+1) = + 1 , 1 < k < m. D

LEMMA 2.20. If M2" is a cohomology CP", then the Pontrjagin class of M2" is
standard if and only if Sign Kls) = 1 for all s such that n — s is even and 0 < s < n.

PROOF. If L^M2") = 1 + L, (M2") + • • • + L{nm(NP*) is the Hirzebruch L-class
of M2", then Lemma 2.20 is equivalent to the assertion that L^M2") is standard, that
is, L^M2") = xn+i coth"+1 x, if and only if Sign K™ = 1 for all s such that n - s
is even and 0 < s < n. It follows from Hirzebruch Index Theorem, the uniqueness
properties of the L-class ([10], p. 224), the fact that K^s) is dual to xs, and induction
on n - s, that the coefficient of *"-* in L(n_J)/2(M2") in H2("-S\M; 1) is the same
as the coefficient of x"~s in xn+1 coth"+I x if and only if Sign K<s) = 1 for all 5 such
that n — s is even and 0 < s < n. Note that if n is even, we automatically have
Sign Kf) = Sign M2" = 1 since M2" is a cohomology CP" and this determines the
coefficient of x" in Ln/2(M2"). •
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THEOREM 2.21. Suppose that M2" is a cohomology <CP" and that p is an odd
prime. Ifn < p + 3 and (1; n, 0 , . . . , 0) € DEpiM2"), then the Pontrjagin class of
M2" is standard. Ifn<p+\and(d;n,0,...,0)e DE^M2"), then d = I and the
Pontrjagin class of M2" is standard.

PROOF. The first sentence in Theorem 2.21 is the sum of Lemmas 2.19 and
2.20. To establish the second assertion, we need only show that n < p + 1 and
{d\ n, 0 , . . . , 0) € DEpiM2") imply that d = 1. Suppose that (d; n, 0 , . . . , 0) €

M2"). It follows from (2.2) with -+- sign because the action is regular that

(2.22)

If n < p + 1, then it follows from (2.22) and the fact that the degree of the minimal
polynomial of a2 is (p -1 ) /2 ([12], pp. 220-221) that Sign F(n) = 1. But Sign F(n) =
d" since F is dual to dx ([8], formula (2.9)) and so d - 1. •

Theorem 2.21 is Theorem C phrased in terms of DEp{M2n). Corollary 2.23 below
is Theorem D phrased in terms of DEpiM2") and it is an immediate consequence of
Theorems 2.12 and 2.21. We observed that Theorem E is an immediate consequence
of Theorem D in the case n = 5 and p > 3 and the fact that every Type / / 0 G 3 action
on M2" is standard if n < 7 ([8], Theorem 1.7).

COROLLARY 2.23. Suppose M2" is a cohomology CP". Ifn is odd and n < p + 1
and (dt,n,0,..., 0) and {d2; mu m2, ••., mM) both belong to DEpiM2"), then d\ =
d2 = 1 andm\ = n, ms =0,2<j<fi, and the Pontrjagin class ofM2" is standard.

3. The polynomial Qd{z)

In order to prove Theorems F and G, we need the full g-signature formula for
p = 3 (2.9) and so we review the construction of Qd{z) ([6], formula (4.3)). If M2"
is a cohomology CP" and K^'2 c M2" is dual to dx e H2(M; 1), then Sign Kd

s)
x

can be expanded ([8], formula (2.9)) in terms of Sign ATf*+s), 0 < k < (n - s)/2, in
such a way that Sign A"]2*^', 1 < k < (« — s)/2, appears in the expansion multiplied
by a polynomial Rk.s(d) with rational coefficients with the property that f{n)Rks{d)
is divisible by ds{\ — d2) and the quotient is a polynomial with integer coefficients,
'Ck.sid2) ([6], formulas (3.5) and (3.8)). These polynomials depend only on k, s, and n
and are the main ingredients in the recipe for Qd(z).
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TABLE 3.5.

QAz)
2
15

210S(4)

305(4) + 23 - lid1 + 60z2

3155(5) + 294 - 23Id2 + 525z2

+ (161 - U9d2)S(6) + 132 - \16d2

+(420S(6) + 462 - 3>l%d2)z2 + 630z4
62d4

DEFINITION 3.1. If M2" is a cohomology CP" and n — s is a positive even integer,
then

(3.2) 8s(d\x)= Ad2) Sign K ^ .

DEFINITION 3.3. If M2" is a cohomology CP" and d is a positive integer, then

fm-l

(3.4) QAz) =

.2k-2 n = 2m,
*=i

k=\

The polynomials Qj(z) can be quite complicated. The table above contains Q<t(z)
for 4 < n < 8. These values can be used in concert with (2.7) and (2.14) to write the
full signature formula in terms of the signatures S(j) = Sign K<f} if 4 < n < 8.

Table 3.5 shows why it is desirable to verify the conjecture that d is always 1 in
(2.7) ([6], Conjecture 1.0). The advantage of (2.7) over (2.2), short of computing
Qd(z), is that in (2.7), the degree d is exposed and the coefficients of P(z) and Qd(z)
are integers, making it easy to study the image of (2.7) in various finite rings if d •£ 1.
If M2" is a homotopy CP", then Sign Kx

s) = 1 + 8an_s = 1 (mod 8), if n - s is even,
and so it is useful to reduce (2.7) mod 8, at least if p = 3 (2.9). We now define an
integer valued function to be used in this reduction.

DEFINITION 3.6. If n — s is a positive even integer, then

(n-s)/2

(3.7) Ss(d
2) =

i=\

Note that Ss (d
2) is a purely numerical function which does not depend on a particular

cohomology CP". If M2" has a standard Pontrjagin class, then Ss(d
2) = Ss(d

2, x) in
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view of Lemma 2.20. Theorems F and G are extensions of results which hold for odd
n to some even values, and so we will assume at this point that n = 2m. If n = 2m in
(3.7), then s = 2k, 1 < k < m - 1, and 1 < / < m - k.

DEFINITION 3.8. If m > 2, then

(3-9) Am(d2) = ^

DEFINITION 3.10. If m > 2, then

m
2) = £(-l)*-'3m-*(l + d2 + • + d2k'2)(3.11) Bm(d2) = £(-l)*-'3m-*(l + d2 + • • • + d2k'2).

k=\

PROPOSITION 3.12. Suppose that M4m is a cohomology CP2"1 such that Sign K{2i)

= 1 (mod p), l<j<m.Ifle D 3 (M 4 m ) andd € D^M*"), d±\, then

(3.13) Am(d2) = f(2m)Bm(d2Xmodp).

PROOF. Suppose that M4m is an arbitrary cohomology CP 2 " and that 1 €
If d e D3(M

4m), d^\, then it follows by using (2.9) in the case n = 2m twice, first
for d and then with d replaced by 1, subtracting the second equation from the first and
then dividing by 1 — d2, that

(3.14) 3m-'d*Q

m

= /(2m) V (-l)*"^"-* Sign / ^ ' ( l + d2 + • • • + rf2*"2).

The next step is to note that (3.4) implies

( i. \ m — \

— ) =

v3/
k=]

If Sign Kfj) = 1 (mod p), 1 < j < m, then S^id2, x) = S^d2) (mod p) and so
(3.13) follows from (3.9), (3.11), (3.14) and (3.15). •

Formula (3.13) will be our main tool in the proofs of Theorems F and G. Note
that (3.13) holds with p = 8 if M4m is a homotopy CP2" satisfying the hypotheses of
Proposition 3.12 and that (3.13) holds for any p and any d € D3(CP2m), d ^ 1. In
Section 4, we determine Am(d2) and Bm(d2) modulo8, and in Section 5, we use the
results of Section 4 to prove Theorems F and G.
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4. Combinatorics modulo 8

The function Am (d2) is computable mod 16 if d is even and mod 8 if d is odd and
Bm(d2) can be computed mod 8.

PROPOSITION 4.1. Ifm > 2, then

(4.2)

A / j 2 , [3"-2/(2m)[(-ir(2m + 1) + 3] (mod 16), d = 2 (mod 4),
Am(a ) = {

0 (mod 16), d = 0 (mod 4).

, I f(2m)m (mod 8), m even and d odd ,
(4.3) Am(dl) = \

10 (mod 8), m odd and d odd .

PROPOSITION 4.4. Ifm > 2, then

m(m — l)/2 (mod 8), m even, d odd,(4.5) Bm(d2) = m —A (mod 8), m even, d = 2 (mod 4),

m (mod 8), m even, d = 0 (mod 4).

, m(m + l)/2 (mod 8), m odd, d odd,
(4.6) Bm(d ) = \

I — m + 2 (mod 8), m odd, d even.

The proofs of Propositions 4.1 and 4.4 will be discussed below, but only formulas
(4.2), (4.3), (4.5), and (4.6) will be used in Section 5 when we return to G3 actions of
Type 7/0. The proof of Proposition 4.1 begins with the observation that the polyno-
mials cij{d2) ([6], formulas (3.5) and (3.8)) mentioned at the beginning of Section 3
can be computed exactly if d = 2 or 3.

LEMMA 4.7. Ifk, s, and n are positive integers such that n — s is even and 1 < k <
(n - s)/2, then

x: (;) (*: j
(4.9) ?t,<9) = (-!)*- ' /(*)
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PROOF. The polynomials Rk.s(d) ([8], Definition (2.5)) satisfy the equation

(4.10) RtAd)= £ ri,(d)rlt(d)---rls(d),

where rk(d) occurs in signature expansions ([8], formula (2.9)) and rk(d) = d{\ —
d2)qk(d

2) and f(2k + l)qk(d
2) is a polynomial with integer coefficients ([8], Lemma

2.14). It follows from the basic facts about TkiS(d
2) ([6], Lemma 3.4 and Definition

3.7) that if Qk,s(d
2) is the analogue of Rk,s(d) formed with qk{d2) and

(4.11) QtAd> =

where the + indicates that each ij is positive in each partition of k, then

(4.12) ?u{d2) = fin) £ (S) 0 " d2y~' QtAd2).

Formulas (4.8) and (4.9) now follow from (4.11), (4.12), used together with the facts
that^(4) = (-l)*-'3-' ,it > I,and9t(9) = (-l)*-'3*-2, k > 1 ([6], Formula 3.6).

•

COROLLARY 4.13. If n = 2m andm > 2, then

(4.14) cj.2(4) = ( - i ; '

(4.15) Q.a(9) = (-l)'"7(2m)(2/t)3'-2(mod8), 1 < / < m - k.

PROOF. Formulas (4.14) and (4.15) follow immediately from (4.8) and (4.9). •

Formulas (4.14) and (4.15) are the only consequences of Lemma 4.7 that we will
use. The next lemma follows immediately from (3.7), (4.14), (4.15) and the formula
for the sum of a geometric series.

LEMMA4.16. If n = 2m andm > 2, then

(4.17)

12

(4.18)

^ (mod8),
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PROOF OF PROPOSITION 4.1. Formula (4.2) in the case d = 2 (mod 4) follows from
(3.9), (4.17), and the fact that Am(d2) = Am(4) (mod 32) if <i == 2 (mod 4). Formula
(4.2) in the case d = 0 (mod 4) follows immediately from (3.9). To establish (4.3),
note that (3.9) and (4.18) imply that if d is odd, then Am(d2) = /(2m)G(m)(mod 8),

)*-'3"-*-']where G(m) = £jfcg(m,jfc) and g(m,k) = [(-ifyc-v-1 + (-iy-l3m-k-l]/2.
Plainly, g(m, k) = 2{m — k) (mod 8), if m is even, and g(m, k) = 6(m — k) (mod 8),
if m is odd. It follows that G(m + 8) s G(m) (mod 8). Computation of G(m),
2 < m < 10, shows that G(m) = m (mod 8), if m is even, and G(m) = 0 (mod 8),
if m is odd, and this establishes (4.3). •

Proposition 4.4 follows from (3.11) and elementary considerations. We omit the
details.

5. G3 Actions of Type/ /„

This section contains applications of (3.13), (4.2), (4.3), (4.5), and (4.6) to the study
of G3 actions on a cohomology CP2™, M4m. The sum of these applications will equal
proofs of Theorems F and G.

PROPOSITION 5.1. Suppose that M4m is a cohomology CP2™ such that Sign K(2j)

= 1 (mod 8), 1 < j < m. If D^M4"1) contains 1 and at least one other odd integer,
thenm = Oor 15 (mod 16).

PROOF. Suppose that D3(M
4m) contains 1 and one other odd integer d ^ 1. If m

is even, then it follows from (3.13) with p = 8, (4.3) and (4.5) that 2m = m(m — 1)
(mod 16) and so m = 0 (mod 16). If m is odd, then it follows from (3.13) with
p = 8, (4.3) and (4.6) that m(m + 1) = 0 (mod 16), and so m = 15 (mod 16). •

AhomotopyCP2"1 satisfies the condition that Sign K(2j) = 1 (mod 8), 1 < j < m,
and so it follows from Proposition 4.1 that if M4"1 is a homotopy CP2™ and D3(A/4m)
contains 1 and one other odd integer, then m = 0 or 15 (mod 16). In particular, if
D3(C/)2m) contains an odd integer other than 1, then m s 0 or 15 (mod 16).

If M4m is any cohomology CP2m,m # 0 (mod 4),andd € D3(M
4m), then d is odd.

This is because d e D3(M
4m) implies that d2 divides a(2m) = f(2m)s(m) (formula

(2.9)) and s(m) = 0 (mod 4) if and only if m = 0 (mod 4). This observation plus
Proposition 5.1 yields the results below.

PROPOSITION 5.2. Suppose that M4m is a cohomology CP2™ such that Sign K{2j)

= 1 (mod 8), 1 < j < m. If m ^ 0 (mod 4) and m ^ 15 (mod 16) and 1 e
Z>3(M

4m), then D^M4"1) = {1}.
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COROLLARY 5.3. Suppose that M4m is a homotopy CP2"1. Ifm ^ 0 (mod 4) and
m ^ 15 (mod 16) and 1 € D3(M

4m), then D3(M
4™) = {1}.

COROLLARY 5.4. Ifm ^ 0 (mod 4)andm # 15 (mod 16), thenDjiCP2™) = {1}.

Note that Corollaries 5.3 and 5.4 improve Theorem 1.6 and Corollary 1.7 of [6],
adding those integers m such that m = 7 (mod 16) to the set of integers m such
that 1 € D3(M

Am) implies D^M4"1) = {1}. The next step is to improve Proposition
5.2. We know that if M4m is a cohomology CP2™ such that Sign K?j) = 1 (mod 8),
1 < j < m, m =£ 0, 15 (mod 16), then 1 € D3(M

4m) implies that any integer
in £>3(Af4m) other than 1 must be even, by Proposition 5.1. We will show that if
m ^k 0, 8, 15 (mod 16), then 1 e D3(M

4m) implies that there are no even integers in
D3(M

4m) and so D3(M
4m) = {1}.

PROPOSITION 5.5. Suppose that M4m is a cohomology CP2™ such that Sign
= 1 (mod 8), 1 < j < m. If 1 € D3(A/4m) and D3(M

4m) contains an even integer,
then m = 0 (mod 8).

PROOF. If M4m is any cohomology CP2™ and D3(A/4m) contains an even integer,
then m = 0 (mod 4), because d € D3(M

4m) implies that d2 divides a(2m) =
f(2m)e(m) (formula (2.9)) and s(m) = 0 (mod 4) if and only if m = 0 (mod 4). If
M4m satisfies the hypotheses of Proposition 5.5, then it follows from (3.13), (4.2) and
(4.5) that m = 0 (mod 8). •

THEOREM 5.6. Suppose that M4m is a cohomology CP2™ such that Sign Kfj) = 1
(mod 8), 1 < j < m, and that m # 0, 8, or 15 (mod 16). / / 1 e £>3(M

4™), then
D3(A/4™) = {1}.

PROOF. Theorem 5.6 follows immediately from Propositions 5.1 and 5.5. •

COROLLARY 5.7. Suppose that M4m is a homotopy CP2™ and that m ^ 0, 8, or 15
(mod 16). / / I € I>3(M

4™), then D3(M
4™) = {1}.

COROLLARY 5.8. Ifm ^ 0, 8, or 15 (mod 16), then ^(CP2™) = {1}.

PROOF PROOFS OF THEOREMS F AND G. Corollary 5.7 says that if M4m, a homotopy
CP 2 " , m ^ 0, 8, 15 (mod 16), admits a standard G3 action of Type IIo, then every
Type I Io G3 action on M4m is a standard action. Therefore, Theorem F is the sum
of Theorem A, in the case p = 3, and Corollary 5.7. Similarly, it follows from
Theorem B, in the case p = 3, and Corollary 5.8, that if n # 0, 16, 30 (mod 32) or
n < 30, n ^ 16, then CP" admits a G3 action of Type II0 if and only if the action is
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standard. This means that the proof of Theorem G will be complete when we show 

that CP'6 admits a G 3 action of T y p e / / 0 if and only if the action is standard. If 

M 3 2 is any cohomology C P 1 6 and d € D 3 ( M 3 2 ) , then d2 divides a(16) = / ( 1 6 ) e ( 8 ) 

(formula (2.9)). If Sign A';:" = 1 (mod 8), 1 < j < 8 and 1 e D 3 ( A / 3 2 ) then it 

follows from Proposition 5.1. that the elements of D 3 ( A / 3 2 ) , other than 1, are all even. 

It follows from these observations and a look at the divisors of a(l6), that if M 3 2 is a 

cohomology C P 1 6 such that Sign Ki2i) = 1 (mod 8), 1 < j < 8 and 1 e D 3 ( M 3 2 ) , 

then, if d € D 3 ( A / , : ) and d * 1. then d = 2 (mod 4) . It follows from (4.2) that 

As(d2) = 4 ( m o d 16). It follows from (3.10) that £ 8 ( J 2 ) = 12 (mod 16) and so (3.13) 

with p = 16 does not hold since /<16) = 11 (mod 16) and so D 3 ( C P 1 6 ) = {1}. • 

References 

[I] D. Berend and C KM; V T v i r j i m ; - uipology and number theory in the Atiyah-Singer g-signature 
formula". Dukr J 4 1 l*** ' . «*v>-971. 

[2] G. E. Bredon. InmnJ*. f.. » • / . , , impair transformation groups (Academic Press, London, 1972). 
[3] K. H. Dovcrrrunn k^-*: , > , I K primp actions on cohomology complex projective spaces', Math. 

Proc. CambnJr, fn... s.. 1 9 1 t I MS 7). 487—507. 
[4] K. H. Doverrrunr \ 1 M J ^ J J *nU I ) Y Suh, 'Rigid versus non-rigid cyclic actions', Comment. 

Math. Hel\ M i l ^ " > * 
[5] K. H. Doverrrunn «rvj k t - t. irtc Involutions of cohomology complex projective space with 

codimension i»i> h»ru ,-»-FV L'niv. Math. J. 4 1 (1992), 197-211. 
[6] . 'Cohort*>i>fN r"*r' i » i « v i u t space with degree one codimension-two fixed submani-

folds'. Pacific J V..v f \ * VS - -401 . 
[7] R. D. Little. •Htwnta.v . • • T <r> protective spaces with divisible splitting invariants', Pacific J. 

Math. 1 4 0 (ivsvi ; s i ;r ; 
[8] , 'Self-intrrsei.ii.wi ><• tucv) rrunilolds and relations for the multisignature', Math. Scand. 69 

(1991). 167-178 
[9] M. Masuda. Smooth e n * ' ^ i u < m « cohomology complex projective spaces with a fixed point of 

codimension 2. A hik i>: lopolopy i Academic Press, Boston, 1988), pp. 585-602. 
[10] J. W. Milnor and J. D St^ncM. Cnaracteristic classes, Ann. of Math. Stud. 76 (Princeton Univ. 

Press, Princeton. 1974) 
[II] D. Sullivan, Triangulatm K and smoothing homotopy equivalences and homeomorphisms Geometric 

topology seminar notes. (Princeton University, Princeton, 1967) 
[12] C. T. C. Wall, Surgery on compact manifolds (Academic Press, London, 1970). 

Department of Mathematics 

University of Hawaii at Manoa 

Honolulu HI 96822 

USA 

https://doi.org/10.1017/S1446788700039392 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039392

