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The most important unanswered questions in turbulence regard the nature of turbulent
flow in the limit of infinite Reynolds number. The Princeton superpipe (PSP) data
comprise 26 velocity profiles that cover three orders of magnitude in the Reynolds
number from Re =19639, to Re=20088 000 based on pipe radius and pipe centreline
velocity. In this paper classical mixing length theory is combined with a new mixing
length model of the turbulent shear stress to solve the streamwise momentum equation
and the solution is used to approximate the PSP velocity profiles. The model velocity
profile is uniformly valid from the wall to the pipe centreline and comprises five free
parameters that are selected through a minimization process to provide an accurate
approximation to each of the 26 profiles. The model profile is grounded in the
momentum equation and allows the velocity derivative, Reynolds shear stress and
turbulent kinetic energy production to be studied. The results support the conclusion
that logarithmic velocity behaviour near the wall is not present in the data below
a pipe Reynolds number somewhere between Re =159872, and Re=_87150. Above
Re =87150, the data show a very clear, nearly logarithmic, region. But even at
the highest Reynolds numbers there is still a weak algebraic dependence of the
intermediate portion of the velocity profile on both the near-wall and outer flow
length scales. One of the five parameters in the model profile is equivalent to the
well-known Kédrman constant, k. The parameter k increases almost monotonically from
k=0.4034 at Re=287150 to k=0.4190 at Re =20088 000, with an average value,
k=0.4092. The variation of the remaining four model parameters is relatively small
and, with all five parameters fixed at average values, the model profile reproduces
the entire velocity data set and the wall friction reasonably well. With optimal values
of the parameters used for each model profile, the fit to the PSP survey data is
very good. Transforming the model velocity profile using the group, u/uy— ku/uy,
yt — ky* and R, — kR, where R; is the friction Reynolds number, leads to a reduced
expression for the velocity profile. When the reduced profile is cast in outer variables,
the physical velocity profile is expressed in terms of In(y/§) and a new shape function
¢(y/38). In the limit of infinite Reynolds number, the velocity profile asymptotes to
plug flow with a vanishingly thin viscous wall layer and a continuous derivative
everywhere. The shape function evaluated at the pipe centreline is used to produce a
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new friction law with an additive constant that depends on the Kirman constant and
a wall damping length scale.

Key words: pipe flow boundary layer

1. Introduction
1.1. About the data

The Princeton superpipe (PSP) data measured by Zagarola (1996) and described by
Zagarola & Smits (1998) comprise 26 velocity profiles that cover three orders of
magnitude in the Reynolds number from the moderate value of profile 1, Re =19 639,
to the very high value of profile 26, Re = 20088 000, based on pipe radius (64.68 mm)
and pipe centreline velocity. The original Zagarola (1996) data were measured using
a p;, =0.9 mm diameter pitot tube positioned at 52 points across the pipe including
10 points beyond the pipe centreline that were used to check the symmetry of the
profiles. The probe diameter limited the position of the centreline of the pitot tube to
y=0.9 mm for the first data point above the wall leaving approximately one probe
radius of clearance to the wall. This is well outside the viscous wall layer, defined
later in this paper as the sublayer (y* < 8.3) plus the buffer layer (8.3 <yt < 65), for
all but the lowest Reynolds number surveys. Nineteen additional surveys at Reynolds
numbers corresponding to the Zagarola (1996) experiments were repeated by Jiang,
Li & Smits (2003) using a p, = 0.3 mm diameter pitot tube positioned at 57 points
across the pipe including one point beyond the pipe centreline. McKeon (2003) and
McKeon et al. (2003) provide an extensive discussion of methods for correcting the
Jiang et al. (2003) data as well as tables of corrected and uncorrected velocity data.
The p; = 0.3 mm pitot tube permits the centreline of the tube to be positioned just
y=0.3 mm above the wall for the first data point, again leaving one probe radius of
clearance. This allowed valuable data to be taken within and just outside the viscous
wall layer over a significant portion of the Reynolds number range of the 19 surveys.
In the present paper, the 19 corrected p, = 0.3 mm pitot tube surveys are combined
with 7 corrected p; =0.9 mm surveys to form a complete set of 26 corrected velocity
profiles. The methods used to correct all 26 of the p, =0.9 mm surveys are described
in §4 of this paper and a comparison of the two sets of corrected data is presented in
figure 6. Run conditions for the combined set of 26 surveys are provided in table 1.
McKeon (2003) discusses possible roughness effects on the data, particularly at the
highest Reynolds numbers. The root-mean-square roughness height of the superpipe
surface was measured to be k,,; =0.15 pm corresponding to k,,,/8 =2.32 x 107°. At
the highest Reynolds number, R, = 530023, this corresponds to a roughness height
Reynolds number of k,,su,/v=1.23.

1.2. Background

Questions about the high Reynolds number behaviour of wall-bounded flows invariably
focus on the structure of the Reynolds stresses and the mean velocity near the wall
where viscous effects dominate. Unfortunately, direct measurements of these quantities
are often very difficult to make and it may be necessary to infer the near-wall
behaviour from measurements away the wall. Fortunately, in a limited region above
the wall, virtually all wall-bounded flows tend to approximately follow the law of
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Pa 7 + + +
pspt mm  Ye RT Rz' Ru k a m b n g Ity Upioor Unaremor— Unminerror
1 | 0.9 | 6.2089 | 856.947 19639 15789. 0.459526 | 25.801 | 1.28798 | 06.299588 | 1.23686 | 23.0788 | 0.152301 | 0.538874 ~0.139258
2 | 0.9 | 0.2683 | 1090.56 25818. 20864 0.45944 | 25.7568 | 1.28750 | 0.293575 | 1.24395 | 23.6738 | 0.116743 6.474895 ~0.185527
3 | 0.9 | 0.3455 | 1430.26 34818. 28339. ©.457774 | 25.7518 | 1.28734 | 0.291299 | 1.24498 | 24.3436 | 0.0971337 | 0.371735 ~0.184978
4 | 0.3 | 0.432 | 1824.72 25284 . 37173. ©.455477 | 25.863 | 1.25214 | 0.295422 | 1.18658 | 24.8171 | 0.135614 | 0.344811 ©.128301
5 | 0.9 | 0.5641 | 2344.74 59872. 45406 §.452669 | 25.6633 | 1.29994 | 6.297001 | 1.2471 | 25.5345 | 0.0807474 | 0.192072 ©.164053
6 | 0.3 | 6.7919 | 3327.37 87150 72290. ©.403304 | 19.7637 | 1.4964 | 6.350243 | 1.33343 | 26.1918 | 0.211454 | 0.682335 ©.287154
7 | 0.9 | 1.0065 | 4124.89 110556 92715. ©.403106 | 20.2094 | 1.61048 | 6.341454 | 1.51165 | 26.8018 | 6.107034 6.182098 §.270575
8 | 0.3 | 0.4183 | 5108.56 139386. 116996 ©.400524 | 19.6565 | 1.55346 | 0.353001 | 1.37315 | 27.284 6.155725 6.666555 ©.185794
S | 0.3 | 0.5437 | 6617.44 183276. 154820. ©.406081 | 19.682 | 1.61578 | 06.330602 | 1.48471 | 27.6954 | 6.112958 6.485734 ©.164828
10 | 0.3 | 0.7035 | 8536.62 242050 265430 §.405547 | 19.7355 | 1.63350 | 0.32875 | 1.51099 | 28.3537 | 0.0863432 | 0.387908 ~0.137764
11 | 0.3 | 0.9003 | 10914.4 314810, 268470 6.406278 | 19.8188 | 1.6433 | 0.322005 | 1.61863 | 28.8432 | 0.0533497 | 0.155367 ~0.114963
12 | 0.3 | 0.2423 | 14848.9 | 439790. 376800 6.405533 | 19.8187 | 1.63899 | 0.317069 | 1.64829 | 29.6175 | 0.0582442 | 0.0984979 | -0.144372
13 | 0.3 | 0.323 | 19778.3 599100 515450 6.405505 | 19.8541 | 1.64732 | 0.323093 | 1.66532 | 30.2907 | 0.0456737 | 0.0825095 .0989688
14 | 0.3 | 0.4136 | 25278.1 786760 673100 §.406013 | 19.9893 | 1.6426 | 0.317063 | 1.75114 | 30.8868 | 0.0411267 | 0.6582979 | -0.156567
15 | 0.3 | 0.5411 | 32869.1 | 1038360. 897500 ©.40532 | 19.8023 | 1.65305 | 0.32421 | 1.66428 | 31.5881 | 0.0508534 | 0.118501 ~0.14304
16 | 0.3 | 0.7001 | 42293.5 | 1363000. 1181500. | 0.406164 | 19.9961 | 1.62818 | 0.307786 | 1.71916 | 32.2268 | 0.0690966 | ©0.175211 ©.12347
17 | 0.3 | 0.4721 | 54530.6 | 1785560. 1552500. | 0.407998 | 20.075 1.6311 ©.30966 | 1.73322 | 32.743 | 0.0743128 | 0.259387 ©.106957
18 | 0.3 | 0.1759 | 76479.8 | 2558700. 2231100 ©.40993 | 20.0117 | 1.65763 | 0.326951 | 1.68545 | 33.4563 | 0.0885882 | 0.262977 ~0.281911
19 | 0.3 | 0.2358 | 102200. | 3500000. | 3056400. | 6.409934 | 19.9560 | 1.64637 | 0.317958 | 1.66433 | 34.2462 | 0.0779887 | 0.228758 ~6.17882
20 | 0.3 | 0.2147 | 127914, | 4457360. 3903100. | 0.410112 | 20.0706 | 1.63716 | 0.312475 | 1.64664 | 34.8458 | 0.074515 .211301 ~0.192975
21 | 0.3 | 0.2782 | 165704, | 5884200. 5157000. | 0.410176 | 20.0915 | 1.64094 | 0.314927 | 1.6552 | 35.5102 | 0.0505818 | 0.214504 ~0.122477
22 | 0.3 | 0.3652 | 216979. | 7813500. 6859500. | 0.416118 | 20.6722 | 1.58559 | 0.203151 | 1.68512 | 36.0106 | 0.0706957 | 0.292235 | -0.0989045 |
23 | 0.3 | 0.4821 | 284254, | 10392000. | 9154000. | 0.417539 | 20.673 | 1.59258 | 0.294283 | 1.67078 | 36.5586 | 0.058332 6.20287 ~0.105169
24 | 0.9 | 0.6168 | 366972, | 13540000. | 11989000. | 0.418696 | 20.8983 | 1.62571 | 0.306356 | 1.75128 | 36.8963 | 0.0999892 | 0.155755 ~0.269669
25 | 0.9 | 0.7571 | 452380. | 16888000. | 149640600. | 0.419289 | 20.8329 | 1.62031 | 0.303987 | 1.73244 | 37.3313 | 0.0669581 | 0.109743 ~0.178982
26 | 0.3 | 0.9127 | 530023. | 20088000. | 17862000. | 0.418993 | 20.3797 | 1.64264 | 0.314460 | 1.49687 | 37.9002 | 0.096876 | 0.291624 ~6.114251

TABLE 1. Run data for PSP surveys 1 to 26 (columns 1 to 6); optimal parameter values
for the model velocity profile (3.5) and (3.13) (columns 7 to 11); uy/u, (column 12), errors
in the approximation of the model profile to the PSP data (columns 13 to 15).

the wall u/u, =In(yu./v)/k+ C where u, = \/—7,a;/p is the friction velocity. The
Karméan constant, k, and the additive constant, C, are experimentally determined
quantities. If the constants are known, velocity measurements in the logarithmic
region combined with the law of the wall can be used to infer u, and therefore the
wall shear stress, without having to instrument the wall or directly measure the linear
part of the velocity profile.

The law of the wall is the main point of departure for a vast literature directed
at questions such as: What friction law covers the widest possible Reynolds number
range, (Quarmby 1969; McKeon et al. 2004a,b; McKeon, Zagarola & Smits 2005;
Joseph & Yang 2010)? Is the Karman constant really constant and what is its value
(Huffman & Bradshaw 1972)? Would the velocity profile in the intermediate region
be better approximated by a power law instead of a logarithm (Barenblatt 1993;
Barenblatt & Prostokishin 1993; Barenblatt & Chorin 1996; Barenblatt 1999)? How
do the mean velocity, Reynolds normal stresses and higher moments of the velocity
field scale at low, moderate and high Reynolds numbers (McKeon & Morrison 2007;
Wu & Moin 2008; Inoue & Pullin 2011; Hultmark 2012; El Khoury et al. 2013;
Pullin, Inoue & Saito 2013; Ahn er al. 2015; Morrill-Winter, Phillip & Klewicki
2017)? This is a short list of the many issues around wall flow that remain poorly
understood and a complete, relatively recent, summary can be found in Marusic
et al. (2010). Much of the effort to answer these questions is directed at finding the
best approximation to the data in the viscous wall layer, the intermediate log region
and the outer flow wake region and identifying the functions that provide accurate
matching between the several layers of the flow (She, Chen & Hussain 2017).

In the present paper, classical mixing length theory is combined with a new
wall-wake mixing length function to solve the streamwise momentum equation.
The resulting model velocity profile contains five free parameters. An optimization
procedure is used to determine the parameter values that produce the minimum
squared error for each of the 26 PSP surveys. The resulting model velocity profile is
described as ‘universal’ for three reasons (i) it is uniformly valid from the wall to the
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FIGURE 1. Pipe flow sketch and notation.

pipe centreline at all Reynolds numbers, (ii) optimal parameter values vary relatively
little across all 26 PSP surveys and (iii) virtually all of the known scalings of the
various layers of the flow are captured in the universal profile. In fact, choosing
constant values for all five parameters produces a reasonable approximation to the
entire set of velocity surveys and associated friction data. Where significant variations
in optimal parameter values do occur, they seem to be associated with real physical
changes in the flow.

2. Mean flow equations and notation

The mean velocity in pipe flow is governed by the axial balance between the
pressure gradient and shear stress.

(2.1)

d 1d /d 1 dp(x,

LA oy — i 4 (e L n
rdr rdr \ dr p dx
Throughout this paper, the pipe centreline velocity, uy, and radius, &, will be the
normalizing velocity and length scales as indicated in figure 1. Thus let

T
=5
u
U=—
Up
)
R, = 18
v
du
T, =M1 —
dr|,_s (2.2)
Co— 27, _2143
T
lLdp(x,r) 2 (7,
p dx 8§\ p
u'v’
T=— .
M02
In dimensionless form, the governing equation (2.1) is
donr) | 1 d (L dUN L =0 2.3)
dn R, dn ndn n=V. .
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If the flow is laminar, the Reynolds shear stress term is zero, the pressure is
independent of radius and the velocity profile is

UG = (1 —1). (2.4)

The dependence of the laminar skin friction coefficient on pipe Reynolds number is
C = 4 (2.5)

= R, .

If the flow is turbulent, the dependence of the streamwise pressure gradient on radius
is assumed to be negligible. Integrate (2.3) once and apply the centreline boundary
condition dU/dn =1t =0 at n=0. Equation (2.1) becomes

1dU G

—— +—n=0. 2.6

r(n)+Redn+2n (2.6)

Note that T <0, dU/dn <0 and C; > 0. We are mainly interested in the turbulent case,
and so at this point it is convenient to express (2.6) in terms of wall variables.

( Tw>l/2
U=\ ——
1Y

Su,
R, =

u. R; 2.7)

The quantity R, =d&u,/v is often called the Kdarman number and symbolized as 5+
although throughout this paper we will simply call it the friction Reynolds number.
The friction velocity, friction coefficient, friction Reynolds number and pipe Reynolds
number are all related through the identity

Ugp Re 2

—=—=,/—. (2.8)
Uz T Cf

Later on when friction laws are discussed it will generally be in terms of ug/u..
Using (2.7), the governing equation (2.6) becomes

dut yt+

t——(1-=—)=0. 29

T+ ay ( R,) (2.9)

For later reference, the laminar velocity and wall friction, equations (2.4) and (2.5),
expressed in terms of wall variables are

+ + y'
Wiaminar =Y (1 - IR > (210)
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and

8

ﬁaminar = R 2°
T

(2.11)

It should be noted that the mean flow equation that governs plane channel flow is
virtually identical to (2.9). It would be straightforward to carry over the model velocity
profile and all of the analysis used in this paper to the planar case.

2.1. Why use uy as the normalizing velocity?

It should be noted that it is a little unusual to use the centreline velocity, uy, as
the normalizing velocity scale. More commonly one uses the area averaged, or bulk,
velocity

s
=5 urdr (2.12)
8% Jo

|

while the pipe resistance is expressed in terms of the friction factor
7 —
f:S(T> —4C,, (2.13)
u

where C; is the friction coefficient normalized by u. The most easily accessible
information abouta pipe flow isthe mass flow rate m = puA, whichis usually specified,
and the pressure gradient which determines the wall friction, 7,, = (§/2)dp,,/dx, and
so it makes practical sense to use u# to normalize everything. Also, to a surprising
degree of accuracy, the law of the wall

1
ut = i In(y")+C (2.14)

can be used as an approximation to the flow over the whole pipe. This is despite the
singularity in the logarithm at the wall and the finite derivative of the log at the pipe
centreline. Using (2.14) the bulk velocity integrates to

u Z/Rr Lo ae) (122 Y ay = Lingy 1o 2 (2.15)
— = —In —— = - In(R, - —. :
w R Jo \k 7 R)Y Tk 2%

This simple result provides a very attractive direct connection to the law of the wall.

Data from PSP surveys 1 to 26 for u/u, are shown in figure 2(a), and friction
data, ug/u, and u/u, versus R,, are presented in figure 2(b). The solid lines are
generated using the functional form of (2.14) and (2.15) with the constants £ and C
selected to give least squares log—linear fits to the data. At first one might expect
that k..., > ki, as is the case in figure 2(b), because of the general tendency for
u/uy to increase slowly toward one with increasing Reynolds number. But there
is no reason to expect the curves in figure 2(b) to eventually intersect. As long
as the difference between the additive constants does not change, limg o i/ug=1.
Moreover, according to (2.15) the values of k for uy/u, and u/u, versus R, should be
the same as the k that appears in (2.14). Indeed, the empirically determined k values
in figure 2(b) are very close but the displacement between the curves is considerably


https://doi.org/10.1017/jfm.2019.669

https://doi.org/10.1017/jfm.2019.669 Published online by Cambridge University Press

840 B. J. Cantwell

(@) 107 (b) 401
| =
09+ = 30 -
| 0000 S
; 0 0000%°°
| 00©
o OO
= 087 © 207
I= |
ii/u, = (1/0.4302)In(R,) + 3.0420
| =
0.7F =10
| 1=
06 L 1 e 1 1 0 > 1 1 1 1
10% 10° 10* 10° 10° 10? 10° 10* 10° 100
R, R,

FIGURE 2. (a) PSP survey data for u/uy and (b) wall shear stress in terms of u#/u, and
up/u, versus R;. Open circles in (b) (O) are data for PSP surveys 1 to 26. Least square
log-linear fits to the data for PSP surveys 6 to 26 are shown as solid lines. Root-mean-
square error in the upper solid line is 0.112 in units of u™. Root-mean-square error in the
lower solid line is 0.0975.

more than the 3/2k that appears in (2.15). Clearly a better approximation to the
velocity profile than (2.14) is needed.

The goal in this paper is to approximate as accurately as possible the PSP velocity
profiles, and for this it is necessary to integrate (2.1) where the outer boundary
condition is u/uy=1 for all R,. This way the added complexity of the Reynolds
number dependence of u/uy, is avoided. In the end we will see that the simple
log—linear behaviour of uy/u, and u/u., which dates back to Prandtl (1934a), is
generated rigorously by the universal model velocity profile derived in the next
section.

3. Mixing length model for the turbulent shear stress

We use classical mixing length theory to relate the turbulent shear stress to the mean
velocity (Prandtl 1934b, 1949; van Driest 1956; Nikuradse 1966).

2
= (1@*)3;‘1) : 3.1)

The mixing length function A(y*) is positive, increases monotonically with y*, is
analytic at y* =0 and 4— 0 as y"— 0. Insert (3.1) into (2.9). The result is a
quadratic equation for the velocity derivative.

dut\? L 1 du* 1 | Yo\ 0 32)
dyt) Aot dyt aeH’ U R ‘
Take the physically meaningful positive root
dut 1 1 ’ Y\ 2
—=— 1+420H)" (1= — . 33
T 200677 T 2067 (1+4a07 (1-%)) o
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The limiting velocity gradients at the wall and centreline are

du* vt
m-—=1-=—
yt—=0 der Rr
-0 . . (3.4
du y
m —=1—"—
)V+_>Rr dy+ R‘[

independent of the choice of A(y™).

3.1. The universal velocity profile
Integrate (3.3) from the wall to y¥,

( Jr)—/y+ —1+1<1+4/1( )’ <1_s)>1/2 d (3.5)
YT\ T2 T 2 ’ R, > '

In the limit of small R,, the velocity approaches the laminar profile (2.10), again,
independent of the choice of A(y™).

li / _ ! +1<1+4/1()2<1—S>>1/2 d—+<1—y+>
w J 205)° | 2A(s) g R, S=Y R, )

The model profile remains valid as the Reynolds number goes to zero and the small
R, limit of the friction coefficient is the laminar value (2.11).

. 2 8
lim C; = 2= p 2

Ry—0 . R, | 1 ) s 1/2
(;el}ino /0 <_2/l(s)2 oy <1 T <1 - &)) )ds>

3.2. A linear mixing length function

(3.6)

(3.7)

The simplest choice for A(y*) is just a linear proportionality to the distance from the
wall.

AT =ky", (3.8)

where k is an empirically determined amplitude of the mixing length; essentially the
Kérman constant. Using (3.8), (3.5) becomes

o] (s oo (-£)
u (y")= /O ( 2(ks)2+2(ks)2 1 +4(ks)” [ 1 R ds. (3.9)

Evaluate (3.9) at the pipe centreline.

+<R)—”°_/R’ —1+1<1—|—4(k)2<1—s>>1/2 ds. (3.10)
ST T e \ T 20 T 20k ’ R, S
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Multiply both sides of (3.10) by k and let « =ks. In the limit of infinite Reynolds
number

_kuy HRe 1 1 ) a \\"* 24
Jm = g [ (‘zaﬁzaz(”““ k) )@

(3.11)

The left- and right-hand sides of (3.11) are of the same form as (2.15), but in terms
of the centreline velocity and with only one empirical constant, k. That is, the additive
constant in (3.11) is determined solely by k. If we use k=0.4320 from figure 2(b)
the friction law (3.11) becomes

Ug
o _ In(R,) — 2.4693. 3.12
0, <0.4320> n(R) 0 (3.12)

The additive constant in (3.12) is quite different from the log—linear fit to the data
shown in figure 2(b), even though the velocity profile (3.9) would seem to be an
improvement since it lacks both the singularity of the law of the wall at y* =0, and
the finite derivative of the log at the pipe centreline, both of which might be expected
to throw off the accuracy of the law of the wall approximation. On the other hand,
the disagreement between (3.12) and the data in figure 2 should not be too surprising
since the additive constant in (3.12) is not freely selected to fit the data. The simple
linear mixing length model (3.8) really precludes any sort of viscous wall layer, the
thickness of which, is the primary determinant of the value of the additive constant C.
We need a choice for A that can better approximate the complex shape of the velocity
profile.

3.3. A nonlinear mixing length function; the universal velocity profile

The linear function (3.8) just does not have the flexibility needed to reproduce the PSP
velocity profiles accurately. We need to improve the mixing length model to account
for damping at the wall and bulk mixing near the pipe centreline. From here on we
will use a new combined wall-wake mixing length function,

kyt(1 —e 0" /a™)

(+ ()

This form of A has five free constants k, a,m,b and n that can be used to
approximate the PSP data. They can be summarized as follows.

k — At moderate to high Reynolds numbers, this coincides with the classical Kdrman
constant. At low to laminar Reynolds numbers, the velocity profile is insensitive to k.

a — This is a measure of the range of y* near the wall where the Reynolds shear
stress is damped to zero. It can be regarded as a characteristic damping length scale.
The exponential decay near the wall can be found in van Driest (1956) but without
the exponent m.

m — This exponent determines the shape of the damping region near the wall.
A general analysis of an expansion of the three-dimensional (3-D) velocity field near
the wall in the presence of a mean flow suggests that this exponent should be 1/2
(She et al. 2017). This value would insure that u'v' ~y* near the wall, although a

AT = (3.13)
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value larger than 1/2 implying a faster decay of the near-wall shear stress is not
ruled out.

The expression in the denominator of (3.13) is a transition function designed to
cause the mixing length to tend to approach a constant value near the centreline of the
pipe. This is required to insure that the velocity profile exhibits wake-like behaviour
in this region. Similar functions are used by She ef al. (2017) along with symmetry
analysis, to develop a multilayer theory of the velocity profile.

b — This parameter takes effect well beyond the wall layer and represents a measure
of the fraction of the pipe radius at which the wake function starts to kick in. It is
essentially an outer flow length scale.

n — This exponent determines how rapidly the wake-like behaviour of the velocity
profile evolves outside the wall layer. Note that if b is relatively small, of the order of
0.3 or so, and n is greater than one, the mixing length approaches a maximum value
on the order of A~ bkR, as the pipe centreline is approached.

The integral (3.5) combined with the wall-wake mixing length function (3.13)
constitute the universal velocity profile referred to in the title of the paper.

It should be noted that the velocity integral (3.5) and the wall-wake mixing length
function (3.13) can be used to determine the friction coefficient at any Reynolds
number for which appropriate values of (k, a, m, b, n) are known and, as was pointed
out in connection with (3.7), the model profile is valid at all Reynolds numbers. As
the Reynolds number is reduced the velocity profile and friction coefficient become
increasingly insensitive to the values of (k, a, m, b, n).

4. Corrections to the p; =0.9 mm data
4.1. Correction of the mean velocity for the effect of Reynolds normal stress

The mean velocity measured by a pitot tube is inferred from the difference between
the pitot (stagnation) pressure and the static pressure measured at a small hole, or
tap, in the pipe wall. In a turbulent flow, the measured stagnation pressure includes
the effective pressure exerted by the Reynolds normal stress, (Zagarola 1996). To a
reasonable approximation

1 2, T
plmmmred = Pwall + Ep((ucorrecled) + M’M’)
—— 12
Ucorrected = (2(pt,,,ms,,m/ - pwall)/p - u/u/) (41)
2 — 12
Ucorrected = ((uuncarrected) - M’M’) .
To determine the corrected velocity it is necessary to know the streamwise turbulent

normal stress. The data presented in Hultmark (2012) were used to come up with the
following purely empirical approximation to the normal stress:

21" = Ln(0.15(5.9 + y)))’

140.3y"
2R, y") =Ln <+y>
R,
) — —81 81
&(y") =gie +2(1+g1) 4.2)

gy =1+ 1Ef((1 — g, — 10/1.4))

7474

5= 2.17g5(1 — g» — ga(1 — g» — 10/1.4)) — 1.372 <

Ln(y+)>
Ln(R,) )’

T
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FIGURE 3. Approximation to the streamwise Reynolds normal stress, equation (4.2),
plotted over the range of the PSP data.

Equation (4.2) is plotted in figure 3 for the twenty six PSP Reynolds numbers.
The function captures the main features of the streamwise normal stress pretty well,
including the peak near the wall and the smaller peak near the end of the log region.
The Reynolds number independence of the wall region above R, = 3322 (p; =0.9 mm
survey 6) is also captured. Reynolds numbers corresponding to cases 6 to 26 overlay
each other quite closely near the wall in figure 3. The fit (4.2) also captures the
inverse logarithmic dependence of the streamwise normal stress away from the wall
discussed by Hultmark (2012). In general the correction due to Reynolds normal stress
effects leads to a relatively small reduction of the measured mean velocity.

4.2. Correction of the mean velocity for the effect of static pressure errors

A second source of error in the measured mean velocity is in the measurement of
the wall static pressure that appears in (4.1). Basically, the pressure measured at
a wall static pressure tap is higher than the correct value due to curvature of the
streamlines near the tap and associated circulatory motion in the fluid within the tap
duct adjacent to the wall. This leads to a small positive correction to the velocity data.
Measurements of this effect in the PSP facility are reported by McKeon & Smits
(2002) and McKeon et al. (2003). It is generally accepted that the static pressure
error scales with the friction velocity

Ap =TI (pu.?). (4.3)

The function IT increases with both the pressure tap diameter Reynolds number and
the pipe Reynolds number. When the static pressure effect is included in (4.1) the
result is

— 2 1 2 71,
Procasirea = Pwallyeasrea — 11 (PU7) + jp((ucorrected) +u'u')
— 2 /2
Ucorrected = (z(pnneummd - p thllmmsured)/ IO + 217 U= — l/t/lxt/)
_ 2 2 /2
Ucorrected = ((uuncorreczed) + Znur - I/t/l/t/) .

(4.4)

The problem is the selection of I1. Zagarola (1996) used values between IT=0.1
and 71 =3.3 however McKeon & Smits (2002) point out that this underestimates
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FIGURE 4. (a) Corrections to u" due to Reynolds normal stress effects at each pitot
tube position. (b) Corrections at each pitot tube position to u™ due to wall static pressure
effects. Total correction to the uncorrected p; = 0.9 mm data is approximately the sum of
the two effects. The horizontal coordinate is the index (1 to 52) of the position of the
pitot tube above the wall.

both the magnitude and complexity of the effect and that the effect becomes more
pronounced as the Reynolds number is increased. In the end we decided to use
n =7(d+/dj;ax) where d* =du./v and d =0.79 mm, is the diameter of the pressure
tap. The maximum pressure tap Reynolds number was d =6486, ten times the
thickness of the viscous wall layer, and the minimum was d* =10. The factor 7
is at the high end of the data presented by McKeon & Smits (2002). We did not
attempt to approximate the complexity of their figures 6 and 7 as we did with the
Hultmark (2012) data mainly because it appears that this whole area is still a subject
for continued research. If higher Reynolds number measurements are carried out
in the future then the wall pressure will probably need to be measured using flush
mounted sensors that do not break the wall surface. Both corrections to the velocity

data are shown in figure 4.

4.3. Correction to the y coordinate of the pitot tube position

The finite radius of the pitot tube (p, =0.45 mm) leads to a shift in the effective radial
position of the measurement point due to the velocity gradient. Here, the correction
scheme described by Chue (1975) and recommended by Zagarola (1996) was used. In
wall units, the correction to the y coordinate above the wall is

Ay* ( 1 du* 1 du* 3)

=0.36 —p - 0.17<pj> , 4.5)
D ut dy*t ut dy*
where pf =p,u,/v. The factor 0.36 is the value suggested by Chue (1975) and used
by Zagarola (1996). The main difficulty in applying (4.5) is that it requires the y
derivative of the velocity data, which is not known a priori. However, once the
uncorrected velocity data were approximated by (3.5) and (3.13), that approximation
was used in (4.5) to generate the velocity derivative and corrected yt values. The
once-corrected approximation to y* was then used a second time to produce a
once-improved derivative for (4.5) and a final set of corrected y* values. The final
corrections applied to the position data are shown in figure 5.

Figure 6 shows an overlay of all the p; =0.9 mm and p, =0.3 mm corrected data.
At Reynolds numbers where both sets of data overlap, the agreement between the two
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FIGURE 5. (a) Values of the corrections in y* applied to the uncorrected p;=0.9 mm
data at each pitot tube position. (b) Shows the correction close to the wall. The horizontal
coordinate is the index (1 to 52) of the position of the pitot tube above the wall.
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FIGURE 6. Comparison between corrected p, =0.9 mm velocity data (filled circles ®)
and corrected p;, =0.3 mm velocity data (open circles O) for all 26 PSP surveys. Each
velocity profile is shifted vertically 3 units in u* in order to separate the profiles.

measurements of the same velocity profile is generally excellent. The 19 Reynolds
numbers where the p, = 0.3 mm data are available provide valuable information near
the wall which can be clearly seen as open circles to the left of the overlapping points.

5. Determination of model parameters

Optimal values of the free model parameters (k,a, m,b,n) in (3.13) were
determined for each velocity profile. This was accomplished by minimizing the
total squared error (5.1) with respect to all five parameters.

N
G=> W' (k.a,m b ny")—u o). (5.1)

i=1
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FIGURE 7. Comparison between corrected p; =0.3 mm and p;, =0.9 mm velocity data
(open circles O) and the velocity profile (3.5), (3.13) with optimal values of (k, a, m, b, n)

for all 26 PSP surveys. Each velocity profile is shifted vertically 3 units in " in order
to separate the profiles.

The model velocity profile (3.5) and (3.13) generates u*(k, a, m, b, n,y) at each
corrected point, y;', above the wall. The velocity u; (y]) is the value measured at y;
for a given PSP survey. The upper limit, N, of the sum in (5.1) is either 42 or 56
depending on the survey. The minimization is only over the first 42 points out of
52 for each p; =0.9 mm survey since points 43 to 52 are redundant measurements
beyond the pipe centreline. Only point 57 is beyond the pipe centreline for the
ps=0.3 mm surveys and so the minimization is over the first 56 points of each
survey. The resulting velocity profiles using the optimal model parameters are shown
in figure 7 where all 26 model profiles are compared to the data. The greatest errors
in figure 7 tend to occur near the wall at the lowest Reynolds numbers.

Figure 8 shows the minimum, maximum and root-mean-square errors in u* for
each of the 26 profiles. Generally speaking the model (3.5) and (3.13) reproduces
the velocity data very well. Referring to figure 8 and table 1, the poorest fit is
model profile 6 (u} .., =021, u"  — =0.68, U}, emr =—0.29) corresponding to
per cent errors relative to the centreline value wuy/u, =26.2, of 0.8%, 2.6 % and
1.1 % respectively. As can be seen in figure 7, the largest error in profile 6 occurs
closest to the wall.

Over most of the rest of the data, especially at high Reynolds numbers, the fit is

considerably better. For example, the errors for model profile 23 are u  =0.058,
uh . =0.20 and u;, . = —0.11 corresponding to per cent errors compared to

uy/u, =36.56, of 0.16%, 0.55% and 0.29 %. Overall the errors between the model
profile and the data are comparable to, or below, the experimental error reported
by Zagarola (1996) and McKeon (2003). More specifically, the errors between the
model profile and the data are generally comparable to or smaller than the values of
Au' /ut presented in figure 7.19 of McKeon (2003).


https://doi.org/10.1017/jfm.2019.669

https://doi.org/10.1017/jfm.2019.669 Published online by Cambridge University Press

848 B. J. Cantwell

1.0
] o
051 %o °
o5 o]
° 0®o, o oOOOOOOO °
§ 0o e®, o .'09962'°'°'.°..9.
+3
= Oooog OOIOOOOOOIOSOO 0200000 2050
o © o o
—0.5
—-1.0

FIGURE 8. Errors in the fit of the universal velocity profile to the survey data. Filled
circles, @, are the root-mean-square error in ut between the model velocity profile (3.5)
with wall-wake mixing length function (3.13) and the PSP velocity data. Maximum and
minimum errors in u* are shown as open circles, O. Numbers on the horizontal axis refer
to the PSP survey number.
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FIGURE 9. Optimal parameter values for all 26 PSP surveys. (a) Kdrmén constant, k; (b)
damping length scale, a. Dashed line in (a) is at k =0.4. Numbers on the horizontal axis
refer to the PSP survey number.

6. Optimal model parameters

Figures 9, 10 and table 1 show all the model parameters determined using the
optimization process described in §5. Optimal values of the Karmdn constant, £,
presented in figure 9(a) show a distinct change between surveys 5 and 6. Referring
to table 1, profiles 1 to 5 are characterized by values of k between 0.45 and 0.46,
very close to the simulation results of She et al. (2017). Then there is a step down
to k=0.403 for profile 6 and then a nearly monotonic increase in k£ to 0.419 at
profile 26. The step change between surveys 5 and 6 may be evidence of increased
mixing in the underlying turbulence associated with the beginning of scale separation
between the inner and outer flows.

The parameters a and m characterize the viscous wall layer and the transition from
the wall to the nearly logarithmic region. The parameters b and n characterize the
transition of the velocity profile to the outer wake region and the pipe centreline.
Parameter b is a measure of the fraction of the pipe radius where the velocity profile
begins to take on a slightly wake-like shape. In this region the mixing length, A,
tends to approach a constant and the pipe centreline flow dominates turbulent transport.
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FIGURE 10. Optimal parameter values for all 26 PSP surveys. (a) Product, ka; (b) outer
flow length scale, b; (c¢) wall damping exponent, m; (d) outer flow exponent, n. Numbers
on the horizontal axis refer to the PSP survey number.

The exponent n determines how rapidly this transition takes place. The damping length
scale, a, exhibits precisely analogous behaviour to k£ with a distinct drop between
profiles 5 and 6 and a small increase between profiles 6 and 25 with a slight drop
at 26. It will be shown later in the discussion of figure 24 that k and a are, in some
sense, cooperative parameters that determine the additive constant in the logarithmic
law for the friction factor.

It is possible that the general increase in k, a and the product ka shown in
figures 9 and 10(a) over profiles 6 to 26 is due to increased effects of roughness as
the thickness of the viscous sublayer approaches a few microns. With a pipe radius of
64.68 mm, the point y© =1 at R, =530023 corresponds to y=0.122 pm above the
wall which can be compared to the pipe roughness height, k,,,; =0.15 pm. The small
but distinct increase in k beginning at PSP 22, R, =216979, suggests a possible
onset of roughness effects although Bradshaw (2000) argues that roughness effects
appear smoothly and continuously and do not exhibit a sudden onset. According to
the theory of transition roughness developed by Colebrook (1939), roughness effects
should begin to be apparent for k,,u,/v > 0.1. The roughness Reynolds number of
PSP 22 is k,,,u./v=0.5 well above this level.

Perry, Hafez & Chong (2001) used an empirical formula for the turbulence intensity,
the correction to the pitot position of MacMillan (1956) and the theory of Colebrook
(1939) to argue that the corrected high Reynolds number, p, =0.9 mm, data do
show effects of roughness, which they measure in terms of the equivalent sand grain
roughness, k; = 3k,,,. It is possible that the grouping of points seen in figure 3 of
Perry et al. (2001) has some correspondence to the groupings seen in figures 9 and 10
of this paper. But, after Jiang et al. (2003) repeated the PSP measurements with the
ps=0.3 mm pitot tube, McKeon (2003) and McKeon et al. (2005) firmly stated that
the survey data up through PSP 23, R, =284 254, are hydraulically smooth.
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FIGURE 11. PSP 4, 6 and 8 velocity surveys are shown. The survey data (open circles O)
and comparison velocity profiles, equations (3.5) and (3.13), with optimal values of
(k, a, m, b, n) are displaced 10, 15 and 25 units in u™. PSP 6 is shown with two
approximate profiles defined by two relatively different sets of optimal parameters. Each
set of (k, a, m, b, n) values define a local minimum in u}  identified by the procedure

described in §5. Labels A, B and C identify the intermediate region of the profile
generally associated with logarithmic behaviour.

In the absence of further data it must be concluded that the increase in k, a and
the product ka in figures 9 and 10(a) for PSP cases 6 to 23 is a weak but real,
fundamental dependence of these two parameters on Reynolds number.

A note of caution needs to added here. Within the optimization procedure described
in §5, the value of k that minimizes the squared error is quite well defined; in other
words, small deviations from the optimum value of k significantly increase the error
in (5.1). However the optimization problem is not convex and multiple extrema in the
squared error do exist. Figure 11 illustrates precisely this situation. Velocity surveys
4, 6 and 8 are shown along with the parameter values that define the model profile
that best fits each survey. Survey 6, which has the largest error over the whole set of
26 PSP surveys, is shown twice with two sets of quite different optimal parameters
that give almost exactly the same root-mean-square error in u™ between the survey
data and the model profile. The labels A, B and C are placed near the section of
each survey that would normally be associated with logarithmic behaviour. The model
profile fit to survey 4 shows a concave section near A that, in linear coordinates,
would roughly correspond to dependence of the velocity profile on a power law. The
intermediate region C of survey 8 shows a straightening out of both the survey 8
data and the model profile and marks the beginning, in Reynolds number, of scale
separation and nearly logarithmic behaviour in the intermediate region. Survey 6 falls
somewhere in between. The model profile with & =0.4566 shows concave upward
behaviour in the intermediate region B and does not provide a very good fit to the
survey 6 data in this region; this profile fits the data below y* = 100 better. The profile
fit with k =0.4034 has less concave upward behaviour in the intermediate region and
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FIGURE 12. The velocity gradient of the universal profile, equation (3.3). (a) Log-linear
coordinates with linear inset; (b) log—log coordinates.

fits the data near B better but this profile fits the data below y™ =100 less well.
Because of the better fit to the data in region B, the profile with k =0.4034 and the
associated values of a, b, m and n was the one selected to be included in table 1.
A search for similar cases of multiple extrema near profiles 1 to 5 and 7 to 26 did
not turn up any other examples but that does not mean they do not exist. In the face
of this uncertainty, the best reassurance that the parameter values presented in table 1
are of practical use is simply the fact that the errors are small and the fit to the data
shown in figure 7 is generally very good.

Figure 12 shows the velocity gradient function (3.3) used to generate the universal
model velocity profiles with optimal parameters used in the wall-wake mixing length
function (3.13). Panel (a) is plotted in log-linear coordinates with the inset in linear
coordinates to show the limiting gradient of the profile near y* =0 derived in equation
(3.4). In (b) the gradient is plotted in log—log coordinates to bring out the behaviour
in the wake region. The rapid drop-off at the pipe centreline is essentially graphical
evidence of the integrability of (3.3). Figure 12 also shows the difficulty of integrating
(3.3) at high Reynolds number where the gradient near the pipe centreline is extremely
small. This is a problem we will address later when we study the behaviour of the
velocity profile expressed in outer variables at extreme Reynolds numbers.

6.1. Velocity and friction using mean model parameters

The average value of k in figure 8(b) over profiles 6 to 26 is k=0.4092 and can
be compared to the value k =0.421 measured by McKeon (2003) and McKeon et al.
(2005) and k= 0.436 reported by Zagarola (1996) and Zagarola & Smits (1998). The
difference between 0.436 and 0.409 may not seem very large but to anyone fitting this
kind of data to a logarithmic curve, the difference is quite noticeable and Zagarola’s
value has generally been viewed as too large. But according to figure 2 the PSP survey
data for ug/u, versus R, are well approximated using k=0.432, even though this
value does not provide a good fit to any of the individual velocity profiles. We shall
return to this point in §9.3.

Table 1 shows the optimal values of (k, a, b, m, n) determined for the 26 surveys.
For PSP 1 to 5 the damping length scale a is nearly constant around a value of
approximately 25.7. At PSP 6, a drops to 19.7, then increases slightly over PSP
6 to 21 and then levels off for PSP 22 to 26. The average value over PSP 6 to
26 is a=120.095. Over the entire data set the outer flow length scale, b, shown
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FIGURE 13. The PSP data and model profiles in this figure are identical to that shown
in figure 7. The filled circles (@) are determined from the model profile (3.5) and (3.13)
with all parameters fixed at (k, a, m, b, n) = (0.4092, 20.095, 1.621, 0.3195, 1.619).

in figure 10(), is close to 0.3 except for a slight rise to approximately 0.34 to
0.35 between PSP 6 to 10. The average over PSP 6 to 26 is b=0.3195. The
damping exponent, m, shown in 10(c) shows similar behaviour; nearly constant at
approximately 1.3 for PSP 1 to 5, then increasing to approximately 1.6 for PSP 6 to
26 with an average value m =1.621 over these cases. Finally the wake exponent, n,
in figure 10(d) generally increases from 1.2 to 1.7 over PSP 1 to 26 with an average
value over PSP 6 to 26 of n=1.619, remarkably close to m.

Figure 13 shows the 26 sets of PSP survey velocity data as open circles and
the comparison model profiles as solid lines. These are the same data shown
in figure 7. The filled circles overlaid on the data are derived from the model
profile with all five parameters fixed at their average values, (k,a,m,b,n) =
(0.4092, 20.095, 1.621, 0.3195, 1.619). The fit is quite good considering the three
orders of magnitude in the Reynolds number between surveys 1 and 26. The
largest error occurs at the highest Reynolds number where the filled circles tend
to overestimate the velocity. This is mainly due to the use of k= 0.4092 rather than
the somewhat larger optimal value k= 0.4190. ~

In figure 14, u/u, versus R, and the bulk Reynolds number, R,, for the combined
Oregon and Princeton data listed in McKeon et al. (2004b), is compared with data
computed from the universal velocity profile (3.5), (3.13) with the model parameters
fixed at their average values. Except for laminar—turbulent transition, the universal
profile approximates the friction data quite well over the entire range of Reynolds
numbers from 0 to 10,

7. Discussion
7.1. Logarithmic behaviour

At this point we have established that the model velocity profile (3.5) and (3.13) with
optimal values of (k, a, b, m, n), provides an accurate approximation to the entire set
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FIGURE 14. (a) Value of it/u, versus R,, (b) it/u, versus R,. Open circles, (O)
are the combined Oregon and Princeton data from McKeon et al. (2004b). Filled
circles (@) are computed from (3.5) and (3.13) using (k, a, m, b, n) = (0.4092, 20.095,
1.621, 0.3195, 1.619).

of 26 surveys. In order to identify logarithmic behaviour, equations (3.3) and (3.13)
are now combined to produce the log-law indicator function, y* du™/dy*.
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Equation (7.1) is plotted in figure 15 for all 26 profiles. Profiles 1 to 5 are shown
in figure 15(a), profiles 6 to 26 are shown in figure 15(b), the high Reynolds number
profiles 15 to 26 are shown in figure 15(c) and an enlarged view of figure 15(c) is
included as figure 15(d) in order to show the behaviour of the high Reynolds number
profiles in the intermediate region. Each curve in figure 15 has several extrema
and these are identified in figure 15(c,d). The outer edge of the viscous sublayer is
defined here as the peak at I. The outer edge of the buffer layer and beginning of
the intermediate layer are defined as the minimum at II. Every profile has a point
III in the middle of the wake region where y*du'/dy" has a maximum just before
the centre of the pipe is reached. Profiles 16 (R, =42294) to 26 have a second
minimum, IV, one of which is identified by the arrow pointing at the minimum in
profile 16 in figure 15(d). In these cases the minimum at IV helps to identify the
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FIGURE 15. Comparison of the log-law indicator function for several sets of PSP model
profiles. (a) PSP 1 to PSP 5, (b) PSP 6 to PSP 26, figure, (c) PSP 15 to 26. (d) Shows
PSP profiles 15 to 26 on an expanded scale. Extrema of y*(du®/dy") in (c) are identified
by L II, III, IV and V. The arrow in (d) indicates the lowest Reynolds number appearance
of the minimum IV at PSP case 16.

beginning of the wake region of the velocity profile. Profiles 16 to 26 also have a
broad region, V, with a maximum that defines the point where the profile would
exactly fit a logarithm. At the highest PSP Reynolds number, the wake region begins
at approximately y* = 12 000.

Despite the presence of the minimum around y* = 100, there is really no log region
in figure 15(a) for profiles 1 to 5 and, in effect, no scale separation below R, =2345.
The concave upward shape of the y™ du®/dyt curves is fairly marked throughout the
intermediate region. El Khoury ef al. (2013) in their figure 8(b) show comparisons
of ytdut/dy*t determined from pipe, channel and boundary layer simulations at
R, =1000. The curves are very similar to figure 15(a); the magnitude of the peak
is slightly lower than the PSP 1 peak and the position at y* =10 is slightly higher
than the position of the peak at y* =8.3 seen in 15. Similar pipe simulation results
are shown in figure 4(b) of Ahn et al. (2015) at R, = 3008.

Figure 15(b) shows model profiles 6 to 26. To a first approximation, a logarithm
is an excellent fit in the nearly flat region that begins at y* =65, and reaches to
the beginning of the wake region. Upon closer inspection, the slope of the straight
section of each profile actually shows a small increase with y*. In order to examine
this further, the high Reynolds number profiles 15 (R, =32869) to 26 (R, =530023)
are broken out in figure 15(c,d). For PSP surveys 15 to 26 the log-law indicator
function has a slightly concave downward shape in the nominally logarithmic region.
Figure 15(d) shows that profiles 16, R, =42294, to 26 have a second minimum IV
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that defines the beginning of the wake region and distinct scale separation between
the wall and the wake. It appears that R, = 42294 is the Reynolds number where full
separation of scales between the wall and wake is reached. There is no maximum
in region V in the model velocity profiles for PSP surveys 1 to 15; that is, there
is no point where a log function would fit precisely despite the remarkable flatness
of this region in figure 15(b). The presence of a maximum in region V persists to
all higher Reynolds numbers with an increasingly lengthy logarithmic section of the
velocity profile. Perhaps the most accurate description of region V is that the profile
shape is not precisely a logarithm, but is the more complex behaviour defined by the
universal velocity profile (3.5) and (3.13) with the influence of wall and outer length
scales on the intermediate region of the velocity profile persisting to all Reynolds
numbers.

7.2. Power-law behaviour

Using similarity arguments and experimental data, Barenblatt (1993) and Barenblatt
& Prostokishin (1993) argue that the intermediate region in wall-bounded flows,
particularly pipe flow, is not governed by a universal logarithmic profile but rather
by a Reynolds number dependent power law, apparently free of empirical constants,
of the form

1 _ 5 ;
ut = ( In(2R,) + 2) (yt)Y @GR (7.2)

V3

where R, is the Reynolds number based on the bulk velocity and pipe radius.

We can check this hypothesis. The universal velocity profile with optimal parameters
is used to construct the power-law indicator function (y*/u™)du®/dy*™ for PSP cases
1 to 26 shown in figure 16(a). In all 26 cases the slope of the profile in figure 16(a)
is negative until the minimum is reached beyond the outer edge of the intermediate
region. Indeed, every curve in figure 16(a) has a minimum where a power law would
provide a locally accurate fit. The values of ((y*/u™)dut/dy"),., (the exponents) at
the minima are shown in figure 16(b) and the Reynolds number dependent exponent
in (7.2) is shown for comparison. In figure 16(c) values of the coefficient in (7.2),
determined for PSP cases 1 to 26 using the universal velocity profile and the exponent
data in figure 16(b), are shown as open circles and compared with the coefficient in
(7.2). The agreement between the data derived from the universal velocity profile and
(7.2) for both the exponent and the coefficient is very good, although there is some
systematic variation in both figures.

It must be noted that, while the functional form of (7.2) has a basis in fundamental
theory, the constants in (7.2) are, in fact, empirically determined by Barenblatt &
Prostokishin (1993) to provide the best fit to the pipe data of Nikuradse (1966)
over the range 8.35 x 10’ < R, < 7.68 x 10°. The low end of this range is below the
Reynolds number of PSP 1. The high end lies between PSP 14 and 15 close to
where the theoretical curves cross the data generated from the universal profile in
figure 16(b,c). So the agreement in these figures is really just a reflection of the fact
that the universal velocity profile and (7.2) are approximating pipe data from two
different sources 64 years apart at the same flow conditions. The reason Barenblatt
& Prostokishin (1993) expressed the constants in (7.2) in terms whole numbers was
purely for convenience as they state in the discussion in § 2.2 of their paper.
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FIGURE 16. Power-law indicator function for the PSP model profile and comparison with
the theoretical prediction of Barenblatt (1993) and Barenblatt & Prostokishin (1993). (a)
Shows model profiles PSP 1 to PSP 26. In (b), open circles (O) are the values of the
exponent at the minima of the curves in (a), the solid line is the exponent in (7.2). In
(c), open circles are determined from the universal velocity profile at the minima in (a)
and the exponents in (b), the solid line is the coefficient in (7.2). (d) Indicates the position
of the minima from (a) in outer flow coordinates.

Barenblatt (1993) and Barenblatt & Prostokishin (1993) argue that (7.2) should
replace the logarithmic profile in the intermediate region. However figure 16(d)
shows that the minima in figure 16(a) are all located above y/3 = 0.08, somewhere
between the extrema labelled IV and III in figure 15(c). It appears that (7.2) is more
descriptive of the transition region where the logarithm gives way to the outer flow
rather than the intermediate region itself.

This issue is beginning to be within the range of direct numerical simulation.
Ahn et al. (2015) plot (y*/u™)du®/dy* in their figure 4(a). A flat section indicates
that the velocity profile in their simulation at R, =3008 follows a power law with
exponent 0.145 in the range y*=90-300. This agrees reasonably well with the
nearest comparable PSP case which would be survey 6 at R, =3327. However at
this Reynolds number there is very little scale separation between the wall and outer
flow and so the log-law and power-law regions are very difficult to distinguish.

7.3. Scaling of regions 1, 11, 1II, IV and V

The collapse of the 26 velocity profiles in the viscous near wall region I and II in
figure 15 is nearly perfect with a maximum value of y*du'/dy* close to 6.0 at the
edge of the viscous sublayer at y" =8.3 and a minimum at the end of the viscous
wall layer at y* = 65.
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To a high degree of accuracy, the y*™ position of the peak at III scales linearly with
R, and

y+ Yur
% = =0.592 4+ 0.012 (7.3)

over all 26 profiles. This is consistent with the remarkable constancy of the model
parameter b. It appears that the middle of the wake region is at approximately
y/8 =2b. The y* position of the minimum at IV, which we define as the beginning of
the wake region, does not appear in the survey data until R, =42294 and relatively
few survey data points are available to define the R, scaling of this minimum.
To remedy this, the universal profile was extrapolated to R, =10% with optimal
parameters fixed at their mean values. For Reynolds numbers above R, =42294 up
to R, =10% the minimum at IV also scales linearly with R, and

y* yiv
% == 0.0149 + 0.0008. (7.4)

T

The y* position of the maximum in region V that defines the point where a logarithm
would be an exact fit was determined by solving for the positive real root of
d(y* dut/dy")dyt =0. The maximum is quite broad and over the Reynolds number
range of the PSP data it is difficult to precisely identify a simple scaling. However,
when the universal profile was extrapolated to R, = 10% with parameters fixed at their
mean values, the scaling was found to be

+
Yv ~

(Rl/z >, (7.5)
‘)

The result (7.5) coincides quite closely to the point of maximum turbulent shear stress
(7.14) at high Reynolds numbers. Note that a maximum in 1 exists at all Reynolds
numbers whereas region V only has a maximum for PSP survey 16, R, > 42294, and
above.

7.4. The Reynolds shear stress and turbulent kinetic energy production

The universal velocity profile (3.5) and (3.13) can be used to analyse turbulent shear
stress profiles from the pipe centreline to the wall. This inevitably requires discussion
of the implications of the approximate profile in the near-wall region well below, in
logarithmic terms, the nearest data point used to generate the profile. The discussion
in this section needs to be understood in this light: despite the absence of data very
near the wall, what does the PSP data seem to suggest about the near-wall flow?

Turbulent shear stress profiles are shown in figure 17. As the Reynolds number
increases, the y* coordinate of the maximum stress increases while the value of the
maximum stress approaches one corresponding to the classical high Reynolds number
approximation (u'v’),u = —Tyau/p-

From (2.9) and (3.3) the turbulent shear stress is

f+—(1_y+)+ Lo ! <1+44(+>2(1—y+))1/2 7.6)
- R.)  2a")°  24(y")? Y R, ' '
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FIGURE 17. Turbulent shear stress profiles using optimal parameter values for each profile;
(a) all 26 surveys, (b) shear stress very near the wall in log—log coordinates.

Extrema in the Reynolds shear stress occur where

dt*
dy+ o
1 1 1 da 2 dAa

R, NN 2 P dyt NN 2 gyt
RT<1+4/12 (1—y)> Y /1<1—|—4/12 (1—y>> Y
R, R
2" i e (127)) 4 (1.7)
A3 R, dyt+

+ vt '/2(137
eatese(1-2))

Equation (7.7) can be squared and rearranged to read

4 yt ) yt da\? da .
—— (1= ) [RA(1-% ) [—) —RA— —2* | =0. (7.8)
R.2A2 R, R, ) \dy*+ dy+

The zero of (7.8) at yt =R, is a spurious root introduced by the squaring process.
The factor of interest is

+ d/lmaxr 2 d/lma).‘:
R (1 - 2) ( - ) R =22 = () =0, (7.9)
T y y

where 7% is a maximum and A,,.+ is the value of A at the maximum. Recall
n=>0-y/8)=(1—y*/R,), equation (7.9) becomes

d/lmaerr 2 /lmavchr d/lmaxr /lmavchr 4
( )  Wraet) Qe nare)” _ (7.10)
dn n dn n
Equation (7.10) can be solved for A+
12
yt_;axr‘*' :

1 (1 4 const.) — const.
Amaxt‘*’ - L —1 s (711)
y+ + 12 y;r:axr‘*'
21 = Lmaxtt (1 — const.) 4 const.

T T



https://doi.org/10.1017/jfm.2019.669

https://doi.org/10.1017/jfm.2019.669 Published online by Cambridge University Press

A universal velocity profile for smooth wall pipe flow 859

(@) 500 . (b) 1.00 veese e s s o e
400 * 0.98 as
L]
) ~ 0.96 ."
£ 300 . 5 094 e
+_ . S 092 e
~ 200 . .
W . 0.90
100 R 0.88
0 / 0.86
200 400 600 800 1000 1200 200 400 600 800 1000 1200
y* y*
(c) 115 (d) 1.010
® etV et const.!/? Y e
mare') maxt’_ Y maxe 1.008
‘:i. 1.10 e . R <(l — const.) + const. y+;§‘l”+) R: 1.006 .
+\ 1.05 . & 1004 °
= . g 1002 °
¢ 1.00 cssscccccccee 1) ®
gy o0 1.000 i ee00000000c0cccce
~ —_— e o®® o
0.95 pe 0.998
0.996 )
5 10 15 20 25 5 10 15 20 25

FIGURE 18. (a,b) Show the position above the wall and the value of the maximum
turbulent shear stress for the 26 PSP cases. (c,d) Depict equation (7.12) and the constant
of integration of (7.10). The PSP case number is shown along the horizontal axis in (c,d).

where const. is the positive, R, dependent, constant of integration of (7.10). Equation
(7.11) simplifies to

const.!/?

er;aerr .
((1 — const.) + const.R>

T

(7.12)

/.ima)chr =

Once the mixing length function, A(y™*), is defined, equation (7.12) can be solved for
the value of y© where t* is a maximum.

Figure 18 shows the position above the wall as well as the value of the maximum
turbulent shear stress derived from the model profiles for PSP 1 to 26. At high
Reynolds number, the maximum t* approaches one. The position of maximum
turbulent shear stress is always far below the wake region and, for PSP surveys 15
to 26, the position of maximum shear stress is far enough outside the wall damping
region so that to a good approximation,

A Ekyt
const. = 1. } (7.13)

According to (7.12) and (7.13), the position of the point of maximum turbulent shear
stress increases with Reynolds number as,

R:

MUy uid 7.14
pA r (7.14)

in agreement with equation (42) in Zagarola & Smits (1998) and consistent with the
conclusions of Morrill-Winter et al. (2017) in the context of flat plate flow. Finally,
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FIGURE 19. (a) Mixing length function A normalized by ky*. (b,c) Turbulent kinetic
energy production, Pt =t (du*/dy"), in log-linear coordinates and log-log coordinates
respectively. (d) Area-averaged TKE production multiplied by R,. The root-mean-square
error in the log-linear fit to the data in (d) is 0.175. All 26 profiles are shown with
optimal parameters used for each profile.

very near the wall, equation (7.6) can be expanded to give,

k2
lim 7 = ( ) (yhHFm, (7.15)

yt—0 4a*n

The average value of the damping exponent over PSP 6 to 26 is m=1.621,
corresponding to 2m + 2 =5.242. In figure 17(b), the shear stress profiles are plotted
in log—log coordinates to show the behaviour of the model profiles very near the wall.
The small variation in slopes in figure 17(b) reflects the variation in m over the 26
profiles. The profiles indicate that near the wall, T+ ~ (y*)’ in contrast to generally
accepted thinking and the analysis and simulation results of She et al. (2017). The
result in (7.15) is consistent with the rapidly damped near-wall flow observed in the
model velocity profiles in figure 7 as well as the position of the near-wall peak in
the streamwise normal stress data presented in Hultmark (2012). It should be noted
that if the uncorrected Zagarola (1996) data are analysed using the approach here
with optimal parameters appropriate to that data set, the near-wall Reynolds stress
does behave as t+ ~ (y*)3.

The normalized mixing length function A/ky™ for corrected PSP surveys 1 to 26 is
shown in figure 19(a). There is no flat region for model profiles 1 to 5. Profiles 6 to
26 show the same, very regular, behaviour seen in figure 15. There is a notable gap
between the mixing length functions for PSP cases 5 and 6. This reflects the step in
the value of the optimal k for these cases seen in figure 9 that, as was noted in §6,
may be evidence of a mixing transition between these cases.
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Figure 19(b,c) shows the production of turbulent kinetic energy (TKE). Returning
to (2.9), multiply by du*/dy* to produce

dut N\ dyt dut\?
T+L: 1_L R (el ) (7.16)
dy* R, ) dy* dy*
The left-hand side of (7.16) is the TKE production. Differentiate (7.16), set the
result to zero and take the limit R, — oo.

) 1 dut yt du”t d2ut du” d2ut
im (—— o (1= 2 (L)) S )= (12 (L)) X o
Re—oco \ R, dy* R, dy*t/ /) d(y") dy*/ /) d(y")

7.17)

At high Reynolds number, the maximum TKE production occurs where du™/dyt =
1/2 (and 7t =1/2). Plugging this result into (7.16), the maximum in the turbulent
kinetic energy production is (z1(du™/dy*)) e = 1/4. The maximum occurs at y* =12
(Chen, Hussain & She 2018), somewhat above the outer edge of the viscous
sublayer as can be seen in figure 19(b). Figure 19(c) shows the TKE production
in log-log coordinates and is intended to provide some insight into the behaviour of
the TKE production away from the wall region. This figure illustrates the decrease in
production in the outer layer and, to a degree, the relative proportion of production
near the wall versus the outer layer. To explore this further, the TKE production is
area averaged over the pipe,

- 2 R: y+
Pr= / Pt (1 - > dy*, (7.18)
Rr 0 Rt

where PT=Pv/u?. The result, equation (7.18), multiplied by R, is shown in
figure 19(d). According to the universal model profile the area-averaged production
of turbulent kinetic energy decreases with Reynolds number according to

4.620In(R,) — 12.871
R, '

Pt = (7.19)

The implication of this result is that in the limit of infinite Reynolds number, the area-
averaged production of TKE tends to 0. This agrees generally with the analysis of
Pullin et al. (2013) and is consistent with the decrease with Reynolds number of the
velocity gradient in the outer flow.

The transport equation for the turbulent kinetic energy implies that, in general, TKE
production and dissipation scale together

T3 NS (7.20)

where S/ is the fluctuating rate of strain. In wall variables, equation (7.20) becomes

+du+ + o Ntra Nt
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The production of TKE normalized by the friction velocity in figure 19(b) remains
invariant as the Reynolds number is increased. The normalized rate-of-strain
fluctuation in (7.21) is related to the physical rate-of-strain fluctuation by

S,’j,U

2
uz

St = (7.22)

The problem here is that, at fixed uy and §, as v — 0 so also u, — 0. We know that
v/u; — 0, but we also need to determine lim, o v/u?. Using the pipe friction law in
the form kug/u, =In(eu,8/v) to express v/u* in terms of kuo/u.,

C
Y (2 (B oo, (7.23)
u? kug U,

In (7.23), § and u, are fixed. As kuy/u, — oo the ratio v /uf — 0. Therefore, for fixed

\VSHTESHT,

2

v/ljznlo \/(Sij/) S = \/(Szj/)Jr(Sz;,")Jr (ur> — 00. (7.24)

v

As v — 0, the instantaneous velocity gradients within the viscous wall layer become
infinite in order to maintain the balance (7.21).

8. High Reynolds number velocity profiles

Recall (3.5) and (3.13) repeated here for convenience with the full dependence on
(k,a, m, b, n, R;) shown.

vt 1 1 12
w*(k, a, m, b, n, R y+):/ —— r—(1yar (1= ds, (8.1)
b 9 b b b T 0 212 212 Rr b

where
kyt(1 —e 0" /a™)

(+ ()

Equations (8.1) and (8.2) admit an interesting scaling. Use the group, u/uq — ku/uy,
y* — kyt, and R, — kR, to define a modified wall-wake mixing length function by
multiplying and dividing various terms in (8.2) by k.

kyt(1 —e 0 /0™y kyt(1 — e~k /™y

y+ n\ l/n ky+ nN\ 1l/n
(H (b&) ) <1+ (b(kR,)) )

= A(ka, m, b, n, kR, ky™). (8.3)

Ak, a,m,b,n,R,,y") = (8.2)

Alk,a,m,b,n,R,,y") =

In the reduced space k and a are not independent parameters. Multiply both sides of
(8.1) by k, which is at most a function of R,, and insert the modified mixing length
function (8.3). Choose the integration variable, o = ky™.

ot 12
kit = Lot ipap (i@ d 8.4
=) Pt ) ) &b
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FIGURE 20. (a) Pipe flow shape function, @, versus kR, with y/é constant and
(ka, m, b, n) = (0.4092 x 20.095, 1.621, 0.3195, 1.619). (b) High Reynolds number limiting
shape function, ¢, versus y/§. In (b), optimal parameter values are used for each curve.

Equation (8.4) can be viewed as a k independent model velocity profile with four
model parameters, (ka, m, b, n) in a pipe flow at the scaled friction Reynolds number,
kR.. Now, define the pipe flow shape function

@ (ka, b kR. . ky") /ky+ L1 (1+4J12 (1 i ))m dor — In(ky™)
Cl, 7ma na T = - _~_ —~ - o — In .
Y o w2 kR, Y

(8.5)

Recall that ky™ = (y/8)kR,. The shape function, equation (8.5), has the remarkable

property that, for fixed (y/§), it approaches a constant value as kR, — oo. That is

leigloo D (ka, b, m, n, kR, (y/8)kR:)y/s=consr. = P (ka, b, m, n, y/5). (8.6)
Importantly, the limit is approached quite rapidly, and for kR, > 2000 is almost
fully established over almost the entire thickness of the boundary layer. Figure 20(a)
illustrates this behaviour. Notice that the limiting shape functions, ¢, for the various
PSP surveys shown in figure 20(b) collect into the same three sets of profiles
distinguished by the step in the value of ka seen in figure 10(a) and the distinct rise
beginning with PSP survey 22. We will use (8.6) in two ways, first to develop an
easy-to-use expression for the outer flow velocity profile at high Reynolds number
and second, to determine high Reynolds number friction laws where ‘high Reynolds
number’ means kR, > 2000. Note that this Reynolds number lies between PSP 7 and
PSP 8. Recalling the discussions of figure 11 and figure 15, this is the Reynolds
number range where scale separation begins and an identifiable logarithmic section
of the velocity profile starts to appear. It is also a range of Reynolds numbers that
direct numerical simulations are beginning to approach (Ahn et al. 2015).

The velocity profile (8.1) is quite easy to integrate through the near-wall region for
any Reynolds number. But at very high Reynolds number, integration all the way to
the pipe centreline can be extremely slow because of the high accuracy needed to
define the velocity gradient. The high Reynolds number shape function, ¢, can be
used to easily generate velocity profiles for the outer flow at any Reynolds number.
According to (8.4), (8.5) and (8.6), at Reynolds numbers larger than kR, = 2000 or
so, the velocity profile can be accurately approximated by

kut =¢ (ka, m, b, n, %) +In(ky™). (8.7)
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FIGURE 21. Velocity profiles 1 to 26 left to right, in outer variables. Each profile is
displaced 0.25 to the right. Open circles (O) are PSP survey data. Filled circles (®) are
generated from (8.9) with optimal parameters used for each case.

At the pipe centreline,

K2 — p(ka, m, b, n, 1) + In(kR,). (8.8)

T

Divide (8.7) by (8.8) and let kyt = (y/8)kR,. The result is

u _ ¢lka,m, b, n, y/8) +In(k) + In(R.) + In(y/5) 8.9)

Uo ¢(ka, m, b, n, 1) +In(k) + In(R;)

Figure 21 shows, in outer flow coordinates, the comparison between survey data and
data points generated using (8.9). As would be expected, the agreement is very good,
the largest errors can be seen near the wall at the lowest Reynolds numbers where
the convergence of @ to ¢ is least accurate.

Figure 22(a) shows the shape function generated using mean model parameter
values. In figure 22(b) this shape function is used in (8.9) to draw several velocity
profiles over a range of extreme Reynolds numbers up to R, = 10°'?. According to
(8.9) at any finite y/§, limpg,)»oo #/up=1 and in the limit of infinite Reynolds
number, the universal velocity profile asymptotes to plug flow with a vanishingly
thin viscous wall layer. The velocity derivative (3.3) is continuous in the infinite
Reynolds number limit. This is clear from figure 12 and can also be examined by
setting R, = oo in (3.3) and noting that the near-wall velocity derivative expressed in
wall variables in figure 12 is invariant with Reynolds number.

Pullin ef al. (2013) address the question of scaling of wall bounded flows in
the limit of infinite Reynolds number. Referring to the pipe flow data presented in
Morrison et al. (2004) and Hultmark et al. (2012), they make the observation that
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FIGURE 22. (a) The pipe flow shape function with (ka, m, b, n) = (0.4092 x 20.095,
1.621, 0.3195, 1.619). (b) Pipe velocity profiles with the mean model parameters at
extreme Reynolds number with values of R, labelled.

there is increasing evidence that streamwise turbulent fluctuations in the outer region
of the wall layer scale as

wi _ g (X) . (8.10)

u? 8

They use the log law, the similarity (8.10) and several alternative, but plausible,
arguments for the scaling of the inner and outer peaks in the streamwise turbulence
intensities (recall figure 3) to estimate the streamwise turbulence intensity of
wall-bounded flow in the limit of infinite Reynolds number. They show that
streamwise velocity fluctuations become a vanishingly small fraction of the pipe
centreline velocity as In(R,) — oo leading to the interesting conclusion that, in the
limit of infinite Reynolds number, turbulent flow near a wall essentially consists of
slip flow at the wall and vanishingly small turbulence levels over the rest of the flow.
The high Reynolds number form of the universal velocity profile, equation (8.9), is
consistent with this conclusion.
The velocity defect law generated from (8.9) is purely a function of y/§.

Uy —u

k =¢(ka,m, b, n, 1) — ¢p(ka, m, b, n,y/§) —In(y/95). (8.11)

T

Take the square root of (8.10) and divide by (8.11).

YA 12
(7 (5)) .
o—u). (8.12)
¢(ka, m, b,n, 1) — ¢(ka, m, b, n, y/8) —In(y/$)

u/u/ —

According to (8.12), at a given y/é, the streamwise turbulence intensity is proportional
to the velocity defect which, according to (8.11), is proportional to the friction velocity.
Since at any fixed y/8, limpg,)—o 4/ug=1, the streamwise velocity fluctuations
vanish compared to uy as R, — 0o. The relevant velocity scale for the turbulence
in the outer flow is not u, but the friction velocity u,. The situation is somewhat
analogous to the far field scaling of a plane wake where the Reynolds number is
constant and turbulent fluctuations on the wake centreline are a constant fraction of
the vanishingly small velocity defect.
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FIGURE 23. In (a,b) the open circles (O) are the same PSP data shown in figure 2. In (a)
the filled circles (@) are determined from the model profile (3.5) and (3.13) with optimal
values of (k, a, m, b, n) for each point. Optimal values of k for several PSP surveys are
also included in the figure. In () the filled circles (®) are determined from (9.2) and (9.5)
with optimal values of (k, a) for each point with (m, b, n) = (1.621, 0.3195, 1.619). The
straight solid lines in (a,b) are least squares log—linear fits of the filled circles with the
error minimized over points 6 to 26. Root-mean-square error for all four fits is less than
0.11 in units of u™.

9. High Reynolds number friction laws

Optimal values of (k, a, m, b, n) are used in (3.5) and (3.13) to generate u/u, and
up/u, versus R, in figure 23(a). Both calculations are overlaid on the same survey data
shown in figure 2. The agreement between the survey friction data and the friction
derived from the universal velocity profile is very good over the whole data set. This
is not surprising in view of the close agreement between the model velocity profiles
and survey data shown in figure 7.

9.1. Centreline velocity friction law

Fix (m, b, n) at their mean values and evaluate (8.5) at the pipe centreline.

@ (ka, m, b, n, kR,, kR,)

kR 1 1 _ o 172
-/ _222+222<1+412 (“m )) do— (kR (9.1)
0 T

The reason that, with (m, b, n) fixed, @ is a function of both kR, and ka is
because, while a could be set at its average value, a=20.397, the product ka
still depends on k. In fact k and a are really not fully independent quantities; k
and a tend to increase or decrease together and this is captured in the optimal
values of k and a in figure 9. Figure 24(a) shows (9.1) plotted using the mean
values ((ka, m, b, n) = (0.4092 x 20.095, 1.621, 0.3195, 1.619)). It is apparent from
this figure that @, at a fixed y/§, approaches its asymptotic limit above the relatively
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FIGURE 24. (a) The pipe flow shape function, @ (ka, m,b,n, kR, kR;) and
& (ka, m, b, n, kR, kR;) versus kR, calculated using (8.3) and (9.1) with fixed
parameters (ka, m, b, n) = (0.4092 x 20.095, 1.621, 0.3195, 1.619). (b) High Reynolds
number limiting value, @ (ka,m, b, n, 0o, 00) and @ (ka, m, b, n, 0o, 00) versus ka with
(b, m,n) =(1.621, 0.3195, 1.619). Also shown are linear fits to the limiting integral
values. Root-mean-square error in @ and @ for both linear fits is 0.0027.

low value kR, =2000. Above this Reynolds number, the high Reynolds number shape
function, ¢, shown in figure 20 is established and only minute changes occur as the
Reynolds number is further increased. This is about the same Reynolds number as
surveys 6 and 7 where scale separation between the inner and outer flow begins
to appear and the velocity profile begins to show a nearly logarithmic intermediate
region.

Figure 24(b) shows that the high Reynolds number limit, @ (ka, m, b, n, co, 00) is
to a high degree of accuracy linearly proportional to ka in the range of the PSP
data. Thus we can write the high Reynolds number smooth wall pipe flow centreline
velocity friction law as

k
lim —0 — In(R;) + 0.2915(ka) + In(k) + 1.0407, 9.2)

kR;— 00 U,

where the limit is rapidly approached above kR, =2000.

9.2. Bulk velocity friction law
A similar analysis holds for the friction law based on the bulk velocity.

ki 2 M [ e 1 1 - a \\"*\ .. a
= ———+ = (1442 (1- da | {1- dar.
u. kR Jy 0 202 222 kR, kR,

(9.3)

The shape function is

@ (ka, m, b, n, kR, , kR.)

2 kR o 1 1 » ~ 1/2
/ / ey (144 (1= da (1- %) da
R, Jo S, \ T2k kR. kR.

— In(kR,). (9.4)
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Figure 24(a) shows (9.4) plotted using the same mean values (ka,m,b,n) =
(0.4092 x 20.095, 1.621, 0.3195, 1.619) used to generate &. It is apparent from
this figure that @ also approaches a limiting constant above kR, =2000. Figure 24(b)
shows that the high Reynolds number limit of @ (ka, co) is also linearly proportional
to ka in the relevant range of Reynolds number. We can write the high Reynolds
number smooth wall bulk velocity friction law as

k
lim — = In(R;) + 0.2915(ka) + In(k) — 0.7638. 9.5)

kR;—o00 U,

Figure 23(b) shows uy/u, and u/u, calculated using (9.2) and (9.5), with optimal
values of (k, a) for each point and (m, b, n) = (1.621, 0.3195, 1.619), compared with
the PSP friction data. Note that the poorest agreement between the PSP data and the
high Reynolds number frictions laws in figure 23(b) is with PSP surveys 1 to 5 where
the Reynolds number is below kR, = 2000 and the shape function @ is not converged.

According to (9.2) and (9.5), the difference between kug/u, and kiu/u, at high
Reynolds number is constant. Subtract (9.5) from (9.2). The result is

fim 00 g, 9.6)

kR;— 00 U,

Given the relatively rapid approach to the limiting behaviour of @ and & seen in
figure 24, the transition between PSP surveys 5 and 6 can now be understood as
the onset of scale separation, and approximately logarithmic behaviour in the velocity
profile, and transition to a true logarithmic friction law.

9.3. About k and a

There is a point to be made about the model parameters k and a. The friction law,
(9.16) is usually expressed in the form suggested by Prandtl (1934a),

1 _
Vi C, In(R\/f) + Cs, 9.7)

where f is the friction factor defined in (2.13). If we use the mean values k=0.4092
and a =20.397, the Prandtl friction law would be

1 05640 In(R.+/f) — 0.2282. 9.8)

i

Equation (9.8) does not produce a particularly good fit to the friction data. A much
better fit is generated using the Karman constant, k = 0.4302, and the additive constant,
3.0420, that best approximate the u/u, survey data in figure 2(b). Using these values,
the Prandtl formula becomes

1 o828 In(R.\/f) +0.221. 9.9)

i

This result can be compared with equation (36) in Zagarola & Smits (1998). The
comparison requires the Reynolds number based on radius in (9.9) to be doubled and
the natural log to be converted to log base 10. Equation (9.9) becomes

= 1.892log(2R.\/f) — 0.349 (9.10)

-
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compared to

L 18841002k V) —0.331 9.11)
/A ' |

from Zagarola & Smits (1998). In fact, the value k=0.4302 from figure 2(b) used
to generate (9.9) is only slightly less than the value k= 0.436 originally reported by
Zagarola (1996).

Mean values of k and the value of a that would generate the additive constants in
figure 2(b) are
k. = (0.4320 + 0.4302) /2 = 0.4311 } 9.12)
a, = (23.9649 + 23.2528) /2 = 23.6088. ‘

The reason for the subscript, T will be explained shortly. The constants (9.12) provide
a very good fit to virtually all the friction data, whether it is survey data in figure 2(b),
data generated using the model velocity profile with optimal parameter values in
figure 23(a) or data in figure 23(b) generated from the high Reynolds number friction
laws, equations (9.2) and (9.5), with (m, b, n) = (1.609, 0.3158, 1.605).

What is going on here? Optimal values of k for four profiles (PSP surveys 6, 12, 18
and 26) are shown in figure 23(a). Note that the values of k shown are all markedly
lower than k.. As a concrete example, consider a straight line that would connect PSP
6 and PSP 26 in figure 23(a). The data at these two points are the following.

0.4190

26.1918 = —_ In(3327) + 6.0881.

0.4034

37.9002 = - In(530023) + 6.4427
(9.13)

The slope of the line that would connect the two points is

0.4034
In(530023) — In(3327)

In(530023) + 6.4427 | — In(3327) 4 6.0881
(4190 10530023+ 64427 ) = (- n3329) + 60831 )

=2.3090 (9.14)

corresponding to k=0.4331. The point of this illustration is that the values of k
and a that give the minimum error fit to the friction data cannot be assumed to be
necessarily equal to, or even all that close to, the k and a that best fit any particular
velocity profile at a given Reynolds number. The reason has to do with the dependence
of the additive constant in the friction law on k and a, especially k, and the weak
Reynolds number dependence of both parameters. For this reason (9.8) is not a good
approximation to the friction data. As long as k and a depend on the Reynolds number,
the k and a for a given velocity profile and the k., and a, that best approximate the
friction law have to be viewed as distinct quantities.
Using k, and a, from (9.12), the limiting friction laws (9.2) and (9.5) become

. Ugp 1
lim %= In(R,) +7.3442 9.15
A= 0aan D ©-15)

and

In(R;) + 3.1584. 9.16)

. u
lim — =
Ri—oo y, 0.4311
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To be clear, the constants k and a used in (9.2) and (9.5) can be the values specific
to a particular profile at a given R,, or one can use k, and a,. The resulting values
of uy/u, and u/u, will be nearly the same.

Although the constants in (9.15) and (9.16) fit the PSP friction data quite well,
the results shown in figure 24(b) and the evidence presented in figures 8(b), 10(a)
and table 1 indicate that the k and a that provide the best fit to the velocity profiles
are weakly increasing functions of R, over the range of the PSP data and there
is no reason to expect that trend to change at higher Reynolds numbers. One can
therefore expect to see increases in both k; and a, when higher Reynolds number
pipe measurements are made, but any friction law that is expected to fit Reynolds
numbers substantially beyond 20088 000 will be weighted by the existing variations
in k and a between PSP 6 and 26, and so changes in k; and a, that may be expected
to occur as the Reynolds number is pushed higher would be expected to be quite
small. So it is fair to say that, until extreme values of the pipe Reynolds number
are reached, the values of k; and a, in (9.12) are for all practical purposes fully
established.

9.4. Channel flow

An obvious follow-on to the present work would be to apply the same methodology
to turbulent channel flow. However there are no measurements of the planar case at
Reynolds numbers comparable to the Princeton Superpipe experiments. Aside from
the engineering challenge of constructing a planar pressure vessel or a very large
facility, end wall effects and secondary flow limit the region of fully developed planar
flow that can be achieved making pipe flow the obvious choice for an experimental
campaign designed to study very high Reynolds number wall turbulence.

At moderate Reynolds numbers, a combination of experimental and simulation
channel flow data would be the logical place to start, and the paper by Monty &
Chong (2009) provides a good description of the research issues involved, particularly
near the wall. Their study suggests that there may be an opportunity to apply the
approach presented in this paper to measurements that include data quite close to
the wall from both simulations and high aspect ratio channel experiments at nearly
the same Reynolds number. Direct numerical simulations of turbulent channel flow
have reached Reynolds numbers where significant scale separation is beginning to be
achieved and one might be able to directly connect the sort of change in the character
of the mean flow seen between PSP 5 and 6 with changes in the underlying structure
of the turbulence.

10. Conclusions

Despite the measurement challenges over the remarkably wide Reynolds number
range covered by the Princeton superpipe data, the high quality and consistency of
the data enables a close look at some of the persistent questions that energize the
debate over the nature of wall bounded flows.

The main conclusion of this paper is that (3.5) combined with the new wall-wake
mixing length function (3.13) and optimal values of (k, a, m, b, n) provides a very
accurate approximation to all 26 corrected PSP velocity profiles, well within the
accuracy of the data. Beyond survey 5, Re, = 2345, the optimization procedure settles
on model parameters that change relatively little for profiles 6, Re, =3327, to 26,
Re, =530023. Although describing the flow in terms of the viscous wall layer, log
region and wake region is still a useful way to qualitatively identify distinct parts of
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the flow, one of the most intriguing features of the universal profile is that it allows
the Karman constant and other model parameters to be determined from an analysis
based on the whole velocity profile. Moreover, it provides an accurate fit to the
velocity survey data in the intermediate region without presuming that the velocity
distribution is logarithmic.

The main result regarding the intermediate region is contained in figures 15 and
16. Figure 15(b,c) shows an extensive, nearly flat region, strongly suggestive of
logarithmic behaviour. Closer examination in 15(d) reveals that the behaviour is more
complex than a simple logarithm or a power law. The function, y*(dut/dy"), has
several extrema that can be used to unambiguously define the end of the viscous
sublayer, the end of the buffer layer and the beginning and middle of the wake region.
Between surveys 5, R, =2345, and 6, R, = 3327, an order of magnitude beyond the
upper range of laminar to turbulent transition, there appears to be a fundamental
change in the mixing structure of the turbulence. For lack of better understanding,
we will simply describe this as a change from low Reynolds number turbulence, with
k=0.46 and a =26, to high Reynolds number turbulence, where k= 0.41 and a =21
with both parameters slowly increasing with Reynolds number. The transition from
PSP 5 to 6 is characterized by the beginning of scale separation, nearly logarithmic
behaviour in the mean velocity profile, and exactly logarithmic behaviour in the wall
friction.

According to the onset of the second minimum at IV in figure 15(c,d), complete
scale separation between the wall and wake regions in the velocity profile does not
seem to be reached until survey 16, (R, =42294, Re =1363000). Only above this
Reynolds number is there is a maximum in region V where the velocity profile
would exactly fit a logarithm. For high Reynolds numbers this point coincides with
the maximum in the turbulent shear stress. Examination of the universal profile at
very high and extreme Reynolds numbers confirms that the maximum point in region
V continues to be present implying a lengthening, exactly logarithmic, section of the
velocity profile as the Reynolds number is increased.

The 4 % increase in k from 0.4034 at PSP 6, Re, =3327, to 0.4175 at PSP 23,
Re, = 530023, and a similar per cent change in a in figure 9(b), is concluded to be a
true physical dependence of k& and a on the Reynolds number. The Reynolds number
dependence of k and a leads to a difference of 3% to 7 % between the k, and a, that
best fit the friction data and optimal values of k and a for any particular profile.

Figure 16 does not indicate power-law behaviour within the intermediate region
but rather at the lower edge of the wake region. There the universal velocity profile
matches the semi-empirical velocity profile of Barenblatt (1993) and Barenblatt &
Prostokishin (1993) quite well over the mid-Reynolds number range where the PSP
data overlap with the data of Nikuradse (1966).

Through the introduction of a pipe flow shape function, ¢, the universal velocity
profile (3.5) and (3.13) is used to establish several high Reynolds number properties
of pipe flow. The high Reynolds number velocity profile in terms of outer variables
is

u  ¢lka,m, b, n,y/8)+In(k) +In(R;) + In(y/5)

el . (10.1)
Uy ¢(ka, m, b, n, 1) + In(k) + In(R,)

At any finite y/8, u/up— 1 as In(R,;) — oo and the velocity profile approaches plug
flow with a continuous mean velocity derivative and a vanishingly thin viscous wall
layer. In the infinite Reynolds number limit, the instantaneous velocity gradient within
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the viscous wall layer becomes infinite in order to balance the wall normalized TKE
production as v — 0. Astronomically large Reynolds numbers are required to approach
this state.

The limiting friction laws (9.2) and (9.5) are found to be

k
lim — —In(R,) 4+ 0.2915(ka) + In(k) + 1.0407

kR;— 00 U,

P (10.2)
lim — =In(R;) + 0.2915(ka) + In(k) — 0.7638.

kR;— 00 U,

The friction laws show the dependence of the additive constant in the log law on
the Kdrmén constant, k, and the near-wall damping length scale, a. The values of k
and a used in (10.2) may be those of a specific profile at a given Reynolds number
or they may be the values of k, and a, given in (9.12). Either choice will generate
very nearly the same uy/u, and u/u,. Although (10.1) and (10.2) come out of a high
Reynolds number analysis of the universal velocity profile, they are quite accurate for
kR, > 2000 which would approximately correspond to PSP cases 8 and above.

While the results in this paper are derived from an ad hoc mixing length assumption
for the turbulent shear stress, the general agreement between the experimental data
and the universal velocity profile supports the conjecture that the relations, (10.1) and
(10.2) hold in the limit of infinite Reynolds number.
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