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Abstract

In this paper we use the theory of generalized geometric programming to
develop a dual for a discrete time convex optimal control problem. This has
interesting interpretational implications. Further it is shown that the
variables in the dual problem are intimately related to the costate vector in
the usual Maximum Principle approach.

1. Introduction

It is becoming increasingly apparent that discrete time systems are a useful way
of modelling management decision making problems that are of a dynamic nature
[2, 3]. A common approach to discrete time optimal control theory, developed
in conjunction with the aerospace and chemical process industries, is via the
Discrete Maximum Principle which effectively decouples an iV-stage problem to
N one-stage problems at the expense of introducing a complicated two-point
boundary value problem. Alternatively, one may view a discrete time optimization
problem as a mathematical program, albeit often of high dimension. In this paper,
we adopt the latter viewpoint for the purpose of constructing a geometric dual to
the original problem. Duals are often useful from a computational point of view
as they may be easier to solve and used in conjunction with the primal (original)
problem provide a powerful algorithmic stopping criteria. Further, one often
obtains additional insight into the problem under consideration.

For the mathematical machinery necessary to generate the dual problem, we
use the "unconstrained" version of generalized geometric programming [4]. In
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Section 2, the required theory is summarized. In Section 3, we consider a linearly
constrained convex discrete time optimal control problem and find its geometric
dual. This admits an interesting reverse time interpretation.

Further, whereas the primal has mixed state-control variable-type constraints,
the dual has only non-negativity constraints as inequality constraints. Mixed
constraints pose considerable computational difficulties in the Maximum Principle
approach [1], whereas non-negativity conditions may be routinely handled by
penalty functions for example. We then particularize to a linear and a quadratic
objective since these are both analytically tractable and of most interest in manage-
ment science applications. Section 4 makes the connection between this theory
and the Discrete Maximum Principle approach.

The theory may be further generalized to handle convex inequality constraints
by using standard theorems of generalized geometric programming [4].

2. Duality theory

We consider an optimization problem of the form:

minimize /(*), xeC, (1)

subject to the constraints
xex, (2)

where x is a cone in Rn and/ is a closed convex function with domain C in Rn.
This is termed the primal problem. We associate with the primal problem, another
problem, called the dual problem, which is of the form:

minimize g(y), yeD, (3)

subject to the constraints
yeX*, (4)

where x* denotes the polar cone of x in Rn and [g : D] is the conjugate transform
of [/: C] denned by

-f(x)) (5)
xeC

and
D = {y eRn\ sup (xTy-f(x)) < +oo}, (6)

xsC

T denotes a transpose and

(7)

We note that the primal and dual problems are essentially of the same form
and hence are termed symmetric. At optimality, Peterson [4] has shown that the
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following relationships hold between the primal and dual optimal points, x0 and
y0 respectively.

( ) ( ) O, (8)

y0e8f(Xo), xoedg{yo), (9)

x%yo = O. (10)

Here 8f(x0) denotes the subgradient set of/at x0 and is defined by

¥(x0) = {**|/(z)>/(*o)+**T(*-*o)> V Z G Q . (11)

In the case where/(x) is a differentiable function, the subgradient is replaced by
the gradient, that is, (9) may be written

J>o = V/(*o), xo = Vg(yo), (12)

where V denotes the gradient operator.
These optimality conditions allow an optimal point for one program to be

calculated from an optimal point of the other.

3. Duality in discrete time optimal control

We consider an iV-stage optimal control problem of the form:
N-l

minimize 2 £*(**, «i), (13)
1=0

subject to dynamics

xi+1-xi = Aixi+Biui, i = 0,..., JV-l,. (14)

x0 = a, (15)
given

xNeXN = {xN\ANxN = 0} (16)
and constraints

EiXt+FiU^bi, i = 0,...,N-l, (17)
where xieRn are state variables, utERm are control variables, ct is jointly convex
in xt and uit bieRP, Ait Bit Et and Ft are appropriately dimensioned matrices at
each stage i.

To invoke the duality theory of generalized geometric programming given in
Section 2, we need to put the constraining equations (14), (15), (16) and (17) into
a cone. Hence we associate with a, a vector variable a which is in turn restricted to
a one-point domain {a}. Similarly we associate with bit a vector variable St, for
all /, which is restricted to a one-point domain {b^, for all i.

The above problem may now be put into the form suitable for generalized
geometric programming. This is,

N-l

minimize 2 cfai, "j)> (18)
i
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subject to cone constraints

*o-« = O, (19)

*<+i-G4i+')*<-^Mi = 0, i = O,...,JV-l, (20)

-EtXt-Fftit+StZO, i = 0,...,N-l, (21)

and the implicit domain-type constraints

C = {(*,, uit <*, 8t) | xt e Rn, ut e Rm, a e {a}, 6, e {&<}, V /, *„ e *„}. (22)
The dual problem is given by taking the conjugate transform of equation (18)

subject to the implicit constraints, equation (22), and then taking the polar cone
to the cone constraints given by equations (19), (20) and (21). Hence the dual
objective is given by (see equations (3) and (5))

s u p ( ? < i i ? y < j
, m, a, Si) e C \i=0 i=0 i=0

= sup (§lx?yi+
N£uTvi-

N£ci(xi,ua)+sup«'rp+ sup

T (23)
t=0

where cf(yitv^) is the conjugate transform of c^pct,u^, yteRn,
i = 0,...,N-l, j8e/?n, y^R1", i = 0,...,N-l, and yN = A%weRn. The polar
cone of equations (19), (20) and (21) is given by the set of

(Jo» ••••>yN>vo> —>»N-I>P>YO> — »Viv-i)>
where

Jt Jt?yd p (24)

for all x0,..., JCN, M0, •••,«JV_I. a, 8^ ..., 8^^ satisfying equations (19), (20) and (21).
A routine, though tedius calculation gives the following equations.

<-£?<7i> i = 0, . . . , # - 1 , (25)

yN = ZJV-I, (26)

i = 0,...,N-l, (27)

(28)

/ = O,...,Ar-l. (29)
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Substituting equations (28) and (29) into the dual objective, equation (23), we
obtain the following dual optimal control problem:

N-l J V - l

minimize 2 cf (yt, vt) - a1 z_x + 2 ^ ft> (30)
i=O i=0

subject to the constraints

i = 0,...,JV-l, (31)

(32)

i = 0,..., JV-l, (33)

qi>0, i = 0,...,N-l. (34)

In the dual problem, qit i = 0, ...,N— 1, is a multiplier which arises from the
primal state-control inequality constraint, equation (17). As an aid to interpretation,
we temporarily drop this constraint. In this case, the dual problem may be written:

J V - l

minimize 2 cfiy^v^-a1 z_x, (35)
i=0

subject to the constraints

' = 0 JV-l, (36)

(37)

f = 0,,.., J V - l . (38)

Substituting equation (38) into (35) and rearranging equation (36), we have the
problem

N-l

minimize Sc?0'()z()" f l T z- i i (39)
i=0

subject to the constraints

* * - i - * i - ^ f ^ + t t . i = 0,...,JV-l, (40)

J>JV = ^ _ ! = A% w, (41)
where

i" = 0 , . . . .JV-1 .

In this form, we can readily compare the dual problem with the original
unconstrained primal problem given by equations (13), (14), (15) and (16). The
term a1'z_x captures the original initial condition on the state. From equation (40),
we see that yt, the dual to the state variable xit acts as a control variable while z,
(which is proportional to the dual vit of the control variable M<) acts as a state
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variable. Further, if the primal problem is a forward time process from initial
state x0, the dual problem operates in reverse time from the state zN_v Further
comment on this interpretation will be given when we make the connection with
the Discrete Maximum Principle in the next Section.

We now particularize the objective function in the following two examples.

Example (i). Linear objective

ui, (42)

where Pi and Qi are given vectors in Rn and Rm respectively, for all /.
The conjugate transform of S & 1 c£xit ut) is given by

£cf(yi,vi)= s u p ( T y
i=0 x(6B» \ t=0 i=O

Ri

= sup ^\yi-Pi)
Txi+ sup Zi

^Vi i=0 u(6J?»,Vi i=0

= 0 (43)

with yt = Pi and »< = Qt, i = 0, ...,A^-1.
In this case, the dual problem is, from equations (30) to (34),

N-l

minimize — aT z_x + 2 bj qiy (44)

subject to the constraints

i = O,...,JV-l, (45)

(46)

i = 0,...,N-l, (47)

q^O, i = 0,...,N-l. (48)

Example (ii). Quadratic objective

$u? Qi m, (49)

where Pt and Qt are approximately dimensioned symmetric non-singular matrices.
A routine calculation gives the conjugate transform of c£xif u^ to be

fir1** (50)
with

and Vi^QiUi. (51)
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Hence the dual problem is given by

minimize s W ^ ^ + K e r ' ^ " " ^ - ^ i V f c (52)
i=0 i=0

subject to equations (31), (32), (33) and (34).

4. Relationship with the maximum principle

A common approach to a discrete time optimal control problem such as the
one defined by equations (13), (14), (15) and (16) is via the Maximum Principle [1]
which gives necessary conditions for optimality. In the convex case under
consideration, these conditions are also sufficient.

THEOREM (the Discrete Maximum Principle). Assume the Kuhn-Tucker constraint
qualification is satisfied for equations (14) and (16). Then ifuo,...,iiN_1 is an optimal
control sequence and xo,...,xN is the corresponding optimal trajectory, there exist
costate vectors XQ, ..., XNeRn and multiplier vectors no,...,fiNeRp such that

i = 0,...,N-l, (53)

which are the costate equations with terminal boundary condition

(54)

0,...,N-l, (55)

which are the optimality conditions on the Hamiltonian and

fjL^O, i = 0,...,N-l, (56)

fjL?(Eixi+Fiui) = 0, i = 0,...,N-l. (57)

Moreover, equations (55), (56) and (57) imply the following maximum condition:

- c^, u^ + \i+1(Ai xt+Bt ut) > - %&, Mj) + A ^ G ^ xt+Bt Mf) (58)

for all u{, satisfying equation (14). Hence the term Maximum Principle.

PROOF. See for example, [1].

We note that the Maximum Principle approach requires the simultaneous
solution of the state equations (14), the costate equations (53) and the optimality
conditions (55). Further, we note that the boundary conditions, equations (15)
and (54) are split between times 0 and N. Hence, in general, one must solve a
two-point boundary value problem: a problem of not inconsiderable difficulty.
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We now make the connection between this approach and the dual problem as
outlined in Section 3. From equation (12), we may relate the primal variables u{

and xt with their corresponding dual variables vt and yit for all i. This gives us
that

vi = VUlci(xi,ui), i = 0,...,N-l, (59)
and

yt = VxM
xi>ui)> i = 0,...,N-l, (60)

at optimality. Substituting results (59) and (60) into the dual constraints, equations
(31) and (33), we obtain

t ?j 0,...,N-l, (61)
and

/ = 0,...,N-1. (62)

If we set zf_! = — Ai and qt = — yn, for any j , in equations (44) and (45), we
obtain costate equations (53) and the optimality conditions, equations (54),
of the Maximum Principle approach. Hence we identify the dual variables zi;

i = 0,...,N—\, with the costate variables and the other dual variables qit

i = 0, ...,N— 1, with the constraint multipliers. The dual problem is then a mini-
mization over constraints which represent the costate equations and the optimality
conditions on the Hamiltonian of the Maximum Principle approach.
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