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Abstract. A Banach space £ has the Grothendieck property if every (linear
bounded) operator from £ into c0 is weakly compact. It is proved that, for an integer
k > 1, every A:-homogeneous polynomial from E into c0 is weakly compact if and only if
the space SP(kE) of scalar valued polynomials on E is reflexive. This is equivalent to the
symmetric A>fold projective tensor product of £(i.e., the predual of SP(kE)) having the
Grothendieck property. The Grothendieck property of the projective tensor product
E®F is also characterized. Moreover, the Grothendieck property of E is described in
terms of sequences of polynomials. Finally, it is shown that if every operator from E into
c0 is completely continuous, then so is every polynomial between these spaces.

1. Introduction. Throughout, E, F will be Banach spaces, and £* the dual of E. We
denote by i?(£, F) the space of all (linear bounded) operators from E to F, and by
<&(£, F){W%(E, F)) the subspace of all (weakly) compact operators. We say that
T E i?(£, F) is completely continuous if it takes weakly convergent sequences into norm
convergent sequences, and we write T e <£<<?(£, F).

For an integer k, we shall consider the following classes of polynomials:
(a) 3P(kE, F) is the space of all A>homogeneous (continuous) polynomials from E

toF ;
(b) 2?cc(

kE, F), the subspace of completely continuous polynomials, i.e., the polyno-
mials taking weakly convergent sequences into norm convergent ones, equivalently,
taking weak Cauchy sequences into convergent ones [3, Theorem 2.3];

(c) 2Pwco(
kE, F), the subspace of weakly compact polynomials;

(d) SPwh(
kE, F), the polynomials whose restrictions to bounded subsets of E are

weakly continuous; these are compact polynomials. It is well known that SP^^E, F) c
SPcc(

kE, F), and the equality occurs if and only if E contains no copy of €} (see e.g. [14]).
The space of /c-linear (continuous) mappings from Ek to F is denoted by i?(*£, F).

To each Pe2P(kE,F) we can associate a unique symmetric A e ££{kE,F) such that
P[x) = A(x,... , JC) for all x e £. Whenever F is omitted, it is understood to be the scalar
field. For the general theory of polynomials between Banach spaces, we refer to [19].

The projective tensor product of E and F is referred to as E®F. The closed linear
(k.\ (k\

span of the set {x®... ®x: x e £} in ®k£:= E®... ®E is denoted by A*£. Its dual is
isomorphic to $*(*£). The spaces SP(kE, F) and if(A*£, F) are linearly isomorphic, and
the image of 9>wco(

kE, F) under this isomorphism is Wc€o(AkE, F) [22].
We say that £ has the Grothendieck property, and write E e %, if every sequence in

£* converging to zero in the weak-star (w*) topology, is also weakly null. Equivalently, if
every operator £ -* c0 is weakly compact.

In this paper, we investigate conditions on £ so that every ^-homogeneous
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polynomial E -* c0 be weakly compact, equivalently KkE e %, proving that this is the case
if and only if SP{kE), and hence A*£, is reflexive. These "polynomially reflexive" Banach
spaces have been investigated by various authors [1,7,9,13].

We also show that the situation is different if we consider the Grothendieck property
of £<§>£, proving that for E e 'K* and F* reflexive with the bounded compact
approximation property, E&F e^r if and only if 5£{E,F*) = *&(£,£*). In particular,
&,<§> £p e $/• for 2 <p < oo, and 4<§> T* = %, where T* is the original Tsirelson space.

Every P e SP(kE) has a standard extension P e <?>(*£**) (see [6]). Thus, given
Pe0>(kE,co), with Px = (Pnx)n, we can define PeSP(kE**,C) by Pz ~ (Pnz)n. It is
shown that £ e "& if and only if, for every sequence (Pn) c 2P(kE) such that Pnx -* 0 for all
XGE, we have Pnz—*0 for every z e £**. Then £ e ^ if and only if for every
P e W?E, c0), we have P(E**) c c0.

Several authors [20,13,11] have studied conditions on E, F so that SP(kE, F) =
^cc(

kE, F). Here we investigate the equality §>{kE, c0) = SPCc(kE, c0), proving that it is
equivalent to ££{E, c0) = ^(E, cQ). Grothendieck spaces with the Dunford-Pettis pro-
perty, and Schur spaces satisfy this property. In [18], examples are given of Grothendieck
spaces with the Dunford-Pettis property, and semigroups of operators on these spaces are
studied.

2. We first characterize the spaces £ such that SP(kE, c0) = SPwco(
kE,c0). Some

previous results are needed.

PROPOSITION 1. Let E be a nonreflexive space with the Grothendieck property. Then E
contains a copy of £v

Proof. Since E e <&/•, E has no quotient isomorphic to c0. Assume £ contains no copy
of (x. Then, E* contains no copy of ^ [12, Corollary 2.3]. Given a bounded sequence
((/>„)(=£*, we can find a weak Cauchy subsequence (0nJ. The sequence (</»nJ is
w*-convergent, hence weakly convergent, and we conclude that £ is reflexive. •

PROPOSITION 2. / / 9fE, c0) = 9wco{
kE, c0) for some k>l, then E is reflexive.

Proof. Suppose there is a nonweakly compact T e if(£, c0). Then we can find a
bounded sequence ( x n ) c £ such that (Txn) converges in the topology cr(4, A) to some
(an) E 4 with limsupan = a #0 . Define P(x) := (Tx)k, i.e., take the kth power coordinate-
wise. We have P e ^,co(*£, c0). However, (Pxn) converges in the topology cr(4, <?i) to
the sequence (ak)n G 4 , with limsup ak = ak ^ 0, a contradiction. Hence, £ G ^ .

Suppose E is nonreflexive. By Proposition 1, £ contains a copy of £x. Then, there is a
quotient map ^ :£ -» 2̂ (see e.g. [9, Lemma 12]). Let P:€2-*t\ be the polynomial given
by P((xn)n) = (**)„, and let ^ ' : ^ - > c 0 be a quotient map. Then the product q'Pq e
;?(*£, c0) is not weakly compact, a contradiction. •

LEMMA 3. / / M is a complemented subspace of E, then KkM is a complemented
subspace of AkE.

Proof. If 5 £ Z£{E, E) is a projection with S(E) = M, consider the linear mapping
defined by

(k) (k)

: ® S ® : ® S (xsE).
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Easily, this mapping extends to an operator in S£(AkE, KkE), which is the required
projection. •

(Ic \

To simplify notation, we write x(k)':= x®... ®x, for x e E. Let Pk:®*E —»<S>kE be
the projection defined by

. . . ®xk) = -^-k 2 *i • • W * >

This mapping extends to an operator on ®k E, which is a projection of ®kE onto AkE.
The following Lemma is contained in [8]. We include the proof for completeness.

LEMMA 4. Given u e A*£", there exists a sequence (x,) <= E such that 2 Ik/II* < °° and
cc

u = E e,-JC,-fc\ wir/i e, e {±1}.
1=1

Proof. By the definition of the projective norm, for any 8 > 0, we can find sequences
(x],),..., (xk) c E, such that

2 ||*i|| • . . . • ||**|| < ||u|| + 8, and u = 2 *n®- •

Then,

We can assume that, for each n, \\x\\\ = . . . = \\xk\\. Since

P,(xl® ®xk} = y e, €, (e,xx + +e,xkYk)

denoting by (*,-) the sequence

f ! / 1 *x , -, 1
LzVJt! J

we obtain

2 ll*/ll* —7T(IIMII + 8). and u = 2 *i*/fc),

completing the proof. D

Before stating the main result of this part, recall that for P E 2P(kE, F), its adjoint is
the operator P*:F*->SP(kE) given by P*(if/) = i]/°P for every tf/sF*. Then /> e
^vcoC^i F) if and only if P* is weakly compact [23, Proposition 2.1].

THEOREM 5. Given k > 1, we nave ?/zar 0*(*E, c0) = ^VCC^J CO) if and only if the space
@(kE) is reflexive.

Proof. For the "only if" part, if E is separable, then AkE is a Grothendieck
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separable space, hence reflexive. In the general case, suppose AkE is not reflexive. By
Lemma 4, we can find

so that {wn} is not relatively weakly compact in A*£. Let N be the closed linear span of
{x'n}jj, in E. Since E is reflexive (Proposition 2), there is a separable subspace M
complemented in E with N <= M. By Lemma 3, AkM e %, and is separable, therefore
reflexive. However, (vvn) c AkM, a contradiction, and we conclude that KkE and 8P(kE)
are reflexive.

The " i f part is clear by the previous comment. •

It is well known that the space 3P(k€p) is reflexive if and only if k <p < °c. If E = T*,
then 9{kE) is reflexive for all k [1].

In the last Theorem, c0 can be replaced by any superspace F. However, for F
containing no copy of c0, the result is not true since, for instance, every polynomial from
E = c0 into F4>c0 is weakly continuous on bounded subsets (see e.g. [11]).

3. In this part, we show that the situation is different for general projective tensor
products. We refine a result of [17], proving that for E e % and F* reflexive with the
bounded compact approximation property, £ ® F E ^ if and only if J£(E,F*) =
%(£,F*). As a consequence, &&€p for 2<p < oo and (X&T* have the Grothendieck
property.

PROPOSITION 6. Suppose E®F e %. Then E,F E %• and at least one of them is
reflexive.

Proof. Since E and Fare complemented in £(§>F, the first assertion is clear. Suppose
E and F are nonreflexive. Then each of them contains a copy of £x (Proposition 1). Hence,
there are quotient maps (see e.g. [9, Lemma 12])

<7, : E - * £2

Consider the quotient maps

If is well known that £2®Zi £ ^ (separable Grothendieck spaces are reflexive). Hence,
E&F $ %, a contradiction. •

REMARK 7. It follows from Proposition 6 that whenever El<8>.. .®Ek e % and, for
example, Ex is not reflexive, E2&...&Ek is reflexive. In particular, E2,...,Ek are
reflexive.

Before stating the next result, recall that the dual of £<£>F may be identified with
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PROPOSITION 8. Assume E e <&• and F is reflexive. If S£{E, F*) = <&(£, F*), then
E&F e <$r.

Proof. Let (An)cz i?(£, F*) be a w*-null sequence. Then for every x e E and y <= F,

Applying Kalton's test for the weak convergence of sequences in spaces of compact
operators (see Theorem 3 in [16]), we have that (An) is weakly null. D

We say that E has the bounded compact approximation property (BCAP) [4] if there
exists A > 1 so that for each compact subset KaE and for each e > 0 there is
S e <&(£, E) such that

Every space with the bounded approximation property has the BCAP. The converse is
not true [24].

PROPOSITION 9. Suppose F* is reflexive and has the BCAP, and E®F e %. Then we
have i?(£, F*) = %(£, F*).

Proof. Suppose first that F* is separable. Then there is a bounded sequence
(7;,)c<&(F*,F*) such that T^-^ip for all ifr e F*. Assume Ts5£(E,F*) is not
compact. For x E £, y e F we have

Since (TnT) is bounded and {x®y:xeE,yeF} generates a dense subset of E®F, we
have that (TnT) is w*-convergent to T. Since (TnT)<^%^(E,F*), (TnT) is not weakly
convergent to T, a contradiction.

For F* nonseparable, suppose T as above. There is a bounded sequence (xn) a E
such that (Txn) has no Cauchy subsequence. The closed linear span of {Txn} is contained
in a separable space M* complemented in F*. If q:F*^>M* is the identity on M*, then
qT e Z£{E, M*) is noncompact. By the above, E®M $ %, a contradiction since E®M is
a quotient of E <S> F. D

COROLLARY 10. For 1 ^p < °°, the space ^®^p has the Grothendieck property if and
only ifKp < °°.

Proof. If 2 < p < ° ° , we have f£ = -tq with l < g < 2 , and it is known that every
operator £ , - » ^ factors through £2 [21, Corollary 4.4] and is therefore compact. The
converse is easy. •

REMARK 11. (a) We note that the space C®£p®tp does not have the Grothendieck
property, for 2 ^ p < 3 . Indeed, there is a noncompact operator T:£p^>(£p®£p)*, for

oc

instance, the operator T associated to the polynomial Px := 2 x], for x = (*,•) E €P, given

by (Tx)(y ®z) = P(x,y, z), where P is the symmetric 3-linear form associated to P. Then
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T is not completely continuous, so we can find a weakly null sequence (xn) a £p such that
{Txn} is not relatively compact. Passing to a subsequence, we can assume that (xn) is
equivalent to a block basis and hence equivalent to the basis of £p. Let <?: £o—» 2̂ be a
quotient, and ;:<f2-*^> the operator taking the 4-basis into (xn). Then Tjq :€„,-*
{dp&£p)* is not compact, and it is enough to apply Proposition 9.

(b) It is proved in [2, Corollary 8] that the space (<t>* T*) <§> tp is reflexive, for
Kp<oo.

COROLLARY 12. The space &, ® T* has the Grothendieck property.

The proof relies on the following Lemma.

LEMMA 13. Let T be the dual of T*. Then Z£(L, T) = <&(&,, T).

Proof. Assume 5 e ££(£<*, T) is not compact. Let (yk) c 4 be a bounded sequence
such that (Syk) has no convergent subsequence. Choose a weakly convergent subsequence
(SykJ, and take xn :=>'*2n ".y^.,- Then (Sxn) is weakly null, and we can assume that it is
equivalent to a block basis in T.

Since {Sxn} spans a complemented subspace [5;cn] [5, Proposition II.6], there is an
operator V:T-+[Sxn] which is the identity on [Sxn]. For Kq<2, T has lower
<7-estimates [5, Proposition V.10], so there is an operator U ':[&*„]-» (q given by
U(Sxn) = en, where (en) is the unit vector basis of €q. Then f/KS:4-» tq is not compact, a
contradiction [21, Corollary 4.4]. •

In [17], the following result was obtained (see Zentralblatt Math. 599 #46017 (1987)):
"Let £ be a Banach space with the Grothendieck property, and F a reflexive space

with the metric approximation property. For £<§>Fto have the Grothendieck property it
is necessary and sufficient, that each operator E—* F* be compact".

Another related result is the following of [15]:
"If E and F are reflexive and both have the approximation property, then i£{E, F) is

reflexive if and only if i?(£, F) = <&(£, F)".

4. Next we describe the Grothendieck property in terms of polynomials. Recall that
each P e $>(*£) has a Davie-Gamelin extension P e $>(*£**) (see the Introduction). The
authors are indebted to Professor Richard M. Aron, who suggested this study. Namely, he
asked if, given £ E % and a sequence (/*„) c §>{kE) with Pnx -»0 for all x e E, it is true
that Pnz -»0 for all z e £**. The following theorem shows that the answer is affirmative.

THEOREM 14. The following assertions are equivalent:
(a) £ has the Grothendieck property;
(b) for every integer k, given a sequence (Pn) c !?(*£) w/r/z Pn;c -»0 for all x E £ ,

Pnz->0forallz e £**;
(c) f/ze same statement as (b) « frue /or some /c.

/ (a) ̂ > (b). By induction on k. For k - 1, the result is nothing but the definition
of the Grothendieck property. Suppose it holds for k-1, and let (/>„) c ^(^E) be a
sequence such that Pnx -* 0 for all x E £. Denote by Fn e if(*£) the associated symmetric
A:-linear form, and by Gn e £{E x £** x ^.r.^ X £**) an extension obtained by the
Davie-Gamelin method.
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Thanks to the polarization formula [19, Theorem 1.10], we have that

Fn(xux2,...,xk)-^0 for every xu...,xkeE.

Fixing x, e £ , we define Qn E SP^-^E) by Qn(x) = Fn(xux,... ,x). Then £>„*->• 0 for all
x E £ .

By the induction hypothesis and polarization,

Gn(xu z 2 , • • • , z k ) -* 0 , f o r z 2 , . . . , z k s E**.

Then, for z2,-• • ,zk e E** fixed, the sequence (</>„)c£*, given by 4>n(x) =
Gn(x, z2, • • • , zk), is w*-null, hence weakly null, and so

Fn(Zi,z2,...,zk)^>0 for e v e r y zu-• • ,zk e E**,

where Fn e i?(*£**) is the Davie-Gamelin extension of Fn.
(b) =̂> (c) is trivial.
(c) =£> (a). Given a w*-null sequence ((/>„) c £*, apply (c) to Fnjc := (</>„(*))*. D

Given a polynomial P e 0>(*£,co), with Px = (Pnx)n, we define P E $>(*£**, 4 ) by
Pz := (Pnz)n- Then we have the following corollary.

COROLLARY 15. The space E has the Grothendieck property if and only if for every
P e 0>(*£, c0), we have that P{E**) c c0.

For polynomials whose restrictions to bounded sets are weakly continuous, we can
deduce a result on weak convergence.

COROLLARY 16. The following assertions are equivalent:
(a) £ has the Grothendieck property;
(b) for every integer k and every F, if for a sequence (Pn) <= Pwh(

kE, F) we have that
(Pnx, t/f)—* 0 for all x e E and ip E F*, then (Pn) is weakly null;

(c) the same statement as (b) is true for some k and some F ¥^ {0};
(d) for some k, if for a sequence (/>„) <= 8PH,h(

kE) we have that Pnx—>0 for all x E £ ,
then (Pn) is weakly null.

Proof, (a) => (b). It is proved in Theorem 4 of [10] that a sequence (Pn) <z @wb(
kE, F)

is weakly null if and only if, for every z E £** and if/eF*, we have {Pnz,ip)—*0.
Therefore, it is enough to apply Theorem 14(b).

(b) => (c) is trivial.
(c)=>(d). Take O^y e Fand define Qnx:= (Pnx)y.
(d) ^ (a). Given a w*-null sequence ((/>„) c £*, apply (d) to Pnx := (<pn(x))k. D

5. Several authors [20,13,11] have studied conditions on £ , F so that 8P(kE, F) =
2Pcc(

kE, F). Here we investigated the equality 5P(kE, c0) = SPcc(
kE, c0), proving that it is

equivalent to 3!(E, c0) = ^(E, c0). Therefore, the Grothendieck spaces with the
Dunford-Pettis property, and the Schur spaces satisfy this property.

THEOREM 17. The following assertions are equivalent:
(a) i?(£, c0) = <£«(£, c0);
(b) 9(kE, c0) = 0>cc{

kE, c0) for all integers k.
(c) $P(kE, c0) = PccCE, C0) for some integer k.
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Proof, (a) ̂ > (b). By induction on k. For k = 1 there is nothing to prove. Assume the
result is true for k-1, and consider P e SP(kE,c0) with associated fc-linear mapping A.
We only sketch the proof, since it follows the lines of that in [11, Theorem 6]. In fact, we
can prove that every k-linear mapping from Ek into c0 takes weak Cauchy sequences into
convergent ones. Let (xj,),... , {xk

n) <r E be weak Cauchy sequences. Suppose first that
one of them, say (*„), is weakly null.

Define the operator T.E-*co(co) by

y~(A(xl
n,...,x

k
n-\y))n.

Using the induction hypothesis, it is not difficult to see that T is well-defined. Since co(co)
is isomorphic to c0, T is completely continuous. From this, we have

lim ||,4(4,,- • • ,4011 ^ Km sup \\A{x\,... , xk-\ xk
m)\\ = 0.

m m n

In the general case, the proof follows that of Theorem 6 in [11].
(b) ^> (c) is obvious.
(c) :=> (a) is clear. •

The condition iB(E, c0) = W ( £ , c0) implies that E has the Dunford-Pettis property.
However, there are spaces with the Dunford-Pettis property that admit non-completely
continuous operators into c0 (e.g. E = co,E = Lt[0,1]).

ADDED IN PROOF. While this paper was in press, G. Emmanuele pointed out that
Propositions 6 and 8 and Corollary 10 are contained in his note About certain isomorphic
properties of Banach spaces in projective tensor products, Extracta Math. 5 (1990), 23-25.
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