
Advance Access publication May 11, 2005 Political Analysis (2005) 13:233–252

doi:10.1093/pan/mpi015

Scalable Protocols Offer Efficient Design for
Field Experiments

David W. Nickerson
Department of Political Science, University of Notre Dame,

217 O’Shaughnessy Hall, Notre Dame, IN 46556
e-mail: dnickers@nd.edu

Experiments conducted in the field allay concerns over external validity but are subject to the

pitfalls of fieldwork. This article proves that scalable protocols conserve statistical efficiency

in the face of problems implementing the treatment regime. Three designs are considered:

randomly ordering the application of the treatment; matching subjects into groups prior

to assignment; and placebo-controlled experiments. Three examples taken from voter

mobilization field experiments demonstrate the utility of the design principles discussed.

1 Introduction

The past few years have witnessed a growth in the popularity of field experiments as

a research methodology for studying political behavior. The ability to establish clear causal

relationships is the primary attraction of randomized experiments. Experiments obviate

the need for complicated modeling assumptions through the controlled manipulation of

a variable of interest. Unfortunately, this control often removes analysis from the real

world and places it within the artificial confines of the laboratory, creating questions about

the external validity of the findings. Field experiments can ameliorate some concerns about

external validity, but control over the execution of the protocol is diminished and unex-

pected problems can arise. Solutions to problems encountered in the field are typically

labor intensive and expensive. This article argues that scalable experimental designs

preserving statistical efficiency can free up resources needed to address problems in

execution.

An experiment, at its most basic, randomly divides subjects into two groups: one that

receives the factor of interest (the treatment group) and one that is not exposed to the

factor (the control group). Since assignment to each group is random, any systematic

difference between the two groups in the dependent variable is, on average, attributable to

the variable of interest. Problems arise when there is a failure to treat the members of the

treatment group or the treatment is inadvertently applied to the control group. Failure to

treat can be manifested in many different ways but falls into three broad categories:

delivery, the researcher’s ability to distribute the treatment accurately; receipt, the

subject’s ability to receive the treatment; and adherence, whether or not the subject
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obeys the prescribed treatment regime (Lichstein et al. 1994). While failure to treat

decreases statistical efficiency, it does not inherently bias estimates. However, concerns

about protocol execution often result in subject attrition, which can bias experimental

estimates.

Adjusting for such problems usually takes place after the fact through statistical

modeling, but the process involves imposing a series of assumptions that may not accurately

capture the data generating process. Since the validity of these modeling assumptions is

often untestable, the value of the experiment over research based upon observational

research is questionable when compliance with the experimental protocol and subject

attrition must be modeled (see Heckman and Smith 1995).

An alternative strategy is to design experimental protocols that preserve precision by

implementing scalable experiments. Most problems in the field can be addressed with

additional time and money, which are in limited supply for most studies. This article

presents three experimental designs that can be scaled in response to problems encountered

in the field and demonstrates the improvement in statistical efficiency through a series of

propositions and real-world examples. The contribution of this article lies not in the

designs themselves (which are all commonly used throughout experimental sciences1), but

in the discussion and examples from political behavior of how shifting resources in

response to field contingencies can maximize statistical efficiency.2

The statistical power behind an experiment is a function of the variance of its estimated

treatment effect. The variance of the treatment effect is a function of three primary

components subject to experimental control: the number of subjects in the experiment, the

ratio of subjects assigned to the treatment and control groups, and the percentage of the

subjects to whom the correct treatment was actually applied (application rate).3 Problems

in the field usually adversely affect the application rate (i.e., members of the treatment

group are not given the treatment or the control group accidentally receives the treatment).

This article explains how three different experimental protocols preserve statistical

efficiency by shifting shortfalls in the application rate to other components of the standard

error formula. First, protocols that randomly determine the order in which the treatment is

applied to subjects allow the researcher to adjust the treatment/control ratio to account for

resource shortfalls. Second, protocols that match subjects within groups prior to random

assignment into the treatment and control conditions place the burden of shortfalls

squarely on the number of subjects in the experiment rather than the application rate.

Brief algebraic proofs are provided to demonstrate the superiority of the two types of

protocols to experimental designs that lower the application rate of the treatment. Finally,

the relative statistical efficiency of placebo-controlled experiments will also be considered

and discussed. Under some conditions, which are outlined below, placebo-controlled

experiments are more efficient than protocols that randomize the order of treatment or

match subjects.

The examples provided in this article will be taken from voter mobilization field

experiments. Voter mobilization is unusual in that delivery of, receipt of, and adherence to

the treatment regime occur simultaneously. The knock at the door encouraging a person to

1Four good reference books for experimental design are Wu and Hamada (2000), Montgomery (2001),
Riffenburgh (1998), and Box et al. (1978).

2Leslie Kish (1965) discusses a nearly identical notion he calls ‘‘design effects.’’ The context of Kish’s discussion
is survey research, but the logic applies equally well to the context of field experimentation.

3By collecting control variables, the researcher can lessen the unexplained variance of the estimand but cannot
actually minimize the outcome variance itself. Control variables are an extremely useful tool and can be used in
conjunction with the protocol designs discussed herein.
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vote (i.e., delivery) lasts only a few seconds, so the subject has little opportunity not to

hear the message (i.e., receipt) and nothing further to do (i.e., adherence).4 As a result,

voter mobilization experiments constitute a very clean set of illustrations of the design

principles because application of the treatment is captured by a single concept and

number—namely, the contact rate.5 Other types of field experiments will likely be

somewhat more complicated in this regard, but the results and design principles will

still hold.

The article will begin by briefly highlighting a few pertinent facets of designing and

analyzing field experiments. Second, the chief drawback to the standard experimental

design will be described and explained. The discussion will then turn to a more efficient

experimental protocol where the order in which subjects are treated is randomized (the

rolling protocol). Unfortunately, there are few settings where it is possible to fully

randomize the order in which subjects are treated, so the fourth section of the article

describes a more general design where treatment and control subjects are paired together

(the matched protocol). Because the major source of inefficiency is the application rate,

a design that uses the application of a placebo as a comparison group for those treated is

also considered. The article concludes by discussing the relative costs of each experimental

design and complicating factors.

2 A Brief Introduction to Field Experiments

The utility of randomized controlled experiments was noted by R. A. Fisher in 1935 and

took root in the natural and social sciences in the decades that followed. An experiment, in

its most basic form, is any study in which one or more treatments are applied to subjects

randomly (see Rubin 1974, p. 689, for a more lengthy discussion). The random assignment

of the variable of interest assures (on average) that confounding factors, such as

measurable and immeasurable causes of the dependent variable, are the same in the

treatment and control groups.6 This balance between treatment and control groups allows

for very easy assessment of the effect of the treatment. To calculate the intent-to-treat

effect (ITT), simply subtract the observed average value of the dependent variable of the

control group from the observed rate in the treatment group.

This logic can easily be expressed mathematically. Let T equal the assignment to the

treatment condition (i.e., T ¼ 0 implies assignment to the control group and T ¼ 1 implies

assignment to the first treatment group; YT¼1
i and YT¼0

i represent the outcome measures for

the individuals assigned to the treatment and control groups, respectively). Equation (1)

represents the model for the intent-to-treat effect where B is the baseline level of the

outcome variable (i.e., the sum of the observed and unobserved causes of Y ) and d is the

effect of the treatment assignment upon the measured outcome,

Yi ¼ Bi þ dTi: ð1Þ

4Since voter mobilization experiments are often associated with existing political organizations, consent of the
subjects is not a concern. The campaign would contact a set of residents regardless; the researcher simply
randomizes existing activities.
5In the United States, voter turnout is recorded and publicly available. As a result, subject attrition due to
measurement of the dependent variable (or lack thereof) is not a concern for voter mobilization experiments.
6It should be noted that endogeneity is another confounding factor that randomized experiments sidestep.
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Since the assignment to treatment is random, limi!‘BT¼1
i � BT¼0

i ¼ 0 and the intent-to-

treat effect can be calculated as follows:

dITT ¼ �Y
T¼1 � �Y

T¼0
: ð2Þ

This estimated intent-to-treat effect provides an unbiased estimate of the effect of the

assignment to a treatment regime.

While field experiments are common in public policy research and enjoyed brief

popularity during the early 1950s, experiments have largely been confined to the

laboratory regarding political behavior. The reason for the dearth of experimental studies

of political behavior in the field is the difficulty of implementing protocols in the real

world. One complication that arises is applying the correct treatment to the correct subject.

Lichstein et al. (1994) divide treatment application into three separate components:

treatment delivery, treatment receipt, and treatment adherence. In the field, each and every

one of these parts of treatment can fail. If significant numbers of subjects in the treatment

group fail to complete the assigned treatment regime, then the intent-to-treat analysis will

understate the true effect of the treatment upon those subjects who actually received it.

What is needed is an adjustment of the intent-to-treat effect to estimate the treatment effect

upon those actually treated.

Happily, this transformation is easy to compute (see Angrist et al. 1996a and Gerber

and Green 2000 for a full discussion). Failure to treat creates two types of experimental

subjects: those who would have completed the assigned treatment regime and those who

would not, or, compliers and noncompliers. Let BC and B;C represent the baseline

outcome measures for compliers and noncompliers, respectively. Let a represent the

application rate of the experiment (i.e., percentage of individuals assigned to the treatment

condition successfully receiving the treatment minus the percentage of the individuals

assigned to the control group that inadvertently received the treatment). Since the

experimental conditions are randomly assigned, both the treatment and control groups will

contain an equal proportion of compliers and noncompliers on average (i.e., E(aT¼1 �
aT¼0) ¼ 0).7 It is now possible to represent the causal model as follows:

Y ¼ aðBC þ dTÞ þ ð1� aÞB;C: ð3Þ

Due to the random assignment, limn!‘b
T¼1
C � bT¼0

C ¼ 0 and limn!‘b
T¼1
;C � bT¼0

;C ¼ 0.

Equation (4) solves for d and provides an unbiased estimator for the treatment effect upon

those subjects treated (TOT).

dTOT ¼
�Y

T¼1 � �Y
T¼0

â
: ð4Þ

The logic behind this straightforward estimator is that since the treatment and control

groups are randomly assigned, the two will generally possess an equal proportion of

persons who would comply with the treatment regime given the opportunity. That is, if

40% of the persons assigned to the treatment group complied with the protocol,

a hypothetical application of the treatment regime to the control group would also yield

7One can use the sample to estimate a by calculating the percentage of subjects in the treatment group actually
treated.
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40% compliance on average.8 It is important to note that the treatment effect being

estimated is only for those subjects who comply with the prescribed protocol. There is no

way of estimating the treatment effect for those subjects who do not or would not

participate without imposing stronger restrictions (Angrist et al. 1996b). Narrowly

construing the object of estimation to be the average treatment effect upon those treated

makes failure to treat a problem of external validity (i.e., how the treatment affects those

subjects in the treatment group not treated) rather than one of bias.9

The concern of this article is the precision of the estimated treatment effect upon those

treated. Equation (5) presents the formula for the variance of the estimated treatment effect

upon the treated subjects from Eq. (4):

VarðdTOTÞE ¼ r2

A2NTð1� TÞ
; ð5Þ

where r2 ¼ the variance of the estimand, Y; A ¼ the application rate (i.e., the percentage of

subjects in the treatment group to whom the treatment is actually applied minus the

percentage of subjects in the control group to whom the treatment is applied); N ¼ the total

number of subjects in the experiment; and T ¼ the percentage of subjects assigned to the

treatment group (with 1�T being assigned to the control group),10 Minimizing the

variance of the estimated treatment effect allows a researcher to speak more precisely

about and be more confident in the results of an experiment. Equation (5) offers a few

obvious conclusions. First, as the total number of subjects, N, in the experiment decreases,

the variance increases. So, all else being equal, big experiments have more statistical

power than small experiments. Second, since 0 � A � 1, as the application rate decreases,

the variance of the estimate increases. Thus, treated members of the control group and

untreated members of the treatment group decrease the power of the experiment. Third, the

further the proportion of subjects in the treatment group moves away from 0.5 (a 50–50

split between treatment and control), the greater the variance of the estimated treatment

effect. An experimenter can control A, N, and T, so it is useful to establish the relative

importance of each of these factors in the research design through two propositions.11

Proposition 1. There is a trade-off between increasing the number of subjects in an
experiment and lowering the application rate. That is, adding subjects to an experiment
increases the statistical precision only when a sufficient proportion of the new subjects

8The Wald estimator discussed in Angrist et al. (1996a) makes the following five assumptions: 1) the assignment
to treatment and control conditions was random; 2) neither the assignment of nor compliance with the treatment
regime for one subject changes the outcome or compliance for another subject; 3) assignment to the treatment
condition increases the likelihood of receipt of the treatment; 4) the random assignment has no effect upon the
experimental outcome, except through the application of the treatment; and 5) there are no subjects who would
always reject the treatment if assigned but take the treatment when not assigned. These five assumptions are
unlikely to be problematic for many topics in political behavior. However, there may be instances in which one
of the assumptions is problematic and a researcher will need to revert to intent-to-treat analysis (see Shadish et al.
2002, p. 322).
9Donald Campbell has clearly and eloquently differentiated concerns of external validity (i.e., how do results hold
over time, place, persons, etc.) from internal validity (i.e., whether the inferred relationship is causal) and bias
(i.e., systematic error in the estimate or inference). Detailed discussions can be found in Campbell and Stanley
(1963), Cook and Campbell (1979), and Shadish et al. (2002).
10This terminology will be used throughout this article.
11The benefit of adding subjects to an experiment (increasing N) always outweighs the balance between treatment
and control ratio. This is because it adding subjects to either the treatment or the control group increases the
precision of the experimental estimate.
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can be given the correct treatment.12 Specifically, an experiment with Nþn subjects will
have more power than an experiment with N subjects only when the application rate does
not decline by more than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ n

p
Þ. (Proof in Appendix)

Proposition 2. There is a trade-off between the treatment/control ratio and the
application rate. That is, subjects should be shifted from the control group to the
treatment group only when the application rate is not significantly lowered. Specifically,
moving n subjects from the control to the treatment group increases statistical power only
when the application rate declines by less than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðN � tÞ=ðt þ nÞðN � t � nÞ

p
, where t is

the number of subjects in the treatment group. (Proof in appendix)

Taken together, Propositions 1 and 2 hint at the importance of the application rate.

Adding subjects to an experiment is good in general, but if the ability to apply the correct

treatment is a function of the number of subjects (or the treatment/control ratio), then the

benefit of the increased size may be offset by reduced contact rates.

This point has practical importance when conducting a field experiment. Managerial

oversight is necessary for many field experiments, and the size of the experiment may

exceed a researcher’s ability to control the quality of protocol implementation. Similarly,

applying an experimental treatment may be labor intensive, and increasing the number of

subjects to receive the treatment may spread resources too thinly. For example, suppose

a researcher wants to study the effects of public service announcements (PSAs) on teenage

smoking. She sends a randomly selected set of radio stations the PSA. The treatment is

more likely to be applied (i.e., the PSA aired) if the researcher develops relationships with

station managers and DJs. While mailing the PSA to 50 stations may be just as easy as

sending it to 10 stations, if the researcher only has the time to make introductory and

follow-up calls to 10 stations (thereby ensuring that the PSAs are aired), she might be well

advised to keep the treatment group at 10.13 The application rate may not be a concern in

a laboratory setting where the researcher has control over what occurs, but it demands

considerable attention when conducting experiments in the field.

The importance of the application rate is more apparent when the vagaries of

conducting field experiments are considered. Despite careful planning and meticulous

attention to detail, experimental protocols can be difficult to administer in practice. Subject

retention may be more expensive than anticipated, volunteers can fail to show up, bad

weather can cancel events, insufficient materials may be available—the potential list of

problems is endless. To quantify the extent of havoc problems can wreak upon field

experiments, let 0 � P � 1 represent the percent of the protocol executed faithfully, where

1 means everything went exactly as planned and 0 means there was no experiment to speak

of. To focus this very abstract operationalization it may be useful to think of P as the

percentage of planned workers who actually assist in conducting the experiment. For

instance, if a researcher determines that she needs 20 assistants to apply the treatment but

only 15 show up, then P ¼ 0.75.

Virtually any problem with implementing an experimental protocol can be captured by

the parameter P, because an increase in resources can solve most problems and resources

are fungible. For instance, suppose a researcher asked subjects to read a newspaper on

a daily basis and answer attitudinal questions periodically. Suppose further that the

monetary incentive for compliance proved twice as small as necessary for most subjects to

12Assuming that the variance of the estimand for the subjects added is the same as the variance of the estimand for
the original subjects.

13This depends upon how many radio stations would play the PSA with no call (i.e., the baseline application rate).
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complete the program. The researcher, therefore, would be able to complete only half of

the study (whether by cutting the treatment regime in half or recruiting half as many

subjects) and P ¼ 0.5. Almost every conceivable problem can be measured in this manner.

A quick discussion of bias is in order here. Noncompliance with the treatment regime

does not necessarily introduce bias. On average, the control group will contain a similar

proportion of compliers and noncompliers, so the estimated effect of the treatment upon the

treated will be biased only when the assumptions of the Angrist et al. (1996a) approach are

violated (see note 8). However, noncompliance with the treatment regime is often associated

with difficulty in measuring the dependent variable, in which case the subject cannot be

included in the analysis in any straightforward manner.14 If attrition from the experiment is

correlated with treatment (negatively or positively), then estimates may be biased.15 Every

effort should be made to ensure that subjects complete the course of the experiment.16

Unfortunately, such efforts usually are time consuming and expensive (see Shadish et al.

2002, pp. 323–39, for a discussion of possible solutions) and may prove difficult to budget

for. While scalable experimental protocols may not be able to solve the problem of bias from

differential attrition, they can free the resources necessary to tackle such problems and

preserve sufficient statistical efficiency to obtain meaningful results.

In the following sections it will be demonstrated that the statistical power of the

standard experimental protocol suffers considerably from even small drops in P but that

scaled protocols offer an efficient solution to problems encountered in the field.

3 Standard Experimental Protocol

In the simplest experimental protocol, the researcher randomly assigns the universe of

subjects to treatment and control conditions and then applies the correct treatment to each

group. The number of subjects to be examined, N, is set, as is the treatment/control ratio, T.
The component of the experiment that may be susceptible to problems is the application

rate, A. As stated earlier, field experiments will rarely have an application rate of 1—

contacting and organizing citizens in their natural habitats is more difficult than treating

psychology students in a laboratory. Problems in the field will lower the application rate

below its baseline. Thus, the application rate for the standard experimental protocol is PA.
For instance, a researcher conducting a voter mobilization experiment may anticipate

contacting people at home 30% of the time (A ¼ 0.3). However, if only half of the needed

volunteers arrive to knock on doors (P ¼ 0.5), only half of the doors in the treatment group

will be attempted, and the doors that are attempted will still have a success rate of 30%.

The effective application rate for the entire treatment group in the experiment becomes an

abysmal 0.15. The influence of problems can be incorporated into the formula for the

variance of the treatment effect upon the treated for the standard protocol.

VarðdTOTÞS ¼ r2

P2A2NTð1� TÞ
ð6Þ

As the percent of the protocol implemented decreases, P, the precision of the estimate

decreases. In the standard experimental protocol, any decline in planned resources is

magnified because the shortfall affects the application rate, which is a squared term.

14Techniques to cope with missing data do exist (see Little and Rubin 1987 or Allison 2002). However, all
missing data techniques are not costless and impose additional assumptions on the analysis.

15Goodman and Blum (1996) conclude that few studies analyze attrition from experiments.
16Groves (1989) discusses the trade-offs between attrition and sample size.
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A tempting but incorrect method of boosting the application rate is to shift untreated

members of the original treatment group into the original control group (for examples in

voter mobilization see Eldersveld 1956; Adams and Smith 1980; Miller et al. 1981). The

practice leads to biased inferences, because nontreatment is likely to be correlated with the

dependent variable.17 However, the next section will discuss a protocol designed to allow

precisely this shift of subjects without biasing the estimates.

4 Rolling Experimental Protocol18

Rather than divide the total group of subjects into firm treatment and control groups,

subjects are placed into the random order in which they will be treated. Since the only

difference between the first subjects and the last subjects to be treated is the random

number, those subjects for whom the application of the treatment was never attempted can

simply be shifted to the control group. It is very important to note that the subjects for

whom application of the treatment was attempted should remain in the treatment group and

not be moved to the control group. There are likely to be systematic differences between

those subjects for whom the treatment cannot be applied and those for whom application is

successful.

Under this rolling protocol, both the number of subjects in the experiment, N, and the

rate of application, A, remain fixed. The only component of the experimental variance

subject to problems in execution is the treatment control ratio, T. If everything goes as

planned, a researcher places T subjects in the treatment group and (1�T ) subjects into the

control group. However, if problems in execution arise and only a portion of the protocol

is implemented, only PT subjects may have application of the treatment attempted and the

rest are rolled into the control group. The variance of the estimated treatment effect for

such a protocol can be expressed as

VarðdTOTÞR ¼ r2

A2NPTð1� PTÞ
: ð7Þ

Because P is strictly positive and less than or equal to one, Eq. (7) has the intuitive result

that the overall variance of the estimator increases as P decreases. Comparing Eq. (6) to

Eq. (7), it is possible to state the following proposition:

Proposition 3. For 0 , P , 1, the rolling protocol estimate of the treatment effect
exhibits less variance (hence more statistical precision) than the estimate under the
standard protocol. (Proof in appendix.)

The intuition behind the proof is straightforward. Using the standard protocol,

problems affect the application rate and are therefore squared when calculating the

variance of the estimate. In contrast, the rolling protocol shifts any shortfalls onto the

treatment/control ratio, which inflates the variance of the estimate less than the application

17It is important to note that the correlation may not be observed. Managing unobserved heterogeneity is the chief
advantage of controlled experiments, and moving subjects based upon contact defeats this purpose.

18The rolling protocol is occasionally referred to as a ‘‘fully randomized’’ protocol since the timing of the
treatment application is also randomly determined. However, reference books seldom refer to the procedure as
its own experimental design. Instead, randomizing the sequence of treatment is presented as a general design
principle (e.g., Wu and Hamada [2000, pp. 9–11]; Montgomery [2001, pp. 60–63]; and Box et al. [1978,
p. 405]).
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rate. When it is possible to randomize the order in which subjects receive the treatment,

the rolling protocol is the optimal design for conserving statistical precision in the face

of shortfalls.

A voter mobilization experiment conducted in Boston during the 2001 mayoral election

offers an example of the superiority of the rolling protocol over the standard protocol.19

Phone numbers were obtained for 7055 registered voters, and half of these people were

randomly selected to be called the weekend before the election by volunteers. The phone

numbers were then placed in a random order and volunteers called from the top of the list

to the bottom. Callers reached the intended person 55% of the time at the numbers dialed.

Unfortunately, fewer volunteers than expected showed up, and only 1209 of the 3577

numbers in the treatment group were attempted. Because the phone list was randomly

ordered, those numbers not attempted could be shifted into the control group, thereby

preserving the 55% rate of application, but the treatment/control ratio fell to 17%.

The control group voted at a rate of 54.5%, while the treatment group voted at a rate of

56.1%, so the estimated effect among the treated was 2.9% with a 2.8% standard error (see

Table 1, column 1).

The results from the experiment may not appear impressive, but consider the estimate if

the standard protocol had been used instead. Without the ability to roll unattempted

subjects into the control group, the application rate falls from 55% to 19%. The low

application rate inflates the standard error for the ultimate estimate from 2.8% to 6.3%—

more than twice as large (see Table 1, column 2). Figure 1 displays the 95% confidence

intervals for the rolling and standard protocols for the Boston experiment. Neither of the

protocols generated biased estimates, but the rolling protocol offered statistical precision in

the face of a 30% shortfall in volunteers.

19See Nickerson 2004a for a full description.

Table 1 Experimental Voter Mobilization Results under Different Protocol Designs

City Boston Bridgeport Denver

Column 1 2 3 4 5 6 7

Protocol Rolling Standard Matched Standard Placebo Matched Standard

Number of subjects

in study

7055 7055 1900 19184 562 3398 11080

Percent assigned to

treatment

17.1% 50.7% 50.0% 50.0% 50.4% 50.1% 50.0%

Application rate 55.4% 18.7% 27.9% 2.7% 100.0% 16.7% 5.1%

Control group

voting rate

54.5% 54.4% 9.7% 12.2% 39.1% 38.4% 39.4%

Treatment group

voting rate

56.1% 55.1% 13.6% 12.3% 47.7% 40.6% 40.3%

Intent to treat effect 1.6% 0.7% 3.9% 0.1% 8.6% 2.2% 0.9%

Estimated effect on

the treated

2.9% 3.5% 13.9% 4.9% 8.6% 13.2% 17.7%

Standard error of

estimate

2.8% 6.3% 4.9% 17.3% 4.1% 10.0% 18.2%
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5 Matched Experimental Protocol20

It is not always possible to randomly order the application of treatment for subjects. The

subjects may fall into discrete groups that cannot easily be integrated with each other. For

instance, if a researcher wanted to measure the influence of participation in community

building exercises on high school students’ feelings of internal efficacy (with attending

a school assembly serving as a control), it may not be possible to rank order the students

because participation in the experiment depends upon a teacher agreeing to forgo class for

the period. This hurdle does not necessitate the use of the standard experimental protocol.

Instead of breaking the subjects into monolithic treatment and control groups, those groups

can be subdivided by classroom. If a teacher decides to participate in the experiment, the

students are divided randomly into treatment and control groups. Classrooms that were not

permitted to be a part of the experiment are not included in the analysis and therefore do

not adversely affect the application rate of the experiment.

More generally, matching treatment and control groups within the discrete units of

analysis fixes the application rate and the treatment/control ratio, leaving on the size of the

experiment vulnerable to problems in execution of the protocol. From the example above,

if 100% of the teachers participate, the size of the experiment, N, remains the same.

However, when only P classrooms are able to participate, then the experiment contains NP
subjects. The variance for estimated treatment effect upon those treated using the matched

protocol is

VarðdTOTÞM ¼ r2

A2PNTð1� TÞ
: ð8Þ
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Fig. 1 Efficiency gained through the use of scalable protocols.

20The matched protocol is often referred to as a ‘‘blocked’’ or ‘‘paired’’ design (for a more lengthy discussion see
Wu and Hamada [2000, pp. 48–54]; Montgomery [2001, pp. 47–51, 126–140]; Riffenburgh [1998, pp. 18, 145,
284]; and Box et al. [1978, pp. 93–106]).
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Once again as P decreases (i.e., problems increase or participation decreases) in Eq. (8) the

variance of the estimate rises. Comparing Eq. (8) to Eqs. (6) and (7), the following

proposition can be derived:

Proposition 4. For 0 , P , 1, the estimate of the treatment effect upon those treated
using the matched protocol exhibits less variance (hence more statistical precision) than
using the standard protocol but more variance than the rolling protocol, assuming
r2

matched ¼ r2
standard. (Proof in appendix)

The intuition behind the proof is similar to the proof for Proposition 3. Whereas

shortfalls in the standard protocol are squared, the matched protocol does not magnify

problems. However, the rolling protocol does a slightly better job of hiding problems by

shifting the burden to the treatment/control ratio.

A door-to-door voter mobilization experiment in Bridgeport, Connecticut, during 2001

presents an excellent illustration of the power of the matched protocol.21 A nonprofit

community group, ACORN, encouraged Bridgeport residents to vote during the month

prior to a school board election. The voter rolls were obtained from the city clerk, and

residents on each street were evenly divided into treatment and control groups.22 Thus,

each street served as the unit within which subjects were matched and randomly divided

into the treatment conditions.

ACORN felt that it could successfully apply the treatment to most of the city during the

weeks leading up to the election. These lofty ambitions were thwarted by two factors.

First, the initial application rate was very low, so weekdays were spent rewalking the areas

that were covered the prior weekend to raise the contact rate. The ultimate rate of

application was a respectable 28%, but coverage of the city was significantly curtailed.

Second, the mayoral race in a neighboring town was more competitive than the Bridgeport

school board elections, so ACORN decided to shift resources away from Bridgeport to

the mayoral race. As a result, only a small fraction of the anticipated labor was available

for the Bridgeport experiment. The combination of these two factors meant that the ex-

periment was one-tenth the size of the study initially planned and not as many streets were

canvassed.

The resulting experiment using the matched protocol consisted of 1900 subjects living

in neighborhoods canvassed by volunteers. Half of the subjects were assigned to the

treatment group and contacted 28% of the time. The precision of the experiment was

sufficient to detect the estimated 14% treatment effect with a standard error of 5% (see

Table 1, column 3). In contrast, the standard protocol would have included 19,184

subjects, but a paltry 3% of the treatment group would have received the treatment.

The estimated treatment effect, 5%, is dwarfed by a 17% standard error (see Table 1,

column 4). The standard error for the standard protocol is 340% of the standard error of

the matched protocol, and Fig. 1 displays the 95% confidence interval for each estimate.

Even though both protocols yield unbiased results, the need for efficient design is obvious.

Despite being only one-tenth the planned size, the Bridgeport experiment provided

statistically significant results.

The flexibility of the matched protocol also deserves emphasis. The matching of the

treatment and control groups can take place for large groups like schools or for pairs of

21See Gerber et al. (2003) for a full description.
22The rolling protocol is infeasible for door-to-door efforts because walking from house to house in a random
order would be impractical.
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individuals or organizations. The logic remains the same: if application of the treatment is

attempted, then include both the treatment and matched control group into the analysis. It

is difficult to conceive of a field experiment in which it is not possible to match subjects

and divide these subgroups into treatment and control groups before conducting the

experiment.23

The idea of matching subjects within social groups provides a good place to discuss

violations of the stable unit value treatment assumption (SUVTA; see Rubin 1986). The

experimental analysis discussed in this article assumes that each version of the treatment

regime is represented (e.g., the drugs taken by the patients do not vary in effectiveness)

and there is no cross-contamination or interference between subjects (e.g., treatment and

control patients do not share drugs in any systematic manner). Registered voters residing

on the same street are unlikely to interact sufficiently to bias inferences. In contrast,

students within classrooms, as described in the beginning of the section, are extremely

likely to interact with one another, so cross-contamination of treatment is a serious

concern. The validity of SUVTA will depend upon the specific context of the experiment.

In situations in which violations of SUVTA are likely, the researcher should not randomize

individual subjects within the group but should instead consider using the groups

themselves as the unit of randomization. Violations of SUVTA are not unique to the

matching protocol, but blocking within social groups highlights the necessity for

a researcher to pay careful attention to the proper unit of randomization and analysis to

avoid biased inferences.

6 Placebo-Controlled Protocol

Both the rolling and matched protocols will protect the application rate from problems

with the execution of the experiment, but offer little assistance in the face of extremely

low baseline rates of application. In such instances, an ideal experimental protocol would

not be dependent upon the application rate at all. Such experiments are common in the

medical sciences where placebos, or dummy treatments, are used (see Riffenburgh 1998).

Researchers randomly determine whether subjects receive an experimental drug or a sugar

pill and then compare the outcomes of subjects who complete the prescribed regime. Often

such medical experiments are ‘‘double-blind’’ meaning neither the patient nor the doctor

prescribing the treatment knows whether the experimental drug or the placebo has been

administered.

The same principle can be applied to social science research by conducting parallel

treatment regimes in which one treatment is of substantive interest and the second is

a placebo. Rather than rely upon a control group that receives no attempted treatment, the

group receiving the placebo can serve as the baseline for comparison for the treatment

group. Examining the two sets of subjects who complete the treatment and placebo

regimes provides an unbiased estimate of the treatment effect, assuming that (1) the two

treatments have identical compliance profiles; (2) the placebo does not affect the

dependent variable; and (3) the same type of person drops out of the experiment for the

two groups. These three assumptions are more onerous than either the matching or rolling

protocols and will be discussed at the end of the section.

23For practical reasons of implementation, the randomization into treatment and control groups can occur prior to
the subject’s decision to participate in the experiment. However, it is important that the decision to participate
has nothing to do with which treatment condition the subject was assigned to. Thus, neither the potential subject
nor the researcher should be aware of the potential subject’s assignment during the recruitment process.
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The benefit of the placebo design is that only those subjects to whom an entire regime

has been applied are considered.24 Thus, the application rate is 100%. However, the

number of subjects analyzed in the experiment declines considerably.25 The trade-off

between the number of subjects and the application rate leads to the following proposition:

Proposition 5. Given an equal number of treated subjects26 with identical variance in
the dependent variable, when subjects are difficult to treat (i.e., application rates are
low), the placebo-controlled protocol offers more statistical power than the standard,
matched, or rolling protocols. (Proof in appendix)

The intuition behind the proof is the same as Proposition 4. While the application rate is

squared for protocols in which the control group remains untouched by the researcher, the

application rate is irrelevant for the placebo-controlled protocol. However, conducting two

efforts to treat subjects decreases the number of subjects in the experiment, so the placebo

does not provide efficiency gains in all instances. Figure 2 compares the placebo-

controlled protocol with the standard protocol’s ability to detect a 10% treatment effect for

a variety of application rates given 1000 subjects, a 50–50 split between treatment and

control, an equal number of applications of the treatment, and a fully implemented

protocol (P ¼ 1). Notice that the two protocols have the same power when treatment/

control ratio equals the application rate. This is true for all values of T and A, provided that

each type of experiment contains an equal number of treated subjects.

Fig. 2 Power comparison of placebo-controlled and standard experimental protocols for varying

application rates and perfectly executed protocols.

24Designs in which subjects complete only a portion of the treatment and placebo regimes can also be considered.
25It should also be noted that subjects who did not complete the treatment or placebo regime can be discarded
from the analysis only when all three of the placebo assumptions are true.

26This assumption is made as a proxy for the cost of conducting the experiment. In most field experiments the
major expense lies in applying the treatment to subjects. In cases in which this is not the case, the relevant
comparison between placebo and controlled protocols may not be with an equal number of treated subjects.
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Comparing the placebo-controlled protocol’s robustness to problems encountered in

the field with the other protocols (standard, matched, and rolling) is difficult because

the statistical power of the protocols depends upon the baseline application rate and the

treatment/control ratio. However, the efficiency of the placebo-controlled protocol can be

established within boundaries. Placebo-controlled protocols are efficient for much

the same reason as the matched protocol. The treatment/control ratio is predetermined

and the subjects included in the analysis have all received a treatment, so problems in the

field are most likely to affect the number of subjects. The variance of the estimated

treatment effect upon those treated for the placebo-controlled protocol can be expressed as

VarðdTOTÞC ¼ r2

PNcTð1� TÞ : ð9Þ

The notation Nc is used to signify that the population of subjects in the placebo-controlled

protocol is not identical to the other three protocols discussed. From Eq. (9) it is possible to

derive the following three conclusions:

Proposition 6. Given an equal number of subjects receiving a treatment with equal
variance in the dependent variable:

(1) The placebo-controlled protocol generates a more efficient estimate of the
treatment effect than the standard protocol when T . PA;

(2) The placebo-controlled protocol generates a more efficient estimate of the
treatment effect than the matched protocol when T . A;

(3) The placebo-controlled protocol generates a more efficient estimate of the treatment
effect than the rolling protocol when A(1 � PT) , T(1 � T). (Proof in appendix)

The power of the placebo-controlled protocol is illustrated by a voter mobilization

experiment in Denver conducted during the 2002 primaries. A total of 8311 households in

the city were mapped into geographically clustered turfs of roughly 60 houses. Households

in each one of these turfs were then randomly divided into one of three groups: control,

encouragement to vote, and encouragement to recycle.27 A group of environmental

activists had agreed to canvass for the week leading up to the primaries. Unfortunately rain

canceled two days of work, days with good weather had low participation rates, and volun-

teers who did arrive worked extremely inefficiently and for very few hours. Ultimately the

campaign contacted 283 subjects in the voting group and 273 subjects in the recycling

group for an overall application rate of 17%. The group contacted about voting did so at

a rate of 48%, while the group contacted about recycling voted at a rate of only 39%, for an

estimated treatment effect of 9% with a standard error of 4% (see Table 1, column 5).

The mapping of households into turfs also allowed for the matched protocol to be used

comparing the control group to those encouraged to vote. While 5540 households were

in the eligible sample,28 less than a third of these neighborhoods were attempted, so the N
for the matched protocol is 3398. The group that was to receive no contact from the

experiment voted at a rate of 38%, while the group encouraged to vote did so 40% of the

time. Factoring in the 17% application rate, the matched design estimated an effect among

27For more information on the experiment see Nickerson (2004b).
28One-third of the sample was assigned to receive the recycling message and would not be part of the matched
experimental design.
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the treated of 13.2% with a standard error of 10% (see Table 1, column 6). While the

matched protocol does not have the precision of the placebo-controlled protocol, it is far

more useful than the standard protocol, which has an application rate of 5% and a standard

error of 18% (see Table 1, column 7). Figure 1 provides a graphical presentation of the

confidence intervals for the three protocols. The extremely low rate of application made

the placebo-controlled protocol much more powerful and robust to field problems than

either the standard or matched protocols in this instance.

The assumptions behind the placebo-controlled protocol deserve special mention.

Finding an appropriate placebo may not be easy for many topics in political behavior,

since the two major requirements can be in tension. A placebo that has no independent

effect upon outcome measures is unlikely to have a similar rate of application profile as

the treatment. For instance, suppose a researcher seeks to determine how political

documentaries change pre-existing beliefs. In addition to measuring attitudes before and

after viewing the documentary, a randomly selected placebo group is set up to watch the

romantic comedy Shakespeare in Love. While Shakespeare in Love is unlikely to change

a subject’s political beliefs, the set of subjects who will sit through the romantic comedy

and the political documentary are likely to be very different. Thus, it is possible that

differential rates of treatment application and attrition will result from the study. Unfor-

tunately, showing another type of documentary (i.e., nature) may not solve the differential

completion and attrition problem. Screening a different political documentary would be

a poor placebo because attitudes might change as a result of the viewing. In short, conflicts

can arise from the demand that placebos have no causal connection to outcome variables

and have identical rates of completion as the treatments of interest. Placebos used in the

social sciences must be chosen with great care, otherwise the results will be biased.

7 Discussion

Incorporating one of the efficient, scalable protocols increases statistical precision

with little additional work on the part of the researcher. To illustrate the efficiency gains,

suppose an experiment possesses 10,000 subjects divided equally between treatment and

control groups with a baseline application rate of 33%. Figure 3 illustrates the statistical

Fig. 3 Power comparison of simple, matched, rolling, and placebo-controlled protocols. The

statistical power was calculated using A ¼ 0.33, N ¼ 10000, T ¼ 0.5, and a one-tailed test with

a ¼ 0.05.
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power of each of the four protocols to detect a 10% treatment effect at various levels

of funding (i.e., percent of protocol completed).29 When an experiment receives 90% of

the necessary funding, the differences in statistical power are small. However, as

the funding level decreases the superiority of the scalable experimental protocols over the

standard protocols becomes apparent. With only 30% of the necessary resources, the

standard protocol can accurately reject the null hypothesis, H0 ¼ 0, only 26% of the time.

In contrast, the matched protocol can do so 57% of the time, the rolling 75%, and the

placebo 72%. In other words, when 70% of the anticipated resources are lacking, the

power of the matched design is twice that of the standard protocol, and the rolling and

placebo-controlled protocols are almost three times as powerful as the standard protocol.

Implementing the rolling or matched protocols requires no additional work on the part of

a researcher; with just a little advanced planning, any experiment conducted in the field

should incorporate some type of scalable experimental protocol into the research design.

As noted earlier, successfully applying the treatment regime in voter mobilization

experiments consists of successfully finding the person at the door. Thus, delivery, receipt,

and adherence are collapsed into one parameter. For most topics in political behavior, the

treatment regime will not be so simple, but the same principles should apply. Whether

a researcher faces trouble with delivery, receipt, or adherence, the problems are best shifted

to either the treatment-control ratio or the number of subjects. The definition of success for

each facet of the treatment regime will necessarily differ across topics, but the logic and

efficiency of the scalable designs still hold.30

This article focuses upon the rate of successful application of the treatment regime for two

reasons. First, low application rates decrease statistical efficiency, which is important in its

own right, but also allows the researcher to conserve resources to devote to other problems.

Second, the application of the treatment is where many field experiments run aground. In

their natural habitat, subjects are less prone to complying with treatment regimes than in

a laboratory setting. Careful attention to protocol design can shift failure to treat issues away

from the rate of application to less sensitive parameters such as treatment-control ratio and the

number of subjects in the experiment.More complicated analytic techniques are not required

to analyze the scalable results, but advanced planning is essential.

Both the placebo and matched protocols restrict the sample of subjects to be analyzed.

Typically, restricting a sample raises concerns about external validity. However, the

procedures described in this paper do nothing to diminish the external validity of the

experimental findings, because the only subjects dropped from the analysis are those

without whom the researcher could not even attempt the execution of the experiment. It is

logically impossible to derive information from a sample of individuals upon which no

experiment was attempted. The restricted samples in the matched and placebo protocols

only make explicit the epistemological problem that previously existed. The validity of

findings outside of the experimental population is always an open question; the problem is

no worse under the scalable protocols than under the standard protocol.

Readers should be careful to note that problems applying the treatment regime, which

do not necessarily introduce bias, may be indicative of larger problems with the execution

of the experiment that can bias results. Failure to treat often results in, or is caused by,

subject attrition, which may introduce bias to an experiment. The whole point of

29The apparent superiority of the placebo-controlled protocol over the rolling and matched protocols is due to the
relatively low application rate of 33%.

30However, there may be instances in which the definition of successful compliance may be murky and
subjective. See Heitjan (1999) for a medical example and discussion.

248 David W. Nickerson

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pi
01

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpi015


randomized experimentation is to avoid bias, so such problems should be the primary

concern of researchers. Scalable protocols cannot solve bias introduced by subject

attrition,31 errors in randomization (i.e., the assignment of treatment is correlated with an

outside factor, which may or may not be causal of the outcome variable), or measurement

error. Preventing or correcting the bias may consume sufficient time and resources that

a researcher may be forced to scale back the size of the experiment. In such instances, the

scalable protocols are indirectly useful in addressing the concern of bias.

Scalable protocols have other advantages beyond improving efficiency. For instance,

the rolling protocol can also avoid thorny ethical issues stemming from depriving subjects

of the experimental treatment. Imagine that a school system is attempting to implement

a curriculum based on new computers to be placed in the classroom. A randomized study

of the effectiveness of the new curriculum and computers would be interesting, but placing

students in a control group where they do not receive the new computers denies the

children an educational tool. If the school system cannot afford to provide every classroom

the necessary equipment immediately, the order in which classrooms receive the materials

could be randomized. Classrooms that do not receive the materials by the end of the

semester or year constitute a control group, but no students were deprived of the tools to

learn because of the experiment. Without the experiment, the lack of educational

equipment is simply a misfortune, but the rolling protocol can turn the pre-existing

shortfall into a valuable source of information that can guide future administrative

decisions (see Boruch et al. 2000, pp. 170–173, for brief and useful thoughts on the ethics

of randomized experiments).

An alternative means of making experiments more precise is the use of control

variables. Successful control variables are predictive of the outcome variable but are not

affected by the treatment.32 Including such variables in the analysis will not reduce the

overall variance of the estimand, but the unexplained variance will be lessened. Collecting

a handful of good control variables is often a cost-effective means of increasing the

precision of an experiment (especially when compared with increasing sample size). There

is no reason why the use of control variables cannot be combined with the scalable designs

described in this paper. Indeed, the collection of control variables is one more facet of an

experiment that could meet with problems and require additional attention, thereby

necessitating the efficiency of scalable protocols.

Controlled experiments offer unbiased estimates of treatment effects and field

experiments mitigate concerns about external validity. As with any study conducted in

the field, problems will arise that compromise the statistical power of the experiment.

Careful planning and the use of scalable experimental designs can mitigate the impact of

problems encountered in the field. The execution of efficient experimental protocols may

be slightly more difficult than the standard experimental protocol, but the increased

precision of the estimates derived more than compensates.

Appendix

Proof of Proposition 1: Compare the experiment described by Eq. (1) to a second

experiment that shares the population variance, r, and a treatment/control ratio, T, but

31The placebo-controlled design could conceivably address the attrition problem. The assumption that is required
is that identical types of subjects drop out of the experiment under both the treatment and placebo regimes. The
assumption may be reasonable in many instances, but will prove unverifiable in most instances. Such analysis
should be undertaken with great caution and transparency to let the reader judge the validity of the assumption.

32Background or demographic information is most often used.
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differs with an application rate of AX, where 0 � X � 1, and contains N þ n subjects. The

variance of this second experiment can be expressed as

VarE2 ¼
r2

ðAXÞ2ðN þ nÞTð1� TÞ
: ðA1Þ

Suppose X ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ nÞ

p
. Then, VarE2 ¼ r2/(AX)2(N þ n)T(1 � T ) . r2/A2NT(1 �

T ) ¼ VarE. That is, when the application rate declines by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ nÞ

p
the increase in

variance offsets the decrease in variance from the additional n subjects. The inverse

relationship holds for X .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðN þ nÞ

p
.

Proof of Proposition 2: Compare the experiment described by Eq. (1) to another

experiment that shares the population variance, r, and the number of subject, N, but differs
with an application rate of AX, where 0 � X � 1, and where n 2 Z subjects are moved

from the control to the treatment group. The variance for the first experiment can be

expressed as in Eq. (1) and the variance of the second experiment can be expressed as

VarE3 ¼
r2

ðAXÞ2ðt þ nÞ 1� t þ n
N

� � : ðA2Þ

Suppose X ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðN � tÞ=ðt þ nÞðN � t � nÞ

p
; then VarE3 ¼ r2/(AX)2(t þ n)(1 � t þ

n/N) . r2/A2t(1 � t/N) ¼ r2/A2NT(1 � T ) ¼ VarE. That is, when the application rate

declines by more than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðN � tÞ=ðt þ nÞðN � t � nÞ

p
the increase in variance offsets any

advantage generated by shifting n subjects from the control to the treatment group. The

inverse relationship holds for X .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðN � tÞ=ðt þ nÞðN � t � nÞ

p
.

Proof of Proposition 3: Rewrite Eq. (7) as

VarR ¼ 1� T

Pð1� PTÞ

� �
r2

A2NTð1� TÞ
: ðA3Þ

Note that limT!01 � T/P(1 � PT ) ¼ 1/P and limT!11 � T/P(1 � PT ) ¼ 0. Thus, for

0 , P , 1, VarR ¼ (1 � T/P(1 � PT ))r2/A2NT(1 � T) , r2/P2A2NT(1 � T) ¼ VarS.

Therefore, for 0 , P , 1, the rolling protocol estimator exhibits less variance (hence

more statistical power) than the estimator for the standard protocol.

Proof of Proposition 4: For all 0 , P , 1, 1/P , 1/P2. This implies that the following

two conditions hold:

1Þ VarM ¼ r2

PA2NTð1� TÞ
,

r2

P2A2NTð1� TÞ
¼ VarS

2Þ VarR ¼ 1� T

Pð1� PTÞ

� �
r2

A2NTð1� TÞ
,

r2

PA2NTð1� TÞ
¼ VarM ;
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assuming that r2 is the same for the smaller matched experiment as the population as

a whole. Therefore, for 0 , P , 1, the matched protocol exhibits less variance than the

standard protocol but more variance than the rolling protocol.

Proof of Proposition 5: The variance for the placebo-controlled protocol may be

expressed as

VarC ¼ r2

aTð1� TÞ ; ðA4Þ

where a equals the number of subjects to whom a treatment could be applied. In the

standard, rolling, and matched protocols, a ¼ ANT. Substituting, we rewrite Eq. (A4) as

VarC ¼ r2

ANT2ð1� TÞ
: ðA5Þ

When T . A, r2/ANT2(1 � T ) , r2/A2NT(1 � T) ¼ VarE. Likewise, when T , A,
r2/ANT2(1 � T ) . r2/A2NT(1 � T ) ¼ VarE. Thus, given an equal number of subjects

to whom treatment is applied and T . A, the placebo-controlled protocol exhibits less

variance than the standard, rolling, and matched protocols.

Proof of Proposition 6: Rewrite Eq. (9) as

VarC ¼ r2

PaTð1� TÞ ; ðA6Þ

where a equals the numbers of subjects to whom a treatment is applied. In the standard,

rolling, and matched protocols, a ¼ ANT. Replacing the variance for the placebo-

controlled estimator is:

VarC ¼ r2

PANT2ð1� TÞ
: ðA7Þ

Suppose T . AP; then

VarC ¼ r2

PANT2ð1� TÞ
,

r2

P2A2NTð1� TÞ
¼ VarS:

Suppose T . A; then

VarC ¼ r2

PANT2ð1� TÞ
,

r2

PA2NTð1� TÞ
¼ VarM :

Suppose PT . P(1 � PT )A/(1 � T ); then

VarC ¼ r2

PANT2ð1� TÞ,
1� T

Pð1� PTÞ

� �
r2

A2NTð1� TÞ ¼ VarR:
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