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Abstract

The aim of this paper is to introduce τ -tilting theory, which ‘completes’ (classical)
tilting theory from the viewpoint of mutation. It is well known in tilting theory that
an almost complete tilting module for any finite-dimensional algebra over a field k is a
direct summand of exactly one or two tilting modules. An important property in cluster-
tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated
category is a direct summand of exactly two cluster-tilting objects. Reformulated for
path algebras kQ, this says that an almost complete support tilting module has exactly
two complements. We generalize (support) tilting modules to what we call (support)
τ -tilting modules, and show that an almost complete support τ -tilting module has
exactly two complements for any finite-dimensional algebra. For a finite-dimensional
k-algebra Λ, we establish bijections between functorially finite torsion classes in mod Λ,
support τ -tilting modules and two-term silting complexes in Kb(proj Λ). Moreover, these
objects correspond bijectively to cluster-tilting objects in C if Λ is a 2-CY tilted algebra
associated with a 2-CY triangulated category C. As an application, we show that
the property of having two complements holds also for two-term silting complexes in
Kb(proj Λ).
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Introduction

Let Λ be a finite-dimensional basic algebra over an algebraically closed field k, mod Λ the category
of finitely generated left Λ-modules, proj Λ the category of finitely generated projective left Λ-
modules and inj Λ the category of finitely generated injective left Λ-modules. For M ∈mod Λ, we
denote by addM (respectively, FacM , SubM) the category of all direct summands (respectively,
factor modules, submodules) of finite direct sums of copies of M . Tilting theory for Λ, and
its predecessors, have been central in the representation theory of finite-dimensional algebras
since the early 1970s [APR79, BGP73, Bon81, BB80, HR82]. When T is a (classical) tilting
module (which always has the same number of non-isomorphic indecomposable direct summands
as Λ), there is an associated torsion pair (T , F), where T = Fac T , and the interplay between
tilting modules and torsion pairs has played a central role. Another important fact is that an
almost complete tilting module U can be completed in at most two different ways to a tilting
module [RS91, Ung90]. Moreover, there are exactly two ways if and only if U is a faithful
Λ-module [HU89].

Even for a finite-dimensional path algebra kQ, where Q is a finite quiver with no oriented
cycles, not all almost complete tilting modules U are faithful. However, for the associated
cluster category CQ, where we have cluster-tilting objects induced from tilting modules over
path algebras kQ′ derived equivalent to kQ, then the almost complete cluster-tilting objects
have exactly two complements [BMRRT06]. This fact, and its generalization to 2-Calabi–Yau
triangulated categories [IY08], plays an important role in the categorification of cluster algebras.
In the case of cluster categories, this can be reformulated in terms of the path algebra Λ = kQ
as follows [IT09, Rin07]: a Λ-module T is support tilting if T is a tilting (Λ/〈e〉)-module for some
idempotent e of Λ. Using the more general class of support tilting modules, it holds for path
algebras that almost complete support tilting modules can be completed in exactly two ways to
support tilting modules.

The above result for path algebras does not necessarily hold for a finite-dimensional algebra.
The reason is that there may be sincere modules that are not faithful. We are looking for a
generalization of tilting modules where we have such a result, and where at the same time some
of the essential properties of tilting modules still hold. It is then natural to try to find a class of
modules satisfying the following properties.

(i) There is a natural connection with torsion pairs in mod Λ.

(ii) The modules have exactly |Λ| non-isomorphic indecomposable direct summands, where
|X| denotes the number of non-isomorphic indecomposable direct summands of X.

(iii) The analogues of basic almost complete tilting modules have exactly two complements.

(iv) In the hereditary case, the class of modules should coincide with the classical tilting
modules.

For the (classical) tilting modules, we have in addition that when the almost complete ones have
two complements, then they are connected in a special short exact sequence. Also, there is a
naturally associated quiver, where the isomorphism classes of tilting modules are the vertices.

There is a generalization of classical tilting modules to tilting modules of finite projective
dimension [Hap88, Miy86]. But it is easy to see that they do not satisfy the required properties.
The category mod Λ is naturally embedded in the derived category of Λ. The tilting and silting
complexes for Λ [Aih13, AI12, Rin07] are also extensions of the tilting modules. An almost
complete silting complex has infinitely many complements. But as we shall see, things work well
when we restrict to the two-term silting complexes.
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In the module case, it turns out that a natural class of modules to consider is given as follows.
As usual, we denote by τ the AR translation (see § 1.2).

Definition 0.1. (a) We call M in mod Λ τ -rigid if HomΛ(M, τM) = 0.
(b) We call M in mod Λ τ -tilting (respectively, almost complete τ -tilting) if M is τ -rigid and

|M |= |Λ| (respectively, |M |= |Λ| − 1).
(c) We call M in mod Λ support τ -tilting if there exists an idempotent e of Λ such that M is

a τ -tilting (Λ/〈e〉)-module.

Any τ -rigid module is rigid (i.e. Ext1
Λ(M,M) = 0), and the converse holds if the projective

dimension is at most one. In particular, any partial tilting module is a τ -rigid module, and any
tilting module is a τ -tilting module. Thus we can regard τ -tilting modules as a generalization
of tilting modules.

The first main result of this paper is the following analogue of Bongartz completion for tilting
modules.

Theorem 0.2 (Theorem 2.10). Any τ -rigid Λ-module is a direct summand of some τ -tilting
Λ-module.

As indicated above, in order to get our theory to work nicely, we need to consider support
τ -tilting modules. It is often convenient to view them, and the τ -rigid modules, as certain pairs
of Λ-modules.

Definition 0.3. Let (M, P ) be a pair with M ∈mod Λ and P ∈ proj Λ.
(a) We call (M, P ) a τ -rigid pair if M is τ -rigid and HomΛ(P, M) = 0.
(b) We call (M, P ) a support τ -tilting (respectively, almost complete support τ -tilting) pair

if (M, P ) is τ -rigid and |M |+ |P |= |Λ| (respectively, |M |+ |P |= |Λ| − 1).

These notions are compatible with those in Definition 0.1 (see Proposition 2.3 for details).
As usual, we say that (M, P ) is basic if M and P are basic. Similarly, we say that (M, P ) is a
direct summand of (M ′, P ′) if M is a direct summand of M ′ and P is a direct summand of P ′.

The second main result of this paper is the following.

Theorem 0.4 (Theorem 2.18). Let Λ be a finite-dimensional k-algebra. Then any basic almost
complete support τ -tilting pair for Λ is a direct summand of exactly two basic support τ -tilting
pairs.

These two support τ -tilting pairs are said to be mutations of each other. We will define the
support τ -tilting quiver Q(sτ -tilt Λ) by using mutation (Definition 2.29).

When extending (classical) tilting modules to tilting complexes or silting complexes, we have
pointed out that we do not have exactly two complements in the almost complete case. But
considering instead only the two-term silting complexes, we prove that this is the case.

The third main result is to obtain a close connection between support τ -tilting modules and
other important objects in tilting theory. The corresponding definitions will be given in § 1.

Theorem 0.5 (Theorems 2.7, 3.2, 4.1 and 4.7). Let Λ be a finite-dimensional k-algebra. We
have bijections between:

(a) the set f-tors Λ of functorially finite torsion classes in mod Λ;

(b) the set sτ -tilt Λ of isomorphism classes of basic support τ -tilting modules;

(c) the set 2-silt Λ of isomorphism classes of basic two-term silting complexes for Λ;

(d) the set c-tilt C of isomorphism classes of basic cluster-tilting objects in a 2-CY triangulated
category C if Λ is an associated 2-CY tilted algebra to C.
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Note that the correspondence between (b) and (d) improves results in [FL09, Smi08].
By Theorem 0.5, we can regard sτ -tilt Λ as a partially ordered set by using the inclusion

relation of f-tors Λ (i.e. we write T > U if Fac T ⊇ Fac U). Then we have the following fourth
main result, which is an analogue of [HU05, Theorem 2.1] and [AI12, Theorem 2.35].

Theorem 0.6 (Corollary 2.34). The support τ -tilting quiver Q(sτ -tilt Λ) is the Hasse quiver
of the partially ordered set sτ -tilt Λ.

We have the following direct consequences of Theorem 0.5, where the second part is known
by [IY08], and the third one by [ZZ11].

Corollary 0.7 (Corollaries 3.8, 4.5). (a) Two-term almost complete silting complexes have
exactly two complements.

(b) In a 2-Calabi–Yau triangulated category with cluster-tilting objects, any almost complete
cluster-tilting objects have exactly two complements.

(c) In a 2-Calabi–Yau triangulated category with cluster-tilting objects, any maximal rigid
object is cluster-tilting.

Part (a) was first proved directly by Derksen–Fei [DF09] without dealing with support τ -
tilting modules. Here, we obtain this result by combining a bijection in Theorem 0.5 with
Theorem 0.4.

Another important part of our work is to investigate to what extent the main properties
of tilting modules mentioned above remain valid in the settings of support τ -tilting modules,
two-term silting complexes and cluster-tilting objects in 2-CY triangulated categories.

A motivation for considering the problem of exactly two complements for almost complete
support τ -tilting modules was that the condition of a τ -rigid module appears naturally when
we express Ext1

C(X, Y ) for X and Y objects in a 2-CY triangulated category C in terms of
corresponding modules X and Y over an associated 2-CY tilted algebra (Proposition 4.4).

There is some relationship to the E-invariants of [DWZ10] in the case of finite-dimensional
Jacobian algebras, where the expression HomΛ(M, τN) appears. Here, we introduce E-invariants
in § 5 for any finite-dimensional k-algebras, and express them in terms of dimension vectors and
g-vectors as defined in [DK08], inspired by [DWZ10].

In the last § 6, we illustrate our results with examples.
There is a curious relationship with interesting independent work by Cerulli Irelli

et al. [CLS12], where the authors deal with E-invariants in the more general setting of basic
algebras that are not necessarily finite-dimensional. We refer to recent work by König and
Yang [KY12] for connection with t-structures and co-t-structures. Hoshino et al. [HKM02] and
Abe [Abe11] studied two-term tilting complexes. Buan and Marsh have considered a direct map
from cluster-tilting objects in cluster categories to functorially finite torsion classes for associated
cluster-tilted algebras.

Notation

(−)⊥, (−)⊥1 , ⊥(−), ⊥1(−), 5
(−)∗, 6
(M, P )†, 13
M †, 14
(−), 27

>, 4
〈−,−〉, 27
(̃−), 27
2-presilt Λ, 24
2-silt Λ, 3, 24

addM , 2
cM , 32
cotilt Λ, 14
c-tilt C, 3, 8
c-tilt TC, 27
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D, 6
E′Λ(M, N), EΛ(M, N),

EΛ(M), 33
FacM , 2
ff-torf Λ, 14
ff-tors Λ, 12
f-torf Λ, 14
f-tors Λ, 3, 11
gM , 32, 33
G(c-tilt C), 9
I(F), 5
indT (X), 33
inj Λ, 2
iso C, 27

K2(proj Λ), 29
Kb(proj Λ), 7
mod Λ, 2
mod Λ, mod Λ, 6
m-rigid C, 27
µ, 15
µ+, µ−, 8, 9, 19
ν, ν−1, 6
P (T ), 5
proj Λ, 2
Q(2-silt Λ), 26
Q(silt Λ), 8
Q(sτ -tilt Λ), 19
rigid C, 27

sf-torf Λ, 14
sf-tors Λ, 12
silt Λ, 7
sτ -tilt Λ, 3
sτ−-tilt Λ, 14
SubM , 2
τ , τ−1, 6, 7
τ -rigid Λ, 13
τ -tilt Λ, 12
τ−-tilt Λ, 14
tilt Λ, 12
Tr, 6

1. Background and preliminary results

In this section, we give some background material on each of the four topics involved in our
main results. This concerns the relationship between tilting modules and functorially finite
subcategories and some results on τ -rigid and τ -tilting modules, including new basic results
about them that will be useful in the next section. Further, we recall known results on silting
complexes, and on cluster-tilting objects in 2-CY triangulated categories.

1.1 Torsion pairs and tilting modules

Let Λ be a finite-dimensional k-algebra. For a subcategory C of mod Λ, we let

C⊥ := {X ∈mod Λ |HomΛ(C, X) = 0},
C⊥1 := {X ∈mod Λ | Ext1

Λ(C, X) = 0}.

Dually, we define ⊥C and ⊥1C. We call T in mod Λ a partial tilting module if pdΛ T 6 1
and Ext1

Λ(T, T ) = 0. A partial tilting module is called a tilting module if there is an exact
sequence 0→ Λ→ T0→ T1→ 0 with T0 and T1 in add T . Then any tilting module satisfies
|T |= |Λ|. Moreover, it is known that for any partial tilting module T , there is a tilting
module U such that T ∈ add U and Fac U = T⊥1 , called the Bongartz completion of T . Hence
a partial tilting module T is a tilting module if and only if |T |= |Λ|. Dually, T in mod Λ is a
(partial) cotilting module if DT is a (partial) tilting Λop-module.

On the other hand, we say that a full subcategory T of mod Λ is a torsion class (respectively,
torsion-free class) if it is closed under factor modules (respectively, submodules) and extensions.
A pair (T , F) is called a torsion pair if T = ⊥F and F = T ⊥. In this case, T is a torsion class
and F is a torsion-free class. Conversely, any torsion class T (respectively, torsion-free class F)
gives rise to a torsion pair (T , F).

We say that X ∈ T is Ext-projective (respectively, Ext-injective) if Ext1
Λ(X, T ) = 0

(respectively, Ext1
Λ(T , X) = 0). We denote by P (T ) the direct sum of one copy of each of the

indecomposable Ext-projective objects in T up to isomorphism. Similarly, we denote by I(F)
the direct sum of one copy of each of the indecomposable Ext-injective objects in F up to
isomorphism.

We first recall the following relevant result on torsion pairs and tilting modules.
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Proposition 1.1 [AS81, Hos82, Sma84]. Let (T , F) be a torsion pair in mod Λ. Then the
following conditions are equivalent.

(a) T is functorially finite.

(b) F is functorially finite.

(c) T = FacX for some X in mod Λ.

(d) F = Sub Y for some Y in mod Λ.

(e) P (T ) is a tilting (Λ/ann T )-module.

(f) I(F) is a cotilting (Λ/ann F)-module.

(g) T = Fac P (T ).

(h) F = Sub I(F).

Proof. The conditions (a)–(f) are equivalent by [Sma84, Theorem].
(g)⇒(c) is clear.
(e)⇒(g) There exists an exact sequence 0→ Λ/ann T a−→ T 0→ T 1→ 0 with T 0, T 1 ∈

add P (T ). For any X ∈ T , we take a surjection f : (Λ/ann T )`→X. It follows from
Ext1

Λ(T 1`, X) = 0 that f factors through a` : (Λ/ann T )`→ T 0`. Thus X ∈ Fac P (T ).
Dually, (h) is also equivalent to the other conditions. 2

There is also a tilting quiver associated with the (classical) tilting modules. The vertices are
the isomorphism classes of basic tilting modules. Let X ⊕ U and Y ⊕ U be basic tilting modules,
where X and Y 6' X are indecomposable. Then it is known that, after we interchange X and Y
if necessary, there is an exact sequence 0→X

f−→ U ′
g−→ Y → 0, where f :X → U ′ is a minimal left

(add U)-approximation and g : U ′→ Y is a minimal right (add U)-approximation. We say that
Y ⊕ U is a left mutation of X ⊕ U . Then we draw an arrow X ⊕ U → Y ⊕ U , so that we get a
quiver for the tilting modules. On the other hand, the set of basic tilting modules has a natural
partial order given by T > U if and only if Fac T ⊇ Fac U , and we can consider the associated
Hasse quiver. These two quivers coincide [HU05, Theorem 2.1].

1.2 τ -tilting modules
Let Λ be a finite-dimensional k-algebra. We have dualities

D := Homk(−, k) : mod Λ↔mod Λop and (−)∗ := HomΛ(−, Λ) : proj Λ↔ proj Λop,

which induce equivalences

ν :=D(−)∗ : proj Λ→ inj Λ and ν−1 := (−)∗D : inj Λ→ proj Λ,

called Nakayama functors. For X in mod Λ with a minimal projective presentation

P1
d1 // P0

d0 // X // 0,

we define TrX in mod Λop and τX in mod Λ by exact sequences

P ∗0
d∗1 // P ∗1 // TrX // 0 and 0 // τX // νP0

νd1 // νP1.

Then Tr and τ give bijections between the isomorphism classes of indecomposable non-projective
Λ-modules, the isomorphism classes of indecomposable non-projective Λop-modules and the
isomorphism classes of indecomposable non-injective Λ-modules. We denote by mod Λ the stable
category modulo projectives and by mod Λ the costable category modulo injectives. Then Tr gives
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the Auslander–Bridger transpose duality

Tr : mod Λ↔mod Λop

and τ gives the AR translations

τ =D Tr : mod Λ→mod Λ and τ−1 = TrD : mod Λ→mod Λ.

We have a functorial isomorphism

HomΛ(X, Y )'D Ext1
Λ(Y, τX)

for any X and Y in mod Λ called AR duality . In particular, if M is τ -rigid, then we have
Ext1

Λ(M,M) = 0 (i.e. M is rigid) by AR duality. More precisely, we have the following result,
which we often use in this paper.

Proposition 1.2. For X and Y in mod Λ, we have the following.

(a) [AS81, Proposition 5.8]. HomΛ(X, τY ) = 0 if and only if Ext1
Λ(Y, FacX) = 0.

(b) [AS81, Theorem 5.10]. If X is τ -rigid, then FacX is a functorially finite torsion class and
X ∈ add P (FacX).

(c) If T is a torsion class in mod Λ, then P (T ) is a τ -rigid Λ-module.

Proof. (c) Since T := P (T ) is Ext-projective in T , we have Ext1
Λ(T, Fac T ) = 0. This implies that

HomΛ(T, τT ) = 0 by (a). 2

We have the following direct consequence (see also [ASS06, Sko94]).

Proposition 1.3. Any τ -rigid Λ-module M satisfies |M |6 |Λ|.

Proof. By Proposition 1.2(b), we have |M |6 |P (FacM)|. By Proposition 1.1(e), we have
|P (FacM)|= |Λ/annM |. Since |Λ/annM |6 |Λ|, we have the assertion. 2

As an immediate consequence, if τ -rigid Λ-modules M and N satisfy M ∈ addN and
|M |> |Λ|, then addM = addN .

Finally, we note the following relationship between τ -tilting modules and classical notions.

Proposition 1.4 [ASS06, VIII.5.1]. (a) Any faithful τ -rigid Λ-module is a partial tilting Λ-
module.

(b) Any faithful τ -tilting Λ-module is a tilting Λ-module.

1.3 Silting complexes
Let Λ be a finite-dimensional k-algebra and Kb(proj Λ) be the category of bounded complexes
of finitely generated projective Λ-modules. We recall the definition of silting complexes and
mutations.

Definition 1.5 [Aih13, AI12, BRT11, KV88]. Let P ∈ Kb(proj Λ).

(a) We call P presilting if HomKb(proj Λ)(P, P [i]) = 0 for any i > 0.

(b) We call P silting if it is presilting and satisfies thick P = Kb(proj Λ), where thick P is the
smallest full subcategory of Kb(proj Λ) that contains P and is closed under cones, [±1], direct
summands and isomorphisms.

We denote by silt Λ the set of isomorphism classes of basic silting complexes for Λ.

The following result is important.
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Proposition 1.6 [AI12, Theorem 2.27, Corollary 2.28]. (a) For any P ∈ silt Λ, we have |P |=
|Λ|.

(b) Let P =
⊕n

i=1 Pn be a basic silting complex for Λ with Pi indecomposable. Then
P1, . . . , Pi give a basis of the Grothendieck group K0(Kb(proj Λ)).

We call a presilting complex P for Λ almost complete silting if |P |= |Λ| − 1. There is a similar
type of mutation as for tilting modules.

Definition-Proposition 1.7 [AI12, Theorem 2.31]. Let P =X ⊕Q be a basic silting
complex with X indecomposable. We consider a triangle

X
f // Q′ // Y // X[1]

with a minimal left (addQ)-approximation f of X. Then the left mutation of P with respect
to X is µ−X(P ) := Y ⊕Q. Dually, we define the right mutation µ+

X(P ) of P with respect to X.1

Then the left mutation and the right mutation of P are also basic silting complexes.

There is the following partial order on the set silt Λ.

Definition-Proposition 1.8 [AI12, Theorem 2.11, Proposition 2.14]. For P, Q ∈ silt Λ, we
write

P >Q

if HomKb(proj Λ)(P, Q[i]) = 0 for any i > 0, which is equivalent to P⊥>0 ⊇Q⊥>0 , where P⊥>0 is a
subcategory of Kb(proj Λ) consisting of the X satisfying HomKb(proj Λ)(P, X[i]) = 0 for any i > 0.
Then we have a partial order on silt Λ.

We define the silting quiver Q(silt Λ) of Λ as follows.

• The set of vertices is silt Λ.
• We draw an arrow from P to Q if Q is a left mutation of P .

Then the silting quiver gives the Hasse quiver of the partially ordered set silt Λ by [AI12,
Theorem 2.35], similar to the situation for tilting modules. We shall later restrict to two-term
silting complexes to get exactly two complements for almost complete silting complexes.

1.4 Cluster-tilting objects
Let C be a k-linear Hom-finite Krull–Schmidt triangulated category. Assume that C is 2-Calabi–
Yau (2-CY for short); that is, there exists a functorial isomorphism D Ext1

C(X, Y )' Ext1
C(Y, X).

An important class of objects in these categories are the cluster-tilting objects. We recall the
definition of these and related objects.

Definition 1.9. (a) We call T in C rigid if HomC(T, T [1]) = 0.

(b) We call T in C cluster-tilting if add T = {X ∈ C |HomC(T, X[1]) = 0}.
(c) We call T in C maximal rigid if it is rigid and maximal with respect to this property;

that is, add T = {X ∈ C |HomC(T ⊕X, (T ⊕X)[1]) = 0}.

We denote by c-tilt C the set of isomorphism classes of basic cluster-tilting objects in C. In
this setting, there are also mutations of cluster-tilting objects defined via approximations, which
we recall [BMRRT06, IY08].

1 These notations µ− and µ+ are the opposite of those in [AI12]. They are easy to remember since they are in the
same direction as τ−1 and τ , and moreover compatible with the partial order: µ−

X(P )< P < µ+
X(P ).
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Definition-Proposition 1.10 [IY08, Theorem 5.3]. Let T =X ⊕ U be a basic cluster-tilting
object in C and X indecomposable in C. We consider the triangle

X
f // U ′ // Y // X[1]

with a minimal left (add U)-approximation f ofX. Let µ−X(T ) := Y ⊕ U . Dually, we define µ+
X(T ).

A different feature in this case is that we have µ−X(T )' µ+
X(T ). This is a basic cluster-tilting

object, which as before we call the mutation of T with respect to X.

In this case, we get just a graph rather than a quiver. We define the cluster-tilting graph
G(c-tilt C) of C as follows.

• The set of vertices is c-tilt C.
• We draw an edge between T and U if U is a mutation of T .

Note that U is a mutation of T if and only if T and U have all but one indecomposable direct
summand in common [IY08, Theorem 5.3] (see Corollary 4.5(a)).

2. Support τ -tilting modules

Our aim in this section is to develop a basic theory of support τ -tilting modules over any
finite-dimensional k-algebra. We start by discussing some basic properties of τ -rigid modules
and connections between τ -rigid modules and functorially finite torsion classes (Theorem 2.7).
As an application, we introduce Bongartz completion of τ -rigid modules (Theorem 2.10). Then
we give characterizations of τ -tilting modules (Theorem 2.12). We also give left–right duality
of τ -rigid modules (Theorem 2.14). Further, we prove our main result, which states that
an almost complete support τ -tilting module has exactly two complements (Theorem 2.18).
As an application, we introduce mutation of support τ -tilting modules. We show that mutation
gives the Hasse quiver of the partially ordered set of support τ -tilting modules (Theorem 2.33).

2.1 Basic properties of τ -rigid modules
When T is a Λ-module with I an ideal contained in ann T , we investigate the relationship between
T being τ -rigid as a Λ-module and as a (Λ/I)-module. We have the following.

Lemma 2.1. Let Λ be a finite-dimensional algebra, and I an ideal in Λ. Let M and N be
(Λ/I)-modules. Then we have the following.

(a) If HomΛ(N, τM) = 0, then HomΛ/I(N, τΛ/IM) = 0.

(b) Assume that I = 〈e〉 for an idempotent e in Λ. Then HomΛ(N, τM) = 0 if and only if
HomΛ/I(N, τΛ/IM) = 0.

Proof. Note that we have a natural inclusion Ext1
Λ/I(M, N)→ Ext1

Λ(M, N). This is an
isomorphism if I = 〈e〉 for an idempotent e, since mod (Λ/〈e〉) is closed under extensions in
mod Λ.

(a) Assume that HomΛ(N, τM) = 0. Then, by Proposition 1.2, we have Ext1
Λ(M, FacN) = 0.

By the above observation, we have Ext1
Λ/I(M, FacN) = 0. By Proposition 1.2 again, we have

HomΛ/I(N, τΛ/IM) = 0.
(b) Assume that I = 〈e〉 and HomΛ/I(N, τΛ/IM) = 0. By Proposition 1.2, we have

Ext1
Λ/I(M, FacN) = 0. By the above observation, we have Ext1

Λ(M, FacN) = 0. By
Proposition 1.2 again, we have HomΛ(N, τM) = 0. 2
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Recall that M in mod Λ is sincere if every simple Λ-module appears as a composition factor
in M . This is equivalent to the fact that there does not exist a non-zero idempotent e of Λ that
annihilates M .

Proposition 2.2. (a) τ -tilting modules are precisely sincere support τ -tilting modules.

(b) Tilting modules are precisely faithful support τ -tilting modules.

(c) Any τ -tilting (respectively, τ -rigid) Λ-module T is a tilting (respectively, partial tilting)
(Λ/ann T )-module.

Proof. (a) Clearly, sincere support τ -tilting modules are τ -tilting. Conversely, if a τ -tilting
Λ-module T is not sincere, then there exists a non-zero idempotent e of Λ such that T is a (Λ/〈e〉)-
module. Since T is τ -rigid as a (Λ/〈e〉)-module by Lemma 2.1(a), we have |Λ/〈e〉|> |T |= |Λ| by
Proposition 1.3, a contradiction.

(b) Clearly, tilting modules are faithful τ -tilting. Conversely, any faithful support τ -tilting
module T is partial tilting by Proposition 1.4 and satisfies |T |= |Λ|. Thus T is tilting.

(c) By Lemma 2.1(a), we know that T is a faithful τ -tilting (respectively, τ -rigid) (Λ/ann T )-
module. Thus the assertion follows from (b) (respectively, Proposition 1.4). 2

Immediately, we have the following basic observation, which will be used frequently in this
paper.

Proposition 2.3. Let (M, P ) be a pair with M ∈mod Λ and P ∈ proj Λ. Let e be an idempotent
of Λ such that add P = add Λe.

(a) (M, P ) is a τ -rigid (respectively, support τ -tilting, almost complete support τ -tilting)
pair for Λ if and only if M is a τ -rigid (respectively, τ -tilting, almost complete τ -tilting) (Λ/〈e〉)-
module.

(b) If (M, P ) and (M, Q) are support τ -tilting pairs for Λ, then add P = addQ. In other
words, M determines P and e uniquely.

Proof. (a) The assertions follow from Lemma 2.1 and the equation |Λ/〈e〉|= |Λ| − |P |.
(b) This is a consequence of Proposition 2.2(a). 2

The following observations are useful.

Proposition 2.4. Let X be in mod Λ with a minimal projective presentation P1
d1−→ P0

d0−→X
→ 0.

(a) For Y in mod Λ, we have an exact sequence

0→HomΛ(Y, τX)→D HomΛ(P1, Y )
D(d1,Y )−−−−−→D HomΛ(P0, Y )

D(d0,Y )−−−−−→D HomΛ(X, Y )→ 0.

(b) HomΛ(Y, τX) = 0 if and only if the map HomΛ(P0, Y )
(d1,Y )−−−−→HomΛ(P1, Y ) is surjective.

(c) X is τ -rigid if and only if the map HomΛ(P0, X)
(d1,X)−−−−→HomΛ(P1, X) is surjective.

Proof. (a) We have an exact sequence 0→ τX → νP1
νd1−−→ νP0. Applying HomΛ(Y,−), we have

a commutative diagram of exact sequences.

0−→HomΛ(Y, τX) // HomΛ(Y, νP1)
(Y,νd1) //

o
��

HomΛ(Y, νP0)

o
��

D HomΛ(P1, Y )
D(d1,Y )// D HomΛ(P0, Y )

D(d0,Y ) // D HomΛ(X, Y )−→ 0
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Thus the assertion follows.
(b)(c) Immediate from (a). 2

We have the following standard observation (cf. [DK08, HU05]).

Proposition 2.5. Let X be in mod Λ with a minimal projective presentation P1
d1−→ P0

d0−→
X → 0. If X is τ -rigid, then P0 and P1 have no non-zero direct summands in common.

Proof. We only have to show that any morphism s : P1→ P0 is in the radical. By
Proposition 2.4(c), there exists t : P0→X such that d0s= td1. Since P0 is projective, there
exists u : P0→ P0 such that t= d0u. Since d0(s− ud1) = 0, there exists v : P1→ P1 such that
s= ud1 + d1v.

P1
d1 //

s

��

v

~~

P0
d0 //

t
��

u
~~

X // 0

P1 d1

// P0 d0

// X // 0

Since d1 is in the radical, so is s. Thus the assertion is shown. 2

The following analogue of Wakamatsu’s lemma [AR91] will be useful.

Lemma 2.6. Let η : 0→ Y → T ′
f−→X be an exact sequence in mod Λ, where T is τ -rigid, and

f : T ′→X is a right (add T )-approximation. Then we have Y ∈ ⊥(τT ).

Proof. Replacing X by Im f , we can assume that f is surjective. We apply HomΛ(−, τT ) to η
to get the exact sequence

0 = HomΛ(T ′, τT )→HomΛ(Y, τT )→ Ext1
Λ(X, τT )

Ext1(f,τT )−−−−−−−→ Ext1
Λ(T ′, τT ),

where we have HomΛ(T ′, τT ) = 0 because T is τ -rigid. Since f : T ′→X is a right (add T )-
approximation, the induced map (T, f) : HomΛ(T, T ′)→HomΛ(T, X) is surjective. Then also
the induced map HomΛ(T, T ′)→HomΛ(T, X) of the maps modulo projectives is surjective, so
by the AR duality the map Ext1(f, τT ) : Ext1

Λ(X, τT )→ Ext1
Λ(T ′, τT ) is injective. It follows that

HomΛ(Y, τT ) = 0. 2

2.2 τ -rigid modules and torsion classes
The following correspondence is basic in our paper, where we denote by f-tors Λ the set of
functorially finite torsion classes in mod Λ.

Theorem 2.7. There is a bijection

sτ -tilt Λ←→ f-tors Λ

given by sτ -tilt Λ 3 T 7→ Fac T ∈ f-tors Λ and f-tors Λ 3 T 7→ P (T ) ∈ sτ -tilt Λ.

Proof. Let first T be a functorially finite torsion class in mod Λ. Then we know that T = P (T )
is τ -rigid by Proposition 1.2(c). Let e ∈ Λ be a maximal idempotent such that T ⊆mod (Λ/〈e〉).
Then we have |Λ/〈e〉|= |Λ/ann T |, and |Λ/ann T |= |T | by Proposition 1.1(e). Hence (T, Λe) is
a support τ -tilting pair for Λ. Moreover, we have T = Fac P (T ) by Proposition 1.1(g).

Assume conversely that T is a support τ -tilting Λ-module. Then T is a τ -tilting (Λ/〈e〉)-
module for an idempotent e of Λ. Thus Fac T is a functorially finite torsion class in
mod (Λ/〈e〉) such that T ∈ add P (Fac T ) by Proposition 1.2(b). Since |T |= |Λ/〈e〉|, we have
add T = add P (Fac T ) by Proposition 1.3. Thus T ' P (Fac T ). 2

425

https://doi.org/10.1112/S0010437X13007422 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007422


T. Adachi, O. Iyama and I. Reiten

We denote by τ -tilt Λ (respectively, tilt Λ) the set of isomorphism classes of basic τ -
tilting Λ-modules (respectively, tilting Λ-modules). On the other hand, we denote by sf-tors Λ
(respectively, ff-tors Λ) the set of sincere (respectively, faithful) functorially finite torsion classes
in mod Λ.

Corollary 2.8. The bijection in Theorem 2.7 induces bijections

τ -tilt Λ←→ sf-tors Λ and tilt Λ←→ ff-tors Λ.

Proof. Let T be a support τ -tilting Λ-module. By Proposition 2.2, it follows that T is a τ -tilting
Λ-module (respectively, tilting Λ-module) if and only if T is sincere (respectively, faithful) if and
only if Fac T is sincere (respectively, faithful). 2

We are interested in the torsion classes where our original module U is a direct summand of
T = P (T ), since we would like to complete U to a (support) τ -tilting module. The conditions
for this to be the case are the following.

Proposition 2.9. Let T be a functorially finite torsion class and U a τ -rigid Λ-module. Then
U ∈ add P (T ) if and only if Fac U ⊆ T ⊆ ⊥(τU).

Proof. We have T = Fac P (T ) by Proposition 1.1(g).
Assume that Fac U ⊆ T ⊆ ⊥(τU). Then U is in T . We want to show that U is Ext-projective

in T ; that is, Ext1
Λ(U, T ) = 0 or, equivalently, HomΛ(P (T ), τU) = 0, by Proposition 1.2(a). This

follows since P (T ) ∈ T ⊆ ⊥(τU). Hence U is a direct summand of P (T ).
Conversely, assume that U ∈ add P (T ). Then we must have U ∈ T , and hence Fac U ⊆

T . Since U is Ext-projective in T , we have Ext1
Λ(U, T ) = 0. Since T = Fac T , we have

HomΛ(T , τU) = 0 by Proposition 1.2(a). Hence we have T ⊆ ⊥(τU). 2

We now prove the analogue, for τ -tilting modules, of the Bongartz completion of classical
tilting modules.

Theorem 2.10. Let U be a τ -rigid Λ-module. Then T := ⊥(τU) is a sincere functorially finite
torsion class and T := P (T ) is a τ -tilting Λ-module satisfying U ∈ add T and ⊥(τT ) = Fac T .

We call P (⊥(τU)) the Bongartz completion of U .

Proof. The first part follows from the following observation.

Lemma 2.11. For any τ -rigid Λ-module U , we have a sincere functorially finite torsion class
⊥(τU).

Proof. When U is τ -rigid, then Sub τU is a torsion-free class by the dual of Proposition 1.2(b).
Then (⊥(τU), Sub τU) is a torsion pair, and Sub τU and ⊥(τU) are functorially finite by
Proposition 1.1.

Assume that ⊥(τU) is not sincere. Then we have ⊥(τU)⊆mod (Λ/〈e〉) for some primitive
idempotent e in Λ. The corresponding simple Λ-module S is not a composition factor of any
module in ⊥(τU); in particular, Hom(⊥(τU), D(eΛ)) = 0. Then D(eΛ) is in Sub τU . But this is
a contradiction, since τU , and hence also any module in Sub τU has no non-zero injective direct
summands. 2

By Corollary 2.8, it follows that T is a τ -tilting Λ-module such that ⊥(τU) = Fac T . By
Proposition 2.9, we have U ∈ add T . Clearly, ⊥(τU)⊇ ⊥(τT ), since U is in add T . Hence we get
Fac T = ⊥(τU)⊇ ⊥(τT )⊇ Fac T , and consequently ⊥(τT ) = Fac T . 2
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We have the following characterizations of a τ -rigid module being τ -tilting.

Theorem 2.12. The following are equivalent for a τ -rigid Λ-module T .

(a) T is τ -tilting.

(b) T is maximal τ -rigid; that is, if T ⊕X is τ -rigid for some Λ-module X, then X ∈ add T .

(c) ⊥(τT ) = Fac T .

(d) If HomΛ(T, τX) = 0 and HomΛ(X, τT ) = 0, then X ∈ add T .

Proof. (a)⇒(b). Immediate from Proposition 1.3.
(b)⇒(c). Let U be the Bongartz completion of T . Since T is maximal τ -rigid, we have T ' U ,

and hence ⊥(τT ) = ⊥(τU) = Fac U = Fac T , using Theorem 2.10.
(c)⇒(a). Let T be τ -rigid with ⊥(τT ) = Fac T . Let U be the Bongartz completion of T . Then

we have
Fac T = ⊥(τT )⊇ ⊥(τU)⊇ Fac U ⊇ Fac T,

and hence all inclusions are equalities. Since Fac U = Fac T , there exists an exact sequence

0 // Y // T ′
f // U // 0. (1)

where f : T ′→ U is a right (add T )-approximation. By the Wakamatsu-type Lemma 2.6, we
have HomΛ(Y, τT ) = 0, and hence HomΛ(Y, τU) = 0, since ⊥(τT ) = ⊥(τU). By the AR duality
we have Ext1

Λ(U, Y )'DHomΛ(Y, τU) = 0, and hence the sequence (1) splits. Then it follows
that U is in add T . Thus T is a τ -tilting Λ-module.

(a) + (c)⇒ (d). Assume that (a) and (c) hold, and HomΛ(T, τX) = 0 and HomΛ(X, τT ) = 0.
Then Ext1

Λ(X, Fac T ) = 0 by Proposition 1.2(a) and X is in ⊥(τT ) = Fac T . Thus X is in
add P (Fac T ) = add T by Theorem 2.7.

(d)⇒(b). This is clear. 2

We note the following generalization.

Corollary 2.13. The following are equivalent for a τ -rigid pair (T, P ) for Λ.

(a) (T, P ) is a support τ -tilting pair for Λ.

(b) If (T ⊕X, P ) is τ -rigid for some Λ-module X, then X ∈ add T .

(c) ⊥(τT ) ∩ P⊥ = Fac T .

(d) If HomΛ(T, τX) = 0, HomΛ(X, τT ) = 0 and HomΛ(P, X) = 0, then X ∈ add T .

Proof. In view of Lemma 2.1(b), the assertion follows immediately from Theorem 2.12 by
replacing Λ by Λ/〈e〉 for an idempotent e of Λ satisfying add P = add Λe. 2

In the rest of this subsection, we discuss the left–right symmetry of τ -rigid modules. It is
somehow surprising that there exists a bijection between support τ -tilting Λ-modules and support
τ -tilting Λop-modules. We decompose M in mod Λ as M =Mpr ⊕Mnp, where Mpr is a maximal
projective direct summand of M . For a τ -rigid pair (M, P ) for Λ, let

(M, P )† := (TrMnp ⊕ P ∗, M∗pr) = (TrM ⊕ P ∗, M∗pr).

We denote by τ -rigid Λ the set of isomorphism classes of basic τ -rigid pairs of Λ.

Theorem 2.14. (−)† gives bijections

τ -rigid Λ←→ τ -rigid Λop and sτ -tilt Λ←→ sτ -tilt Λop

such that (−)†† = id.
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For a support τ -tilting Λ-module M , we simply write M † := TrMnp ⊕ P ∗, where (M, P ) is
a support τ -tilting pair for Λ.

Proof. We only have to show that (M, P )† is a τ -rigid pair for Λop, since the correspondence
(M, P ) 7→ (M, P )† is clearly an involution. We have

0 = HomΛ(Mnp, τM) = HomΛop(TrM, DMnp) = HomΛop(TrM, τ TrM). (2)

Moreover, we have

0 = HomΛ(Mpr, τM) = HomΛop(TrM, DMpr) =D HomΛop(M∗pr, TrM). (3)

On the other hand, we have

0 = HomΛ(P, M) = HomΛ(P, Mpr)⊕HomΛ(P, Mnp). (4)

Thus we have

0 =D(P ∗ ⊗Λ Mnp) = HomΛop(P ∗, DMnp) = HomΛop(P ∗, τ TrM).

This, together with (2), shows that TrM ⊕ P ∗ is a τ -rigid Λop-module. We have
HomΛop(M∗pr, P

∗) = 0 by (4). This, together with (3), shows that (M, P )† is a τ -rigid pair for
Λop. 2

Now, we discuss dual notions of τ -rigid and τ -tilting modules, even though we do not use
them in this paper.
• We call M in mod Λ τ−-rigid if HomΛ(τ−M,M) = 0.
• We call M in mod Λ τ−-tilting if M is τ−-rigid and |M |= |Λ|.
• We call M in mod Λ support τ−-tilting if M is a τ−-tilting (Λ/〈e〉)-module for some

idempotent e of Λ.
Clearly, M is τ−-rigid (respectively, τ−-tilting, support τ−-tilting) Λ-module if and only if DM
is τ -rigid (respectively, τ -tilting, support τ -tilting) Λop-module.

We denote by cotilt Λ (respectively, τ−-tilt Λ, sτ−-tilt Λ) the set of isomorphism classes of
basic cotilting (respectively, τ−-tilting, support τ−-tilting) Λ-modules. On the other hand, we
denote by f-torf Λ the set of functorially finite torsion-free classes in mod Λ, and by sf-torf Λ
(respectively, ff-torf Λ) the set of sincere (respectively, faithful) functorially finite torsion-free
classes in mod Λ. We have the following results immediately from Theorem 2.7 and Corollary 2.8.

Theorem 2.15. We have bijections

sτ−-tilt Λ←→ f-torf Λ, τ−-tilt Λ←→ sf-torf Λ and cotilt Λ←→ ff-torf Λ

given by sτ−-tilt Λ 3 T 7→ Sub T ∈ f-torf Λ and f-torf Λ 3 F 7→ I(F) ∈ sτ−-tilt Λ.

On the other hand, we have a bijection

sτ -tilt Λ←→ sτ−-tilt Λ

given by (M, P ) 7→D((M, P )†) = (τM ⊕ νP, νMpr). Thus we have bijections

f-tors Λ←→ sτ -tilt Λ←→ sτ−-tilt Λ←→ f-torf Λ

by Theorems 2.7 and 2.15. We end this subsection with the following observation.

Proposition 2.16. (a) The above bijections send T ∈ f-tors Λ to T ⊥ ∈ f-torf Λ.

(b) For any support τ -tilting pair (M, P ) for Λ, the torsion pairs (FacM,M⊥) and
(⊥(τM ⊕ νP ), Sub (τM ⊕ νP )) in mod Λ coincide.
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Proof. (b) We only have to show that FacM = ⊥(τM ⊕ νP ). It follows from Proposition 1.2(b)
and its dual that (FacM,M⊥) and (⊥(τM ⊕ νP ), Sub (τM ⊕ νP )) are torsion pairs in mod Λ.
They coincide since FacM = ⊥(τM) ∩ P⊥ = ⊥(τM ⊕ νP ) holds by Corollary 2.13(c).

(a) Let T ∈ f-tors Λ and (M, P ) be the corresponding support τ -tilting pair for Λ. Since
T ⊥ =M⊥ and D(M †) = τM ⊕ νP , the assertion follows from (b). 2

2.3 Mutation of support τ -tilting modules
In this section, we prove our main result on complements for almost complete support τ -tilting
pairs. Let us start with the following result.

Proposition 2.17. Let T be a basic τ -rigid module that is not τ -tilting. Then there are at
least two basic support τ -tilting modules that have T as a direct summand.

Proof. By Theorem 2.12, T1 = Fac T is properly contained in T2 = ⊥(τT ). By Theorem 2.7 and
Lemma 2.11, we have two different support τ -tilting modules P (T1) and P (T2) up to isomorphism.
By Proposition 2.9, they are extensions of T . 2

Our aim is to prove the following result.

Theorem 2.18. Let Λ be a finite-dimensional k-algebra. Then any basic almost complete
support τ -tilting pair (U, Q) for Λ is a direct summand of exactly two basic support τ -tilting
pairs (T, P ) and (T ′, P ′) for Λ. Moreover, we have {Fac T, Fac T ′}= {Fac U, ⊥(τU) ∩Q⊥}.

Before proving Theorem 2.18, we introduce a notion of mutation.

Definition 2.19. Two basic support τ -tilting pairs (T, P ) and (T ′, P ′) for Λ are said to be
mutations of each other if there exists a basic almost complete support τ -tilting pair (U, Q) that
is a direct summand of (T, P ) and (T ′, P ′). In this case, we write (T ′, P ′) = µX(T, P ) or simply
T ′ = µX(T ) if X is an indecomposable Λ-module satisfying either T = U ⊕X or P =Q⊕X.

We can also describe mutation as follows: let (T, P ) be a basic support τ -tilting pair for Λ,
and X an indecomposable direct summand of either T or P .

(a) If X is a direct summand of T , precisely one of the following holds.
• There exists an indecomposable Λ-module Y such that X 6' Y and µX(T, P ) := ((T/X)⊕
Y, P ) is a basic support τ -tilting pair for Λ.
• There exists an indecomposable projective Λ-module Y such that µX(T, P ) := (T/X, P ⊕ Y )

is a basic support τ -tilting pair for Λ.
(b) If X is a direct summand of P , there exists an indecomposable Λ-module Y such that

µX(T, P ) := (T ⊕ Y, P/X) is a basic support τ -tilting pair for Λ.

Moreover, such a module Y in each case is unique up to isomorphism.
In the rest of this subsection, we give a proof of Theorem 2.18. The following is the first step.

Lemma 2.20. Let (T, P ) be a τ -rigid pair for Λ. If U is a τ -rigid Λ-module satisfying
⊥(τT ) ∩ P⊥ ⊆ ⊥(τU), then there is an exact sequence U

f−→ T ′→ C→ 0 satisfying the following
conditions.

• f is a minimal left (Fac T )-approximation.

• T ′ is in add T , C is in add P (Fac T ) and add T ′ ∩ add C = 0.

Proof. Consider the exact sequence U
f−→ T ′

g−→ C→ 0, where f is a minimal left (add T )-
approximation. Then g ∈ rad(T ′, C).
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(i) We show that f is a minimal left (Fac T )-approximation. Take any X ∈ Fac T and
s : U →X. By the Wakamatsu-type Lemma 2.6, there exists an exact sequence

0→ Y → T ′′
h−→X → 0,

where h is a right (add T )-approximation and Y ∈ ⊥(τT ). Moreover, we have Y ∈ P⊥, since
T ′′ ∈ P⊥. By the assumption that ⊥(τT ) ∩ P⊥ ⊆ ⊥(τU), we have HomΛ(Y, τU) = 0, hence
Ext1

Λ(U, Y ) = 0. Then we have an exact sequence

HomΛ(U, T ′′)→HomΛ(U, X)→ Ext1
Λ(U, Y ) = 0.

Thus there is some t : U → T ′′ such that s= ht.

U
t

~~
s

��

f // T ′

0 // Y // T ′′
h // X // 0

Since T ′′ ∈ add T and f is a left (add T )-approximation, there is some u : T ′→ T ′′ such that
t= uf . Hence we have hu : T ′→X such that (hu)f = ht= s, and the claim follows.

(ii) We show that C ∈ add P (Fac T ). We have an exact sequence 0→ Im f
i−→ T ′→ C→ 0,

which gives rise to an exact sequence

HomΛ(T ′, Fac T )
(i,Fac T )−−−−−→HomΛ(Im f, Fac T )→ Ext1

Λ(C, Fac T )→ Ext1
Λ(T ′, Fac T ).

We know from (i) that (f, Fac T ) : HomΛ(T ′, Fac T )→HomΛ(U, Fac T ) is surjective, and hence
(i, Fac T ) is surjective. Further, Ext1

Λ(T ′, Fac T ) = 0 by Proposition 1.2 since T ′ is in add T and
T is τ -rigid. Then it follows that Ext1

Λ(C, Fac T ) = 0. Since C ∈ Fac T , this means that C is
Ext-projective in Fac T .

(iii) We show that add T ′ ∩ add C = 0. To show this, it is clearly sufficient to show that
HomΛ(T ′, C)⊆ rad(T ′, C).

Let s : T ′→ C be an arbitrary map. We have an exact sequence HomΛ(U, T ′)→
HomΛ(U, C)→ Ext1

Λ(U, Im f). Since Ext1
Λ(U, Im f) = 0 because Im f is in Fac U , and U is τ -

tilting, there is a map t : U → T ′ such that sf = gt. Since f is a left (add T )-approximation, and
T ′ is in add T , there is a map u : T ′→ T ′ such that t= uf . Then (s− gu)f = sf − gt= 0; hence
there is some v : C→ C such that s− gu= vg, and hence s= gu+ vg.

U
f //

t
��

T ′
g //

s

��

u

zz

C //

v

zz

0

U
&& &&MMMMM

f // T ′
g // C // 0

Im f
88

88qqqqq

Since g ∈ rad(T ′, C), it follows that s ∈ rad(T ′, C). Hence HomΛ(T ′, C)⊆ rad(T ′, C), and
consequently add T ′ ∩ add C = 0. 2

The following information on the previous lemma is useful.

Lemma 2.21. In Lemma 2.20, assume C = 0. Then f : U → T ′ induces an isomorphism
U/〈e〉U ' T ′ for a maximal idempotent e of Λ satisfying eT = 0. In particular, if T is sincere,
then U ' T ′.
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Proof. By our assumption, we have an exact sequence:

0 // Ker f // U
f // T ′ // 0. (5)

Applying HomΛ(−, Fac T ), we have an exact sequence:

HomΛ(T ′, Fac T )
(f,Fac T )−−−−−→HomΛ(U, Fac T )→HomΛ(Ker f, Fac T )→ Ext1

Λ(T ′, Fac T ).

We have Ext1
Λ(T ′, Fac T ) = 0 because T ′ is in add T and T is τ -rigid. Since (f, Fac T ) is surjective,

it follows that HomΛ(Ker f, Fac T ) = 0 and so Ker f ∈ ⊥(Fac T ). On the other hand, since T is a
sincere (Λ/〈e〉)-module, mod (Λ/〈e〉) is the smallest torsion-free class of mod Λ containing Fac T .
Thus we have a torsion pair (⊥(Fac T ),mod (Λ/〈e〉)), and the canonical sequence for X associated
with this torsion pair is given by

0 // 〈e〉X // X // X/〈e〉X // 0.

Since Ker f ∈ ⊥(Fac T ) and T ′ ∈ Fac T ⊆mod (Λ/〈e〉), the canonical sequence of U is given by
(5). Thus we have U/〈e〉U ' T ′. 2

In the next result, we prove a useful restriction on X when T =X ⊕ U is τ -tilting and X is
indecomposable.

Proposition 2.22. Let T =X ⊕ U be a basic τ -tilting Λ-module, with X indecomposable.
Then exactly one of ⊥(τU)⊆ ⊥(τX) and X ∈ Fac U holds.

Proof. First, we assume that ⊥(τU)⊆ ⊥(τX) and X ∈ Fac U both hold. Then we have

Fac U = Fac T = ⊥(τT ) = ⊥(τU),

which implies that U is τ -tilting by Theorem 2.12, a contradiction.
Let Y ⊕ U be the Bongartz completion of U . Then we have ⊥τ(Y ⊕ U) = ⊥(τU)⊇ ⊥(τT ).

Using the triple (T, 0, Y ⊕ U) instead of (T, P, U) in Lemma 2.20, there is an exact sequence

Y ⊕ U
(f 0
0 1) // T ′ ⊕ U // T ′′ // 0 ,

where f : Y → T ′ and
(
f 0
0 1

)
: Y ⊕ U → T ′ ⊕ U are minimal left (Fac T )-approximations, T ′ and

T ′′ are in add T and add (T ′ ⊕ U) ∩ add T ′′ = 0. Then we have T ′′ ∈ addX.
Assume first T ′′ 6= 0. Then T ′′ 'X` for some `> 1, so we have T ′ ∈ add U . Since we have a

surjective map T ′→ T ′′, we have X ∈ Fac T ′ ⊆ Fac U .
Assume now that T ′′ = 0. Applying Lemma 2.21, we have that

(
f 0
0 1

)
: Y ⊕ U → T ′ ⊕ U is

an isomorphism, since T is sincere. Thus Y ∈ add T , and we must have Y 'X. Thus ⊥(τX) =
⊥(τY )⊇ ⊥(τU). 2

Now we are ready to prove Theorem 2.18.
(i) First, we assume that Q= 0 (i.e. U is an almost complete τ -tilting module).
In view of Proposition 2.17, it only remains to show that there are at most two extensions

of U to a support τ -tilting module. Using the bijection in Theorem 2.7, we only have to show
that for any support τ -tilting module X ⊕ U , the torsion class Fac (X ⊕ U) is either Fac U or
⊥(τU). If X = 0 (i.e. U is a support τ -tilting module), then this is clear. If X 6= 0, then X ⊕ U
is a τ -tilting Λ-module. Moreover, by Proposition 2.22 either X ∈ Fac U or ⊥(τU)⊆ ⊥(τX)
holds. If X ∈ Fac U , then we have Fac (X ⊕ U) = Fac U . If ⊥(τU)⊆ ⊥(τX), then we have
Fac (X ⊕ U) = ⊥(τ(X ⊕ U)) = ⊥(τU). Thus the assertion follows.

431

https://doi.org/10.1112/S0010437X13007422 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007422


T. Adachi, O. Iyama and I. Reiten

(ii) Let (U, Q) be a basic almost complete support τ -tilting pair for Λ and e be an idempotent
of Λ such that addQ= add Λe. Then U is an almost complete τ -tilting (Λ/〈e〉)-module by
Proposition 2.3(a). It follows from (i) that U is a direct summand of exactly two basic support τ -
tilting (Λ/〈e〉)-modules. Thus the assertion follows, since basic support τ -tilting (Λ/〈e〉)-modules
that have U as a direct summand correspond bijectively to basic support τ -tilting pairs for
Λ that have (U, Q) as a direct summand. 2

The following special case of Lemma 2.20 is useful.

Proposition 2.23. Let T be a support τ -tilting Λ-module. Assume that one of the following
conditions is satisfied.

(i) U is a τ -rigid Λ-module such that Fac T ⊆ ⊥(τU).

(ii) U is a support τ -tilting Λ-module such that U > T .

Then there exists an exact sequence U
f−→ T 0→ T 1→ 0 such that f is a minimal left (Fac T )-

approximation of U and T 0 and T 1 are in add T and satisfy add T 0 ∩ add T 1 = 0.

Proof. Let (T, P ) be a support τ -tilting pair for Λ. Then ⊥(τT ) ∩ P⊥ = Fac T holds by
Corollary 2.13(c). Thus ⊥(τT ) ∩ P⊥ ⊆ ⊥(τU) holds for both cases. Hence the assertion is
immediate from Lemma 2.20, since C is in add P (Fac T ) = add T by Theorem 2.7. 2

The following well-known result [HU89] can be shown as an application of our results.

Corollary 2.24. Let Λ be a finite-dimensional k-algebra and U a basic almost complete tilting
Λ-module. Then U is faithful if and only if U is a direct summand of precisely two basic
tilting Λ-modules.

Proof. It follows from Theorem 2.18 that U is a direct summand of exactly two basic support
τ -tilting Λ-modules T and T ′ such that Fac T = Fac U . If U is faithful, then T and T ′ are tilting
Λ-modules by Proposition 2.2(b). Thus the ‘only if’ part follows. If U is not faithful, then
T is not a tilting Λ-module, since it is not faithful because Fac T = Fac U . Thus the ‘if’ part
follows. 2

2.4 Partial order, exchange sequences and Hasse quiver
In this section, we investigate two quivers. One is defined by partial order, and the other one by
mutation. We show that they coincide.

Since we have a bijection T 7→ Fac T between sτ -tilt Λ and f-tors Λ, then inclusion in f-tors Λ
gives rise to a partial order on sτ -tilt Λ, and we have an associated Hasse quiver. Note that
sτ -tilt Λ has a unique maximal element Λ and a unique minimal element 0.

The following description of when T > U holds will be useful.

Lemma 2.25. Let (T, P ) and (U, Q) be support τ -tilting pairs for Λ. Then the following
conditions are equivalent.

(a) T > U .

(b) HomΛ(U, τT ) = 0 and add P ⊆ addQ.

(c) HomΛ(Unp, τTnp) = 0, add Tpr ⊇ add Upr and add P ⊆ addQ.

Proof. (a)⇒(c). Since Fac T ⊇ Fac U , we have add Tpr ⊇ add Upr and HomΛ(U, τT ) = 0.
Moreover, add P ⊆ addQ holds by Proposition 2.2(a).
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(b)⇒(a). We have Fac T = ⊥(τT ) ∩ P⊥ by Corollary 2.13(c). Since add P ⊆ addQ, we have
U ∈Q⊥ ⊆ P⊥. Since HomΛ(U, τT ) = 0, we have U ∈ ⊥(τT ) ∩ P⊥ = Fac T , which implies Fac T ⊇
Fac U .

(c)⇒(b). This is clear. 2

Also we shall need the following.

Proposition 2.26. Let T, U, V ∈ sτ -tilt Λ such that T > U > V . Then add T ∩ add V ⊆ add U .

Proof. Clearly, we have P (Fac T ) ∩ Fac U ⊆ P (Fac U) = add U . Thus we have add T ∩ add V ⊆
P (Fac T ) ∩ Fac U ⊆ add U . 2

The following observation is immediate.

Proposition 2.27. (a) For any idempotent e of Λ, the inclusion sτ -tilt (Λ/〈e〉)→ sτ -tilt Λ
preserves the partial order.

(b) The bijection (−)† : sτ -tilt Λ→ sτ -tilt Λop in Theorem 2.14 reverses the partial order.

Proof. (a) This is clear.
(b) Let (T, P ) and (U, Q) be support τ -tilting pairs of Λ. By Lemma 2.25, T > U if

and only if HomΛ(Unp, τTnp) = 0, add Tpr ⊇ add Upr and add P ⊆ addQ. This is equivalent to
HomΛop(Tr Tnp, τ Tr Unp) = 0, add T ∗pr ⊇ add U∗pr and add P ∗ ⊆ addQ∗. By Lemma 2.25 again,
this is equivalent to (Tr Tnp ⊕ P ∗, T ∗pr) 6 (Tr Unp ⊕Q∗, U∗pr). 2

In the rest of this section, we study a relationship between partial order and mutation.

Definition-Proposition 2.28. Let T =X ⊕ U and T ′ be support τ -tilting Λ-modules such
that T ′ = µX(T ) for some indecomposable Λ-module X. Then either T > T ′ or T < T ′ holds by
Theorem 2.18. We say that T ′ is a left mutation (respectively, right mutation) of T and we write
T ′ = µ−X(T ) (respectively, T ′ = µ+

X(T )) if the following equivalent conditions are satisfied.

(a) T > T ′ (respectively, T < T ′).

(b) X /∈ Fac U (respectively, X ∈ Fac U).

(c) ⊥(τX)⊇ ⊥(τU) (respectively, ⊥(τX) 6⊇ ⊥(τU)).

If T is a τ -tilting Λ-module, then the following condition is also equivalent to the above conditions.

(d) T is a Bongartz completion of U (respectively, T is a non-Bongartz completion of U).

Proof. This follows immediately from Theorem 2.18 and Proposition 2.22. 2

Definition 2.29. We define the support τ -tilting quiver Q(sτ -tilt Λ) of Λ as follows.

• The set of vertices is sτ -tilt Λ.

• We draw an arrow from T to U if U is a left mutation of T .

Next, we show that one can calculate left mutation of support τ -tilting Λ-modules by exchange
sequences that are constructed from left approximations.

Theorem 2.30. Let T =X ⊕ U be a basic τ -tilting module that is the Bongartz completion of

U , where X is indecomposable. Let X
f−→ U ′

g−→ Y → 0 be an exact sequence, where f is a minimal
left (add U)-approximation. Then we have the following.

(a) If U is not sincere, then Y = 0. In this case, U = µ−X(T ) holds and this is a basic support
τ -tilting Λ-module that is not τ -tilting.
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(b) If U is sincere, then Y is a direct sum of copies of an indecomposable Λ-module Y1 and
is not in add T . In this case, Y1 ⊕ U = µ−X(T ) holds and this is a basic τ -tilting Λ-module.

Proof. We first make some preliminary observations. We have ⊥(τU)⊆ ⊥(τX) because T is a
Bongartz completion of U . By Lemma 2.20, we have an exact sequence

X
f−→ U ′

g−→ Y → 0

such that U ′ is in add U , Y is in add P (Fac U), add U ′ ∩ add Y = 0 and f is a left (Fac U)-
approximation. We have Ext1

Λ(Y, Fac U) = 0 since Y ∈ add P (Fac U), and hence HomΛ(U, τY ) =
0 by Proposition 1.2. We have an injective map HomΛ(Y, τ(Y ⊕ U))→HomΛ(U ′, τ(Y ⊕ U)).
Since U is τ -rigid, we have that HomΛ(U ′, τ(Y ⊕ U)) = 0, and consequently HomΛ(Y, τ(Y ⊕
U)) = 0. It follows that Y ⊕ U is τ -rigid.

We show that g : U ′→ Y is a right (add T )-approximation. To see this, consider the exact
sequence

HomΛ(T, U ′)→HomΛ(T, Y )→ Ext1
Λ(T, Im f).

Since Im f ∈ Fac T , we have Ext1
Λ(T, Im f) = 0, which proves the claim.

We have that Y does not have any indecomposable direct summand from add T . For if T ′

in add T is an indecomposable direct summand of Y , then the natural inclusion T ′→ Y factors
through g : U ′→ Y . This contradicts the fact that f :X → U ′ is left minimal.

Now we are ready to prove the claims (a) and (b).
(a) Assume first that U is not sincere. Let e be a primitive idempotent with eU = 0. Then U

is a τ -rigid (Λ/〈e〉)-module. Since |U |= |Λ| − 1 = |Λ/〈e〉|, we have that U is a τ -tilting (Λ/〈e〉)-
module, and hence a support τ -tilting Λ-module that is not τ -tilting.

(b) Next, assume that U is sincere. Since we have already shown that Y ⊕ U is τ -rigid and
Y does not have any indecomposable direct summand from add T , it is enough to show Y 6= 0.
Otherwise, we have X ' U ′ by Lemma 2.21, since U is sincere. This is not possible since U ′ is
in add U , but X is not. Hence it follows that Y 6= 0. 2

We do not know the answer to the following.

Question 2.31. Is Y always indecomposable in Theorem 2.30(b)?

Note that right mutation cannot be calculated as directly as left mutation:

Remark 2.32. Let T and T ′ be support τ -tilting Λ-modules such that T ′ = µX(T ) for some
indecomposable Λ-module X.

(a) If T ′ = µ−X(T ), then we can calculate T ′ by applying Theorem 2.30.

(b) If T ′ = µ+
X(T ), then we can calculate T ′ using the following three steps. First, calculate

T †. Then, calculate T ′† by applying Theorem 2.30 to T †. Finally, calculate T ′ by applying (−)†

to T ′†.

Our next main result is the following.

Theorem 2.33. For T, U ∈ sτ -tilt Λ, the following conditions are equivalent.

(a) U is a left mutation of T .

(b) T is a right mutation of U .

(c) T > U and there is no V ∈ sτ -tilt Λ such that T > V > U .

Before proving Theorem 2.33, we give the following result as a direct consequence.
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Corollary 2.34. The support τ -tilting quiver Q(sτ -tilt Λ) is the Hasse quiver of the partially
ordered set sτ -tilt Λ.

The following analogue of [AI12, Proposition 2.36] is a main step to prove Theorem 2.33.

Theorem 2.35. Let U and T be basic support τ -tilting Λ-modules such that U > T . Then:

(a) there exists a right mutation V of T such that U > V ;

(b) there exists a left mutation V ′ of U such that V ′ > T .

Before proving Theorem 2.35, we finish the proof of Theorem 2.33 by using Theorem 2.35.
(a)⇔(b). Immediate from the definitions.
(a)⇒(c). Assume that V ∈ sτ -tilt Λ satisfies T > V > U . Then we have add T ∩ add U ⊆ add V

by Proposition 2.26. Thus T and V have an almost complete support τ -tilting pair for Λ as a
common direct summand. Hence we have V ' U by Theorem 2.18.

(c)⇒(a). By Theorem 2.35, there exists a left mutation V of T such that T > V > U . Then
V ' U by our assumption. Thus U is a left mutation of T . 2

To prove Theorem 2.35, we shall need the following results.

Lemma 2.36. Let U and T be basic support τ -tilting Λ-modules such that U > T . Let U
f−→

T 0→ T 1→ 0 be an exact sequence as given in Proposition 2.23. If X is an indecomposable
direct summand of T that does not belong to add T 0, then we have U > µX(T )> T .

Proof. First, we show µX(T )> T . Since X is in Fac T ⊆ Fac U , there exists a surjective map
a : U `→X for some ` > 0. Since f ` : U `→ (T 0)` is a left (add T )-approximation, a factors
through f ` and we have X ∈ Fac T 0. It follows from X /∈ add T 0 that X ∈ Fac T 0 ⊆ Fac µX(T ).
Thus Fac T ⊆ Fac µX(T ) and we have µX(T )> T .

Next, we show that U > µX(T ). Let (U, Λe) and (T, Λe′) be support τ -tilting pairs for Λ.
By Proposition 2.27(b), we know that U † = Tr U ⊕ eΛ and T † = Tr T ⊕ e′Λ are support τ -tilting
Λop-modules such that U † < T †. In particular, any minimal right (add T †)-approximation

Tr T0 ⊕ P → U † (6)

of U † with T0 ∈ add Tnp and P ∈ add e′Λ is surjective. The following observation shows that
T0 ∈ add T 0.

Lemma 2.37. Let X and Y be in mod Λ and P in proj Λop. Let f : Y →X0 be a left
(addX)-approximation of Y and g : TrX0 ⊕ P0→ Tr Y be a minimal right (add TrX ⊕ P )-
approximation of Tr Y with X0 ∈ addXnp and P0 ∈ add P . If g is surjective, then X0 is a direct
summand of X0.

Proof. Assume that g is surjective and consider the exact sequence

0 // K
h // TrX0 ⊕ P0

g // Tr Y // 0.

Then h is in rad(K, TrX0 ⊕ P0), since g is right minimal. It is easy to see that in the
stable category mod Λop, a pseudokernel of g is given by h, which is in the radical of
mod Λop. In particular, g is a minimal right (add TrX)-approximation in mod Λop. Since Tr :
mod Λ→mod Λop is a duality, we have that Tr g : Tr Tr Y → Tr(TrX0 ⊕ P0) =X0 is a minimal
left (addX)-approximation of Tr Tr Y in mod Λ. On the other hand, f : Y →X0 is clearly a left
(addX)-approximation of Y in mod Λ. Since Tr Tr Y is a direct summand of Y , we have that
X0 is a direct summand of X0 in mod Λ. Thus the assertion follows. 2
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We now finish the proof of Lemma 2.36.
Since T0 ∈ add T 0 and X /∈ add T 0, we have X /∈ add T0 and hence U † ∈ Fac (Tr(T/X)⊕ e′Λ)

by (6). Hence we have U † 6 µX(T )†, which implies U > µX(T ) by Proposition 2.27(b). 2

Now we are ready to prove Theorem 2.35.
We only prove (a), since (b) follows from (a) and Proposition 2.27(b).
(i) Let (U, Λe) and (T, Λe′) be support τ -tilting pairs for Λ. Let

U // T 0 // T 1 // 0 (7)

be an exact sequence given by Proposition 2.23. If T /∈ add T 0, then any indecomposable direct
summand X of T that is not in add T 0 satisfies U > µX(T )> T by Lemma 2.36. Thus we assume
that T ∈ add T 0 in the rest of proof. Since add T 0 ∩ add T 1 = 0, we have T 1 = 0, which implies
T 0 = U/〈e′〉U by Lemma 2.21.

(ii) By Proposition 2.27(b), we know that U † = Tr U ⊕ eΛ and T † = Tr T ⊕ e′Λ are support
τ -tilting Λop-modules such that U † < T †. Let

T †0
f // U † // 0

be a minimal right (add T †)-approximation of U †. If e′Λ /∈ add T †0 , then any indecomposable direct
summand Q of e′Λ that is not in add T †0 satisfies U † ∈ Fac (T †/Q). Thus we have U † 6 µQ(T †)
and U > µQ∗(T )> T by Proposition 2.27. In the rest of the proof, we assume that e′Λ ∈ add T †0 .

(iii) We show that there exists an exact sequence

P1
a // Tr T 0 ⊕ P0

// Tr U // 0 (8)

in mod Λop such that P0 ∈ proj Λop, P1 ∈ add e′Λ, a ∈ rad(P1, Tr T 0 ⊕ P0) and the map

(a, U †) : HomΛop(Tr T 0 ⊕ P0, U
†) // HomΛop(P1, U

†) (9)

is surjective.
Let Q1

d−→Q0→ U → 0 be a minimal projective presentation of U . Let d′ :Q′1→Q0 be a right
(add Λe′)-approximation of Q0. Since T 0 = U/〈e′〉U by (i), we have a projective presentation

Q′1 ⊕Q1
(d′

d )
−−→Q0→ T 0→ 0 of T 0. Thus we have an exact sequence

Q∗0
(d′∗ d∗)// Q′1

∗ ⊕Q∗1
(c′

c )
// Tr T 0 ⊕Q // 0

for some projective Λop-module Q. We have a commutative diagram

Q∗0
d∗ //

d′∗

��

Q∗1 //

−c
��

Tr U // 0

Q′1
∗ c′ // Tr T 0 ⊕Q // Tr U // 0

of exact sequences. Now we decompose the morphism c′ as

c′ =
(
a 0
0 1Q′′

)
:Q′1

∗ = P1 ⊕Q′′ // Tr T 0 ⊕Q= Tr T 0 ⊕ P0 ⊕Q′′,

where a is in the radical. Then we naturally have an exact sequence (8), and clearly we have
P0 ∈ proj Λop and P1 ∈ add e′Λ by our construction. It remains to show that (9) is surjective.
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We only have to show that the map

(c′, U †) : HomΛop(Tr T 0 ⊕Q, U †) // HomΛop(Q′1
∗, U †)

is surjective. Take any map s :Q′1
∗→ U †. By Proposition 2.4(c), there exists t :Q∗1→ U † such

that sd′∗ = td∗. Thus there exists u : Tr T 0 ⊕Q→ U † such that s= uc′ and t=−uc, which shows
the assertion.

(iv) First, we assume that P1 in (iii) is non-zero. Since e′Λ ∈ add T †0 by (ii) and P1 ∈ add e′Λ,
we have P1 ∈ add T †0 . Thus there exists a morphism s : P1→ T †0 that is not in the radical. Since
(9) is surjective, there exists t : Tr T 0 ⊕ P0→ U † such that ta= fs. Since f is a surjective right
(add T †)-approximation and P0 is projective, there exists u : Tr T 0 ⊕ P0→ T †0 such that t= fu.

P1
a //

s

��

Tr T 0 ⊕ P0
//

t

��
u

zz

Tr U // 0

T †0 f
// U † // 0

Since f(s− ua) = 0 and f is right minimal, we have that s− ua is in the radical. Since a is in
the radical, so is s, a contradiction.

Consequently, we have P1 = 0. Thus Tr T 0 ⊕ P0 ' Tr U and Tr T 0 ' Tr U . Since T ∈ add T 0

by our assumption, we have add Tnp = add Unp. Since U > T , we have Tpr ∈ add Upr. Thus
U ' T ⊕ P for some projective Λ-module P .

(v) It remains to consider the case U ' T ⊕ P for some projective Λ-module P .
Since U > T , we have add Λe( add Λe′. Take any indecomposable summand Λe′′ of Λ(e′ − e)

and let V := µΛe′′(T, Λe′), which has a form (T ⊕X, Λ(e′ − e′′)), withX indecomposable. Clearly,
V > T holds. Since τU ∈ add τ(T ⊕X) by our assumption and Λe ∈ add Λ(e′ − e′′) by our choice
of e′′, we have

Fac U = ⊥(τU) ∩ (Λe)⊥ ⊇ ⊥(τ(T ⊕X)) ∩ (Λ(e′ − e′′))⊥ = Fac V

by Corollary 2.13(c). Thus U > V holds. 2

We end this section with the following application, which is an analogue of [HU05,
Corollary 2.2].

Corollary 2.38. If Q(sτ -tilt Λ) has a finite connected component C, then Q(sτ -tilt Λ) = C.

Proof. Fix T in C. Applying Theorem 2.35(a) to Λ > T , we have a sequence T = T0 < T1 < T2 <
· · · of right mutations of support τ -tilting modules such that Λ > Ti for any i. Since C is finite,
this sequence must be finite. Thus Λ = Ti for some i, and Λ belongs to C. Now we fix any
U ∈ sτ -tilt Λ. Applying Theorem 2.35(b) to Λ > U , we have a sequence Λ = V0 > V1 > V2 > · · ·
of left mutations of support τ -tilting modules such that Vi > U for any i. Since C is finite, this
sequence must be finite. Thus U = Vj for some j, and U belongs to C. 2

3. Connection with silting theory

Throughout this section, let Λ be a finite-dimensional algebra over a field k. Any almost complete
silting complex has infinitely many complements. But if we restrict to two-term silting complexes,
we get another class of objects extending the (classical) tilting modules and satisfying the two-
complement property (Corollary 3.8). Moreover, we will show that there is a bijection between
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support τ -tilting Λ-modules and two-term silting complexes for Λ, which is of independent
interest (Theorem 3.2). The two-term silting complexes are defined as follows.

Definition 3.1. We call a complex P = (P i, di) in Kb(proj Λ) two-term if P i = 0 for all i 6= 0,−1.
Clearly, P ∈ Kb(proj Λ) is two-term if and only if Λ > P > Λ[1].

We denote by 2-silt Λ (respectively, 2-presilt Λ) the set of isomorphism classes of basic two-
term silting (respectively, presilting) complexes for Λ.

Clearly, any two-term complex is isomorphic to a two-term complex P = (P i, di) satisfying
d−1 ∈ rad(P−1, P 0) in Kb(proj Λ). Moreover, for any two-term complexes P and Q, we have
HomKb(proj Λ)(P, Q[i]) = 0 for any i 6=−1, 0, 1.

The aim of this section is to prove the following result.

Theorem 3.2. Let Λ be a finite-dimensional k-algebra. Then there exists a bijection

2-silt Λ←→ sτ -tilt Λ

given by 2-silt Λ 3 P 7→H0(P ) ∈ sτ -tilt Λ and sτ -tilt Λ 3 (M, P ) 7→ (P1 ⊕ P
(f 0)−−−→ P0) ∈ 2-silt Λ,

where f : P1→ P0 is a minimal projective presentation of M .

The following result is quite useful.

Proposition 3.3. Let P be a two-term presilting complex for Λ.

(a) P is a direct summand of a two-term silting complex for Λ.

(b) P is a silting complex for Λ if and only if |P |= |Λ|.

Proof. (a) This is shown in [Aih13, Proposition 2.16].
(b) The ‘only if’ part follows from Proposition 1.6(a). We will show the ‘if’ part. Let P be

a two-term presilting complex for Λ with |P |= |Λ|. By (a), there exists a complex X such that
P ⊕X is silting. Then we have |P ⊕X|= |Λ|= |P | by Proposition 1.6(a), so X is in add P . Thus
P is silting. 2

The following lemma is important.

Lemma 3.4. Let M, N ∈mod Λ. Let P1
p1→ P0

p0→M → 0 and Q1
q1→Q0

q0→N → 0 be minimal

projective presentations of M and N , respectively. Let P = (P1
p1→ P0) and Q= (Q1

q1→Q0) be
two-term complexes for Λ. Then the following conditions are equivalent.

(a) HomΛ(N, τM) = 0.

(b) HomKb(proj Λ)(P, Q[1]) = 0.

In particular, M is a τ -rigid Λ-module if and only if P is a presilting complex for Λ.

Proof. The condition (a) is equivalent to the fact that (p1, N) : HomΛ(P0, N)→HomΛ(P1, N)
is surjective by Proposition 2.4(b).

(a)⇒(b). Any morphism f ∈HomKb(proj Λ)(P, Q[1]) is given by some f ∈HomΛ(P1, Q0). Since
(p1, N) is surjective, there exists g : P0→N such that q0f = gp1. Moreover, since P0 is projective,
there exists h0 : P0→Q0 such that q0h0 = g. Since q0(f − h0p1) = 0, we have h1 : P1→Q1 with
f = q1h1 + h0p1.

0 // P1
p1 //

f
��

h1

~~

P0
p0 //

g

��

h0

~~

M // 0

0 // Q1 q1
// Q0 q0

// N // 0

Hence we have HomKb(proj Λ)(P, Q[1]) = 0.
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(b)⇒(a). Take any f ∈HomΛ(P1, N). Since P1 is projective, there exists g : P1→Q0 such
that q0g = f .

P1
p1 //

g

��

f

  AAAAAAAA P0

Q1 q1
// Q0 q0

// N // 0

Then g gives a morphism P →Q[1] in Kb(proj Λ). Since HomKb(proj Λ)(P, Q[1]) = 0, there exist
h0 : P0→Q0 and h1 : P1→Q1 such that g = q1h1 + h0p1. Hence we have f = q0(q1h1 + h0p1) =
q0h0p1. Therefore (p1, N) is surjective. 2

We also need the following observation.

Lemma 3.5. Let P1
p1→ P0

p0→M → 0 be a minimal projective presentation of M in mod Λ and
P := (P1

p1→ P0) be a two-term complex for Λ. Then, for any Q in proj Λ, the following conditions
are equivalent.

(a) HomΛ(Q,M) = 0.

(b) HomKb(proj Λ)(Q, P ) = 0.

Proof. The proof is left to the reader, since it is straightforward. 2

The following result shows that silting complexes for Λ give support τ -tilting modules.

Proposition 3.6. Let P = (P1
d→ P0) be a two-term complex for Λ and M := Cok d.

(a) If P is a silting complex for Λ and d is right minimal, then M is a τ -tilting Λ-module.

(b) If P is a silting complex for Λ, then M is a support τ -tilting Λ-module.

Proof. (b) We write d= (d′ 0) : P1 = P ′1 ⊕ P ′′1 → P0, where d′ is right minimal. Then the sequence

P ′1
d′→ P0→M → 0 is a minimal projective presentation of M . We show that (M, P ′′1 ) is a support

τ -tilting pair for Λ. Since P is silting, M is a τ -rigid Λ-module by Lemma 3.4. On the other hand,
since P is silting, we have HomKb(proj Λ)(P ′′1 , P ) = 0. By Lemma 3.5, we have HomΛ(P ′′1 , M) = 0.
Thus (M, P ′′1 ) is a τ -rigid pair for Λ. Since d′ is a minimal projective presentation of M , we have

|M |= |P ′1
d′−→ P0|. Thus we have

|M |+ |P ′′1 |= |P ′1
d′−→ P0|+ |P ′′1 |= |P |,

which is equal to |Λ| by Proposition 1.6(a). Hence (M, P ′′1 ) is a support τ -tilting pair for Λ.
(a) This is the case P ′′1 = 0 in (b). 2

The following result shows that support τ -tilting Λ-modules give silting complexes for Λ.

Proposition 3.7. Let P1
d1−→ P0

d0−→M → 0 be a minimal projective presentation ofM in mod Λ.

(a) If M is a τ -tilting Λ-module, then (P1
d1−→ P0) is a silting complex for Λ.

(b) If (M, Q) is a support τ -tilting pair for Λ, then P1 ⊕Q
(d1 0)−−−−→ P0 is a silting complex

for Λ.

Proof. (b) We know that (P1
d1−→ P0) is a presilting complex for Λ by Lemma 3.4. Let P :=

(P1 ⊕Q
(d1 0)−−−−→ P0). By Lemma 3.5, we have that P is a presilting complex for Λ. Since d1 is a
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minimal projective presentation, we have |P1
d1−→ P0|= |M |. Moreover, since (M, Q) is a support

τ -tilting pair for Λ, we have |M |+ |Q|= |Λ|. Thus we have

|P |= |P1
d1−→ P0|+ |Q|= |M |+ |Q|= |Λ|.

Hence P is a silting complex for Λ by Proposition 3.3(b).
(a) This is the case Q= 0 in (b). 2

Now Theorem 3.2 follows from Propositions 3.6 and 3.7. 2

We give some applications of Theorem 3.2.

Corollary 3.8. Let Λ be a finite-dimensional k-algebra.

(a) Any basic two-term presilting complex P for Λ with |P |= |Λ| − 1 is a direct summand
of exactly two basic two-term silting complexes for Λ.

(b) Let P, Q ∈ 2-silt Λ. Then P and Q have all but one indecomposable direct summand in
common if and only if P is a left or right mutation of Q.

Proof. (a) This follows from Theorems 2.18 and 3.2.
(b) This is immediate from (a). 2

Now we define Q(2-silt Λ) as the full subquiver of Q(silt Λ), with vertices corresponding to
two-term silting complexes for Λ.

Corollary 3.9. The bijection in Theorem 3.2 is an isomorphism of the partially ordered sets.
In particular, it induces an isomorphism between the two-term silting quiver Q(2-silt Λ) and the
support τ -tilting quiver Q(sτ -tilt Λ).

Proof. Let (M, Λe) and (N, Λf) be support τ -tilting pairs for Λ. Let P := (P1→P0) and
Q := (Q1→Q0) be minimal projective presentations of M and N respectively. We only have
to show that M >N if and only if HomKb(proj Λ)(P ⊕ Λe[1], (Q⊕ Λf [1])[1]) = 0.

We know that M >N if and only if HomΛ(N, τM) = 0 and Λe ∈ add Λf by Lemma 2.25.
Moreover, HomΛ(N, τM) = 0 if and only if HomKb(proj Λ)(P, Q[1]) = 0 by Lemma 3.4. On the
other hand, Λe ∈ add Λf if and only if HomΛ(Λe, N) = 0, since N is a sincere (Λ/〈f〉)-module.
Thus Λe ∈ add Λf is equivalent to HomKb(proj Λ)(Λe, Q) = 0 by Lemma 3.5. Consequently, M >N
if and only if HomKb(proj Λ)(P ⊕ Λe[1], Q[1]) = 0, and this is equivalent to HomKb(proj Λ)(P ⊕
Λe[1], (Q⊕ Λf [1])[1]) = 0, since HomKb(proj Λ)(P ⊕ Λe[1], Λf [2]) = 0 is automatic. Thus the
assertion follows. 2

Immediately, we have the following application.

Corollary 3.10. If Q(2-silt Λ) has a finite connected component C, then Q(2-silt Λ) = C.

Proof. This is immediate from Corollaries 2.38 and 3.9. 2

Note also that Theorem 3.2 and Corollary 3.9 give an alternative proof of Theorem 2.35, since
the corresponding property for two-term silting complexes holds by [AI12, Proposition 2.36].

4. Connection with cluster-tilting theory

Let C be a Hom-finite Krull–Schmidt 2-Calabi–Yau (2-CY for short) triangulated category (for
example, the cluster category CQ associated with a finite acyclic quiver Q [BMRRT06]). We shall
assume that our category C has a cluster-tilting object T . Associated with T , we have by definition
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the 2-CY tilted algebra Λ = EndC(T )op, whose module category is closely connected with the
2-CY triangulated category C. In particular, there is an equivalence of categories [BMR07, KR07]:

(−) := HomC(T,−) : C/[T [1]]→mod Λ. (10)

In this section, we investigate this relationship more closely by giving a bijection between
cluster-tilting objects in C and support τ -tilting Λ-modules (Theorem 4.1). This was the starting
point for the theory of τ -rigid and τ -tilting modules. As an application, we give a proof of
some known results for cluster-tilting objects (Corollary 4.5). Also, we give a direct connection
between cluster-tilting objects in C and two-term silting complexes for Λ (Theorem 4.7). There
is an induced isomorphism between the associated graphs (Corollary 4.8).

4.1 Support τ -tilting modules and cluster-tilting objects
In this subsection, we show that there is a close relationship between the cluster-tilting objects
in C and support τ -tilting Λ-modules. We use this to apply our main Theorem 0.4 to get a
new proof of the fact that almost complete cluster-tilting objects have exactly two complements,
and of the fact that all maximal rigid objects are cluster-tilting, as first proved in [IY08, ZZ11],
respectively.

We denote by iso C the set of isomorphism classes of objects in a category C. From our
equivalence (10), we have a bijection

(̃−) : iso C ←→ iso (mod Λ)× iso (proj Λ)

given by X =X ′ ⊕X ′′ 7→ X̃ := (X ′, X ′′[−1]), where X ′′ is a maximal direct summand of X that
belongs to add T [1]. We denote by rigid C (respectively, m-rigid C) the set of isomorphism classes
of basic rigid (respectively, maximal rigid) objects in C, and by c-tilt TC the set of isomorphism
classes of basic cluster-tilting objects in C that do not have non-zero direct summands in add T [1].

Our main result in this section is the following.

Theorem 4.1. The bijection (̃−) induces bijections

rigid C ←→ τ -rigid Λ, c-tilt C ←→ sτ -tilt Λ and c-tilt TC ←→ τ -tilt Λ.

Moreover, we have c-tilt C = m-rigid C = {U ∈ rigid C | |U |= |T |}.

We start with the following easy observation (see [KR07]).

Lemma 4.2. The functor (−) induces an equivalence of categories between add T (respectively,
add T [2]) and proj Λ (respectively, inj Λ). Moreover, we have an isomorphism (−) ◦ [2]' ν ◦ (−) :
add T → inj Λ of functors.

Now we express Ext1
C(X, Y ) in terms of the imagesX and Y in our fixed 2-CY tilted algebra Λ.

We let
〈X, Y 〉Λ = 〈X, Y 〉 := dimk HomΛ(X, Y ).

Proposition 4.3. Let X and Y be objects in C. Assume that there are no non-zero
indecomposable direct summands of T [1] for X and Y .

(a) We have X[1]' τX and Y [1]' τY as Λ-modules.

(b) We have an exact sequence

0→D HomΛ(Y , τX)→ Ext1
C(X, Y )→HomΛ(X, τY )→ 0.

(c) dimk Ext1
C(X, Y ) = 〈X, τY 〉Λ + 〈Y , τX〉Λ.
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Proof. (a) This can be shown as in the proof of [BMR07, Proposition 3.2]. Here, we give a direct
proof. Take a triangle

T1
g // T0

f // X // T1[1] (11)

with a minimal right (add T )-approximation f and T0, T1 ∈ add T . Applying ( ) to (11), we have
an exact sequence

T1

g // T0

f // X // 0. (12)

This gives a minimal projective presentation of X, since X has no non-zero indecomposable
direct summands of T [1]. Applying the Nakayama functor to (12) and HomC(T,−) to (11) and
comparing them by Lemma 4.2, we have the following commutative diagram of exact sequences.

0 // τX // νT1

νg //

o
��

νT0

o
��

0 = T0[1] // X[1] // T1[2]
g[2] // T0[2]

Thus we have τX 'X[1].
(b) We have an exact sequence

0→ [T [1]](X, Y [1])→HomC(X, Y [1])→HomC/[T [1]](X, Y [1])→ 0,

where [T [1]] is the ideal of C consisting of morphisms that factor through add T [1]. We have a
functorial isomorphism

HomC/[T [1]](X, Y [1])'HomΛ(X, Y [1])
(a)
' HomΛ(X, τY ). (13)

On the other hand, the first of the following functorial isomorphisms was given in [Pal08, 3.3].

[T [1]](X, Y [1])'D HomC/[T [1]](Y, X[1])
(13)
' D HomΛ(Y , τX).

Thus the assertion follows.
(c) This is immediate from (b). 2

We now consider the general case, where we allow indecomposable direct summands from
T [1] in X or Y .

Proposition 4.4. Let X =X ′ ⊕X ′′ and Y = Y ′ ⊕ Y ′′ be objects in C such that X ′′ and Y ′′

are the maximal direct summands of X and Y respectively, which belong to add T [1]. Then

dimk Ext1
C(X, Y ) = 〈X ′, τY ′〉Λ + 〈Y ′, τX ′〉Λ + 〈X ′′[−1], Y ′〉Λ + 〈Y ′′[−1], X ′〉Λ.

Proof. Since Ext1
C(X

′′, Y ′′) = 0, we have

dimk Ext1
C(X, Y ) = dimk Ext1

C(X
′, Y ′) + dimk Ext1

C(X
′′, Y ′) + dimk Ext1

C(X
′, Y ′′).

By Proposition 4.3, the first term equals 〈X ′, τY ′〉Λ + 〈Y ′, τX ′〉Λ. Clearly, the second term equals
〈X ′′[−1], Y ′〉Λ, and the third term equals 〈Y ′′[−1], X ′〉Λ. 2

Now we are ready to prove Theorem 4.1.
By Proposition 4.4, we have that X is rigid if and only if X̃ is a τ -rigid pair for Λ.

Thus we have a bijection rigid C ↔ τ -rigid Λ, which induces a bijection m-rigid C ↔ sτ -tilt Λ
by Corollary 2.13(a)⇔(b).
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On the other hand, we show that a bijection c-tilt C ↔ sτ -tilt Λ is induced. Since c-tilt C ⊆
m-rigid C, we only have to show that any X ∈ rigid C satisfying that X̃ is a support τ -
tilting pair for Λ is a cluster-tilting object in C. Assume that Y ∈ C satisfies Ext1

C(X, Y ) = 0.
By Proposition 4.4, we have HomΛ(X ′, τY ′) = 0, HomΛ(Y ′, τX ′) = 0, HomΛ(X ′′[−1], Y ′) =
0 and HomΛ(Y ′′[−1], X ′) = 0. By the first three equalities, we have Y ′ ∈ addX ′ by
Corollary 2.13(a)⇔(d). By the last equality, we have Y ′′[−1] ∈ addX ′′[−1]. Thus Y ∈ addX
holds, which shows that X is a cluster-tilting object in C.

The remaining statements follow immediately. 2

Now, we recover the following results in [IY08, ZZ11].

Corollary 4.5. Let C be a 2-CY triangulated category with a cluster-tilting object T .

(a) [IY08] Any basic almost complete cluster-tilting object is a direct summand of exactly
two basic cluster-tilting objects. In particular, T is a mutation of V if and only if T and V have
all but one indecomposable direct summand in common.

(b) [ZZ11] An object X in C is cluster-tilting if and only if it is maximal rigid if and only if
it is rigid and |X|= |T |.

Proof. (a) This is immediate from the bijections given in Theorem 4.1 and the corresponding
result for support τ -tilting pairs given in Theorem 2.18.

(b) This is the last equality in Theorem 4.1. 2

Connections between cluster-tilting objects in C and tilting Λ-modules have been investigated
in [FL09, Smi08]. It was shown that a tilting Λ-module always comes from a cluster-tilting object
in C, but the image of a cluster-tilting object is not always a tilting Λ-module. This is explained
by Theorem 4.1 asserting that the Λ-modules corresponding to the cluster-tilting objects of C
are the support τ -tilting Λ-modules, which are not necessarily tilting Λ-modules.

4.2 Two-term silting complexes and cluster-tilting objects
Throughout this section, let C be a 2-CY triangulated category with a cluster-tilting object T . Let
Λ := EndC(T )op and let Kb(proj Λ) be the homotopy category of bounded complexes of finitely
generated projective Λ-modules. In this section, we shall show directly that there is a bijection
between cluster-tilting objects in C and two-term silting complexes for Λ, and that the mutations
are compatible with each other.

The following result will be useful, where we denote by K2(proj Λ) the full subcategory of
Kb(proj Λ) consisting of two-term complexes for Λ.

Proposition 4.6. There exists a bijection

iso C ←→ iso (K2(proj Λ))

that preserves the number of non-isomorphic indecomposable direct summands.

Proof. For any object U ∈ C, there exists a triangle

T1
g // T0

f // U // T1[1],

where T1, T0 ∈ add T and f is a minimal right (add T )-approximation. By Lemma 4.2, we have

a two-term complex T1
g−→ T0 in Kb(proj Λ).

Conversely, let P1
d→ P0 be a two-term complex for Λ. By Lemma 4.2, there exists a morphism

g : T1→ T0 in add T such that g = d. Taking the cone of g, we have an object U in C. Then we
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can easily check that the correspondence gives a bijection and preserves the number of non-
isomorphic indecomposable direct summands. 2

Using this, we get the desired correspondence.

Theorem 4.7. The bijection in Proposition 4.6 induces bijections

rigid C ←→ 2-presilt Λ and c-tilt C ←→ 2-silt Λ.

Proof. (i) For any rigid object U ∈ C, we have a triangle

T1
g // T0

f // U
h // T1[1],

where T1, T0 ∈ add T and f is a minimal right (add T )-approximation. Let a : T1→ T0 be an
arbitrary morphism in C. Since U is rigid, we have fah[−1] = 0. Thus we have a commutative
diagram

U [−1]
h[−1] //

��

T1
g //

a

��

T0
f //

b

��

U

��
T1

g // T0
f // U

h // T1[1]

of triangles in C. Since hb= 0, there exists k0 : T0→ T0 such that b= fk0. Since f(a− k0g) = 0,
there exists k1 : T1→ T1 such that gk1 = a− k0g. Therefore we have

HomKb(proj Λ)((T1
g−→ T0), (T1

g−→ T0)[1]) = 0.

Thus T1
g−→ T0 is a presilting complex for Λ.

(ii) Let P := (P1
d→ P0) be a two-term presilting complex for Λ. There exists a unique

g : T1→ T0 in add T such that g = d. We consider a triangle

T1
g // T0

f // U
h // T1[1]

in C. We take a morphism a : U → U [1] in C. Then we have the following commutative diagram.

T1
g //

��

T0
//

h[1]af
��

0

��
0 // T1[2]

g[2] // T0[2]

Applying (−), we have a commutative diagram.

P1
d //

��

P0
//

h[1]af
��

0

��
0 // νP1

νd // νP0

Thus we have a morphism P → νP [−1] in Kb(proj Λ). Since P is a presilting complex for Λ, we
have

HomKb(proj Λ)(P, νP [−1])'D HomKb(proj Λ)(P [−1], P ) = 0.
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Therefore h[1]af = 0, and the morphism h[1]af factors through add T [1]. Hence we have h[1]af
= 0. Thus we have a commutative diagram.

T1
g // T0

f //

a0

��

U
h //

a

��

T1[1]

T1[1]
g[1] // T0[1]

f [1] // U [1]
h[1] // T1[2]

Since T0 ∈ add T , we have a0 = 0. Thus af = 0, so there exists ϕ : T1[1]→ U [1] such that a= ϕh.
Since T1 ∈ add T , we have h[1]ϕ= 0. Thus there exists b : T1[1]→ T0[1] such that ϕ= f [1]b.
Consequently, we have commutative diagrams.

0 //

��

T1
g //

b[−1]

��

T0

��
T1

g // T0
// 0

0 //

��

P1
d //

b[−1]
��

P0

��
P1

d // P0
// 0

Since P is a presilting complex for Λ, there exist s : T0[1]→ T0[1] and t : T1[1]→ T1[1] such that
b= sg[1] + g[1]t. Therefore we have

a= ϕh= f [1]bh= f [1]sg[1]h+ f [1]g[1]th= 0.

Hence HomC(U, U [1]) = 0 (i.e. U is rigid) and the claim follows. 2

Corollary 4.8. The bijections in Theorems 3.2 and 4.7 induce isomorphisms of the following
graphs.

(a) The underlying graph of the support τ -tilting quiver Q(sτ -tilt Λ) of Λ.

(b) The underlying graph of the two-term silting quiver Q(2-silt Λ) of Λ.

(c) The cluster-tilting graph G(c-tilt C) of C.

Proof. The graphs (a) and (b) are the same by Corollary 3.9.
We show that (b) and (c) are the same. Let U and V be cluster-tilting objects in C. Let

P and Q be the two-term silting complexes for Λ corresponding, respectively, to U and V by
Theorem 4.7. By Corollary 4.5(a), the following conditions are equivalent.

(a) There exists an edge between U and V in the exchange graph.

(b) U and V have all but one indecomposable direct summand in common.

Clearly, (b) is equivalent to the following condition.

(c) P and Q have all but one indecomposable direct summand in common.

Now (c) is equivalent to the following condition by Corollary 3.8(b).

(d) There exists an edge between P and Q in the underlying graph of the silting quiver.

Therefore, the exchange graph of C and the underlying graph of the silting full subquiver
consisting of two-term complexes for Λ coincide. 2

We end this section with the following application.

Corollary 4.9. If G(c-tilt C) has a finite connected component C, then G(c-tilt C) = C.

Proof. This is immediate from Corollaries 2.38 and 4.8. 2
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5. Numerical invariants

In this section, we introduce g-vectors following [AR85, DK08]. We show that g-vectors of
indecomposable direct summands of support τ -tilting modules form a basis of the Grothendieck
group (Theorem 5.1). Moreover, we observe that non-isomorphic τ -rigid pairs have different
g-vectors (Theorem 5.5). In [DWZ10], the authors defined what they called E-invariants of
finite-dimensional decorated representations of Jacobian algebras, and used this to solve several
conjectures from [FZ07]. In the case of finite-dimensional Jacobian algebras, they showed that the
E-invariants were given by formulas that we were led to in § 4.1, by considering dimk Ext1

C(T, T )
for a cluster-tilting object T in C. We here consider E-invariants for any finite-dimensional
algebra, using the same formula, and show that they can be expressed in terms of homomorphism
spaces, dimension vectors and g-vectors. We give some further results on the case of 2-CY tilted
algebras, including a comparison for neighbouring 2-CY tilted algebras (Theorem 5.7).

In the rest of this paper, we assume that our base field k is algebraically closed. Let Λ be a
finite-dimensional k-algebra.

5.1 g-vectors and E-invariants for finite-dimensional algebras
Recall from [DK08] that the g-vectors are defined as follows. Let K0(proj Λ) be the Grothendieck
group of the additive category proj Λ. Then the isomorphism classes P (1), . . . , P (n) of
indecomposable projective Λ-modules form a basis of K0(proj Λ). Consider M in mod Λ and
let

P1
// P0

// M // 0

be its minimal projective presentation in mod Λ. Then we write

P0 − P1 =
n∑
i=1

gMi P (i),

where by definition gM = (gM1 , . . . , gMn ) is the g-vector of M . The element P0 − P1 is also
called an index of M , which was investigated in [AR85], in connection with studying modules
determined by their composition factors, and in [DK08].

Another useful vector associated with M is the dimension vector cM = (cM1 , . . . , cMn ). Denote
by S(i) the simple top of P (i). Then cMi is, by definition, the multiplicity of the simple module
S(i) as composition factor of M . This vector has played an important role in cluster theory for
the acyclic case, since the denominators of cluster variables are determined by dimension vectors
of indecomposable rigid modules over path algebras [BMRT07, CK06]. Now, this result is not
true in general [BMR06].

We have the following result on g-vectors of support τ -tilting modules.

Theorem 5.1. Let (M, P ) be a support τ -tilting pair for Λ with M =
⊕`

i=1 Mi and P =⊕n
i=`+1 Pi with Mi and Pi indecomposable. Then gM1 , . . . , gM` , gP`+1 , . . . , gPn form a basis

of the Grothendieck group K0(proj Λ).

Proof. By Theorem 3.2, we have a corresponding silting complex Q=
⊕n

i=1 Qi for Λ with
indecomposable Qi, where the vectors gM1 , . . . , gM` , gP`+1 , . . . , gPn are exactly the classes of
Q1, . . . , Qn in the Grothendieck group K0(Kb(proj Λ)) =K0(proj Λ). By Proposition 1.6(b), we
have the assertion. 2
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This gives a result below due to Dehy–Keller. Recall that for a cluster-tilting object T ∈ C
and an object X ∈ C, there exists a triangle

T ′′→ T ′→X → T ′′[1]

in C with T ′, T ′′ ∈ add T . We call indT (X) := T ′ − T ′′ ∈K0(add T ) the index of X.

Corollary 5.2 [DK08, Theorem 2.4]. Let C be a 2-CY triangulated category, and T and
U =

⊕n
i=1 Ui be basic cluster-tilting objects with Ui indecomposable. Then the indices

indT (U1), . . . , indT (Un) form a basis of the Grothendieck group K0(add T ) of the additive
category add T .

Proof. We can assume that Ui /∈ add T [1] for 1 6 i6 `, and Ui ∈ add T [1] for `+ 1 6 i6 n. Then
(
⊕`

i=1 Ui,
⊕n

i=`+1 Ui[−1]) is a support τ -tilting pair for Λ by Theorem 4.1. The equivalence
HomC(T,−) : add T → proj Λ gives an isomorphism K0(add T )'K0(proj Λ). This sends indT (Ui)
to gUi for 1 6 i6 `, and to −gUi[−1] for `+ 1 6 i6 n. Thus the assertion follows from
Theorem 5.1. 2

Now, we consider a pair M = (X, P ) of a Λ-module X and a projective Λ-module P . We
regard a Λ-module X as a pair (X, 0). For such pairs M = (X, P ) and N = (Y, Q), let

gM := gX − gP ,
E′Λ(M, N) := 〈X, τY 〉+ 〈P, Y 〉,
EΛ(M, N) := E′Λ(M, N) + E′Λ(N,M),

EΛ(M) := EΛ(M,M).

We call gM the g-vector of M , and EΛ(M, N) the E-invariant of M and N . Clearly, a pair
(X, P ) is τ -rigid if and only if EΛ(M) = 0.

There is the following relationship between E-invariants and g-vectors, where we denote by
a · b the standard inner product

∑n
i=1 aibi for vectors a= (a1, . . . , an) and b= (b1, . . . , bn).

Proposition 5.3. Let Λ be a finite-dimensional algebra, and let X and Y be in mod Λ. Then
we have the following.

E′Λ(X, Y ) = 〈Y, X〉 − gY · cX ,
EΛ(X, Y ) = 〈Y, X〉+ 〈X, Y 〉 − gY · cX − gX · cY ,
EΛ(X) = 2(〈X, X〉 − gX · cX).

Proof. We only have to show the first equality. Since P0 − P1 =
∑n

i=1 g
Y
i P (i), then 〈P0, X〉 −

〈P1, X〉= gY · cX . By Proposition 2.4(a), we have

E′Λ(X, Y ) = 〈X, τY 〉= 〈Y, X〉+ 〈P1, X〉 − 〈P0, X〉= 〈Y, X〉 − gY · cX . 2

The following more general description of E-invariants is also clear.

Proposition 5.4. For any pair M = (X, P ) and N = (Y, Q), we have

EΛ(M, N) = 〈Y, X〉+ 〈X, Y 〉 − gM · cY − gN · cX .

We end this subsection with the following analogue of [DK08, Theorem 2.3], which was also
observed by Plamondon (private communication).

Theorem 5.5. The map M 7→ gM gives an injection from the set of isomorphism classes of
τ -rigid pairs for Λ to K0(proj Λ).
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Proof. The proof is based on Propositions 2.4(c) and 2.5, and is the same as that of [DK08,
Theorem 2.3]. 2

5.2 E-invariants for 2-CY tilted algebras

In the rest of this section, let C be a 2-CY triangulated k-category and let T be a cluster-tilting
object in C. Let Λ := EndC(T )op. For any object X ∈ C, we take a decomposition X =X ′ ⊕X ′′,
where X ′′ is a maximal direct summand of X that belongs to add T [1], and define a pair by

X̃Λ := (X ′, X ′′[−1]),

where (−) is an equivalence HomC(T,−) : C/[T [1]]→mod Λ given in (10).

We have the following interpretation of E-invariants.

Proposition 5.6. We have EΛ(X̃Λ, ỸΛ) = dimk Ext1
C(X, Y ) for any X, Y ∈ C.

Proof. This is immediate from Proposition 4.4 and our definition of E-invariants. 2

Now let T ′ be a cluster-tilting mutation of T . Then we refer to the 2-CY tilted algebras
Λ = EndC(T )op and Λ′ = EndC(T ′)op as neighbouring 2-CY tilted algebras. We define a pair X̃Λ′

for Λ′ in a similar way to X̃Λ by using the equivalence HomC(T ′,−) : C/[T ′[1]]→mod Λ′.

By our approach to the E-invariant, the following is now a direct consequence.

Theorem 5.7. With the above notation, let M and N be objects in C. Then EΛ(M̃Λ, ÑΛ) =
EΛ′(M̃Λ′ , ÑΛ′).

Proof. This is clear from Proposition 5.6, since both sides are equal to dimk Ext1
C(M, N). 2

In particular, M̃Λ is τ -rigid if and only if M̃Λ′ is τ -rigid.

This result is analogous to the corresponding result for (neighbouring) Jacobian algebras
proved in [DWZ10], in a larger generality. It is, however, not clear whether the two concepts of
neighbouring algebras coincide for 2-CY tilted algebras which are Jacobian algebras. See [BIRS11]
for more information.

6. Examples

In this section, we illustrate some of our work with easy examples.

Example 6.1. Let Λ be a local finite-dimensional k-algebra. Then we have sτ -tilt Λ = {Λ, 0}, since
the condition HomΛ(M, τM) = 0 implies either M = 0 or τM = 0 (i.e. M is projective). We have
Q(sτ -tilt Λ) = ( Λ // 0 ), Q(f-tors Λ) = ( mod Λ // 0 ) and Q(2-silt Λ) = ( Λ // Λ[1] ).

Example 6.2. Let Λ be a finite-dimensional k-algebra given by the quiver

1
a // 2,
a

oo

448

https://doi.org/10.1112/S0010437X13007422 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007422


τ-tilting theory

with relations a2 = 0. Then Q(sτ -tilt Λ), Q(f-tors Λ) and Q(2-silt Λ) are as follows.

1
2 ⊕ 2

1
//

��

1
2 ⊕ 1 // 1

��
2⊕ 2

1
// 2 // 0

mod Λ //

��

add ( 1
2 ⊕ 1) // add 1

��
add (2⊕ 2

1 ) // add 2 // 0

Λ //

��

[
2
1

[a 0]−−−→ 1
2 ⊕ 1

2

]
//
[

2
1 ⊕ 2

1

[a 0]−−−→ 1
2

]

��[
1
2

[a 0]−−−→ 2
1 ⊕ 2

1

]
//
[

1
2 ⊕ 1

2

[a 0]−−−→ 2
1

]
// Λ[1]

Example 6.3. Let Λ be a finite-dimensional k-algebra given by the quiver

2 a
��==

1
a AA��

3,a
oo

with relations a2 = 0. Then Λ is a cluster-tilted algebra of type A3, and there are 14 elements
in c-tilt C for the cluster category C of type A3. By our bijections, we know that there are 14
elements in each set sτ -tilt Λ, f-tors Λ and 2-silt Λ.

1
2 ⊕ 2

3 ⊕ 2 //

((RRRRRRR
2
3 ⊕ 2

%%KKKKKKK

1
2 ⊕ 2 //

''OOOOOO 2

��33333333333

1
2 ⊕ 2

3 ⊕ 3
1

::uuuuuuuuuuuuuu
//

$$IIIIIIIIIIIIII
1
2 ⊕ 1⊕ 3

1
//

((RRRRRRR
1
2 ⊕ 1

%%KKKKKKK

3
1 ⊕ 1 //

''OOOOOO 1 // 0

3⊕ 2
3 ⊕ 3

1
//

((RRRRRRR
3
1 ⊕ 3

%%KKKKKKK

2
3 ⊕ 3 //

II����������������������������
3

EE�����������

Example 6.4. Let Λ = kQ/〈βα〉, where Q is the quiver 1 α−→ 2
β−→ 3. Then T = S1 ⊕ P1 ⊕ P3 is

a τ -tilting module that is not a tilting module. Here, Si denotes the simple Λ-module associated
with the vertex i, and Pi denotes the corresponding indecomposable projective Λ-module.
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In this case, there are 12 basic support τ -tilting Λ-modules, and Q(sτ -tilt Λ) is as follows.

1
2 ⊕ 2

3 ⊕ 2 //

**TTTTTTTTTTTTTTTTTT
1
2 ⊕ 2 //

))RRRRRRRRRRRRRRRRRR
1
2 ⊕ 1 // 1

��::::::::

1
2 ⊕ 2

3 ⊕ 3

77ppppppppppp
//

''NNNNNNNNNNN
1
2 ⊕ 1⊕ 3

44jjjjjjjjjjjjjjjjjj
// 1⊕ 3

55lllllllllllllllllll

))RRRRRRRRRRRRRRRRRRR
2
3 ⊕ 2 // 2 // 0

2
3 ⊕ 3 //

44jjjjjjjjjjjjjjjjjjjj
3

AA��������

We refer to [Ada13, Jas13, Miz13, Zha12] for more examples of support τ -tilting modules.

Acknowledgements

Part of this work was done when the authors attended conferences in Oberwolfach (February
2011), Banff (September 2011), Shanghai (October 2011) and Trondheim (March 2012). Parts
of the results in this paper were presented at conferences in Kagoshima (February 2012), Graz,
Nagoya, Trondheim (March 2012), Matsumoto, Bristol (September 2012) and MSRI (October
2012). The authors would like to thank the organizers of these conferences. Part of this work
was done while the second author was visiting Trondheim in March 2010, March 2011 and
March–April 2012. He would like to thank the people at NTNU for hospitality and stimulating
discussions. We thank Julian Külshammer and Xiaojin Zhang for pointing out typographical
errors in the first draft.

References
Abe11 H. Abe, Tilting modules arising from two-term tilting complexes, Preprint (2011),

arXiv:1104.0627.
Ada13 T. Adachi, τ -tilting modules over Nakayama algebras, Preprint (2013), arXiv:1309.2216.
Aih13 T. Aihara, Tilting-connected symmetric algebras, Algebr. Represent. Theory 16 (2013),

873–894.
AI12 T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. 85

(2012), 633–668.
Ami09 C. Amiot, Cluster categories for algebras of global dimension 2 and quiver with potential,

Ann. Inst. Fourier 59 (2009), 2525–2590.
ASS06 I. Assem, D. Simson and A. Skowronski, Elements of the representation theory of associative

algebras, Vol. 65 (Cambridge University Press, Cambridge, 2006).
APR79 M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functions without diagrams, Trans. Amer.

Math. Soc. 250 (1979), 1–12.
AR75 M. Auslander and I. Reiten, Representation theory of Artin algebras III: almost split

sequences, Comm. Algebra 3 (1975), 239–294.
AR77 M. Auslander and I. Reiten, Representation theory of Artin algebras V: methods for

computing almost split sequences and irreducible morphisms, Comm. Algebra 5 (1977),
519–554.

AR85 M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois J.
Math. 29 (1985), 280–301.

AR91 M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math.
86 (1991), 111–152.

ARS95 M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge
Studies in Advanced Mathematics, vol. 36 (Cambridge University Press, Cambridge, 1995).

450

https://doi.org/10.1112/S0010437X13007422 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007422


τ-tilting theory

AS81 M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981),
426–454. Addendum: J. Algebra 71 (1981), 592–594.

BGP73 I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel’s theorem,
Russian Math. Surveys 28 (1973), 17–32.

Bon81 K. Bongartz, Tilted algebras, in Proc. ICRA III (Puebla 1980), Lecture Notes in Mathematics,
vol. 903 (Springer, New York, 1981), 26–38.

BB80 S. Brenner and M. C. R. Butler, Generalization of the Bernstein–Gelfand–Ponomarev
reflection functors, Lecture Notes in Mathematics, vol. 839 (Springer, New York, 1980),
103–169.

BIRS11 A. Buan, O. Iyama, I. Reiten and D. Smith, Mutation of cluster-tilting objects and potentials,
Amer. J. Math. 133 (2011), 835–887.

BMRRT06 A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster
combinatorics, Adv. Math. 204 (2006), 572–618.

BMR06 A. B. Buan, R. Marsh and I. Reiten, Denominators of cluster variables, J. Lond. Math. Soc.
(2) 79 (2006), 589–611.

BMR07 A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359
(2007), 323–332.

BMRT07 A. B. Buan, R. Marsh, I. Reiten and G. Todorov, Clusters and seeds in acyclic cluster
algebras, Proc. Amer. Math. Soc. 135 (2007), 3049–3060; with an appendix coauthored in
addition by P. Caldero and B. Keller.

BRT11 A. B. Buan, I. Reiten and H. Thomas, Three kinds of mutation, J. Algebra 339 (2011),
97–113.

CK06 P. Caldero and B. Keller, From triangulated categories to cluster algebras II, Ann. Sci Éc.
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