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Abstract

A subgroup A of a group G is said to be hereditarily G-permutable with a subgroup B of G, if ABx = BxA
for some element x ∈ 〈A, B〉. A subgroup A of a group G is said to be hereditarily G-permutable in G if
A is hereditarily G-permutable with every subgroup of G. In this paper, we investigate the structure of a
finite group G with all its Schmidt subgroups hereditarily G-permutable.
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1. Introduction

All groups considered in the paper are finite.
Recall that a group G is said to be a minimal nonnilpotent group or Schmidt group

if G is not nilpotent and every proper subgroup of G is nilpotent. It is clear that every
nonnilpotent group contains Schmidt subgroups, and their embedding has a strong
structural impact (see, for example, [2, 3, 10]).

However, the following extensions of permutability turn out to be important in the
structural study of groups and were introduced by Guo et al. in [6].

DEFINITION 1.1. Let A and B be subgroups of a group G.

(1) A is said to be G-permutable with B if there exists some g ∈ G such that
ABg = BgA.

(2) A is said to be hereditarily G-permutable with B (or G-h-permutable with B, for
short) if there exists some g ∈ 〈A, B〉 such that ABg = BgA.
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(3) A is said to be G-permutable in G if A is G-permutable with all subgroups of G.
(4) A is said to be hereditarily G-permutable (or G-h-permutable, for short) in G if A

is hereditarily G-permutable with all subgroups of G.

It is clear that permutability implies G-permutability but the converse does not hold
in general as the Sylow 2-subgroups of the symmetric group of degree 3 show.

Our main goal here is to complete the structural study of groups in which every
Schmidt subgroup of a group G is G-h-permutable. This study was started in [2] where
we prove the following important fact.

THEOREM 1.2 [2, Theorem B]. If every Schmidt subgroup of a group G is
G-h-permutable in G, then G is soluble.

Observe that the alternating group of degree 4 is a nonsupersoluble Schmidt group.
Let p1 > p2 > · · · > pr be the primes dividing |G| and let Pi be a Sylow pi-subgroup

of G, for each i = 1, 2, . . . , r. Then we say that G is a Sylow tower group of supersoluble
type if all subgroups P1, P1P2, . . . , P1P2 · · ·Pr−1 are normal in G. The class of all Sylow
tower groups of supersoluble type is denoted by D.

Recall that if F is a nonempty class of groups and π is a set of primes, then Fπ is
the class of all π-groups in F. In particular, if p is a prime, then Np is the class of
all p-groups and Dπ(p−1) is the class of all Sylow tower groups G of supersoluble type
such that every prime dividing |G| also divides p − 1.

If G is a group, then Soc(G) is the product of all minimal normal subgroups of G and
Φ(G) is the Frattini subgroup of G, that is, the intersection of all maximal subgroups
of G.

Our main goal here is to describe completely the groups G with trivial Frattini
subgroup which have their Schmidt subgroups G-h-permutable.

THEOREM 1.3. Let G be a group with Φ(G) = 1. Assume that F = LF(F) is the
saturated formation locally defined by the canonical local definition F such that
F(p) = NpDπ(p−1) for every prime p. If every Schmidt subgroup of G is G-h-permutable
in G, then the following statements hold:

(1) G = [Soc(G)]M is the semidirect product of Soc(G) with an F-group M;
(2) if Φ(M) = 1, then M is supersoluble.

We shall adhere to the notation and terminology of [1, 4].

2. Definitions and preliminary results

Our first lemma collects some basic properties of G-h-permutable subgroups which
are very useful in induction arguments. Its proof is straightforward.

LEMMA 2.1. Let A, B and K be subgroups of G with K normal in G. Then, the following
statements hold.
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(1) If A is G-h-permutable with B, then AK/K is G/K-h-permutable with BK/K
in G/K.

(2) If K ⊆ A, then A/K is G/K-h-permutable with BK/K in G/K if and only if A is
G-h-permutable with B in G.

(3) If A is G-h-permutable in G, then AK/K is G/K-h-permutable in G/K.
(4) If A ⊆ B and A is G-h-permutable in G, then A is B-h-permutable in B.

The following result describes the structure of Schmidt groups.

LEMMA 2.2 [5, 8]. Let S be a Schmidt group. Then S satisfies the following properties:

(1) the order of S is divisible by exactly two prime numbers p and q;
(2) S is a semidirect product S = [P]〈a〉, where P is a normal Sylow p-subgroup of

S and 〈a〉 is a nonnormal Sylow q-subgroup of S and 〈aq〉 ∈ Z(S);
(3) P is the nilpotent residual of S, that is, the smallest normal subgroup of S with

nilpotent quotient;
(4) P/Φ(P) is a noncentral chief factor of S and Φ(P) = P′ ⊆ Z(S);
(5) Φ(S) = Z(S) = P′ × 〈aq〉;
(6) Φ(P) is the centraliser CP(a) of a in P;
(7) if Z(S) = 1, then |S| = pmq, where m is the order of p modulo q.

In what follows, Sch(G) denotes the set of all Schmidt subgroups of a group G.
Following [3], a Schmidt group with a normal Sylow p-subgroup will be called an
S〈p,q〉-group.

The proof of Theorem 1.3 follows after a series of lemmas. They give us an
interesting picture of the groups with supersoluble Schmidt subgroups.

LEMMA 2.3. Let F = {H | Sch(H) ⊆ U}, where U is the class of all supersoluble
groups. Then, F satisfies the following properties:

(1) if G ∈ F, then G is a Sylow tower group of supersoluble type; in particular, G is
a soluble group;

(2) F is a subgroup-closed saturated Fitting formation;
(3) U ⊆ F;
(4) F = LF(F), where F is the canonical local definition such that F(p) = NpDπ(p−1)

for every prime p.

PROOF. Statements (1), (2) and (3) follow from [7, Lemma 4 and Theorem 2].
LetH = LF(F) be a local formation defined by the formation function F with F(p) =

NpDπ(p−1) for every prime p. Assume that F � H. Let G be a group in F \ H of minimal
order. Since F is a saturated formation, it follows that G is a primitive soluble group.
Let N = Soc(G) be the unique minimal normal subgroup of G. Then G/N ∈ H. Since
G is a Sylow tower group of supersoluble type and CG(N) = N, we see that N is a
Sylow p-subgroup of G, where p is the largest prime dividing |G|.

Let q ∈ π(G) with q � p and let Q be a Sylow q-subgroup of G. Since N = CG(N),
it follows that PQ is not nilpotent. Hence, G has an S〈p,q〉-subgroup S, which is
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supersoluble p-closed because G ∈ F. Then, by statements (4) and (5) of Lemma 2.2,
|S/Z(S)| = pq and therefore, by statement (7) of Lemma 2.2, q divides p − 1. Since G
is a Sylow tower group of supersoluble type, it follows that

G/N = G/CG(N) ∈ Dπ(p−1),

and thus G ∈ H, which is a contradiction. Hence, F ⊆ H.
Assume that F � H, and let G be a group in H \ F of minimal order. Since H is

a saturated formation and F(p) is a formation of soluble groups for all primes p,
it follows that G is a primitive soluble group. Let N be a unique minimal normal
subgroup of G. The choice of G yields G ∈ H and G/N ∈ F. Since G is soluble, N is a
p-group for some prime p, and from G ∈ H, it follows that

G/N = G/CG(N) ∈ NpDπ(p−1).

We conclude that G/N ∈ Dπ(p−1) because Op(G/N) = 1 by [4, Lemma A.13.6].
Let S be an S〈r,q〉-subgroup of G. If r � p, then S is contained in some Hall

p′-subgroup H of G. Since H � G/N ∈ F, we see that S ∈ U. If r = p, then
from G/N ∈ Dπ(p−1), it follows that q divides p − 1. Thus, by Lemma 2.2, S ∈ U.
Consequently, every Schmidt subgroup of G is supersoluble, which is a contradiction.
Hence, F = H. �

The following examples show that groups in Lemma 2.3 may not be supersoluble.

EXAMPLE 2.4. Let

Q = 〈a, b | a4 = b4 = 1, a2 = b2, b−1ab = a−1〉

be the quaternion group of order 8. Then G has a faithful and irreducible module A over
the field of 5 elements of dimension 2. Let G = [A]Q be the corresponding semidirect
product. Then G is not supersoluble and C = [A]〈a〉 and D = [A]〈b〉 are supersoluble
and normal subgroups of G = CD. By Lemma 2.3, G ∈ F = {H | Sch(H) ⊆ U}.

EXAMPLE 2.5. Assume that M is a nonabelian group of order 21. Then M has a faithful
and irreducible module N over GF(43), the field of 43 elements (see, for example, [4,
Corollary B.11.8]). Consider the semidirect product G = [N]M. It is obvious that G is
not supersoluble. By Lemma 2.3, G ∈ F = {H | Sch(H) ⊆ U}.

The following result is of interest although it is not needed for the proof of
Theorem 1.3.

PROPOSITION 2.6. Let F = {H | Sch(H) ⊆ U}. Then, for every n ∈ N, there exists a
group G ∈ F of nilpotent length n.

PROOF. Let n ≥ 2 and let p1, p2, . . . , pn be primes such that p1 < p2 < · · · < pn and
pi divides pj − 1 for all i < j, where i = 1, 2, . . . , n − 1, j = 2, . . . , n. By Dirichlet’s
theorem, there exists an infinite set of primes of the form

p1 p2 · · · pn0 + 1,

https://doi.org/10.1017/S0004972723000771 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000771


526 A. Ballester-Bolinches et al. [5]

where n0 ∈ N. Assume that pn+1 is one of them. It is obvious that pi divides pn+1 − 1
for any i = 1, 2, . . . , n.

Assume that G1 is a cyclic group of order p1. Assume that i ≥ 2 and Gi−1 is in F and
of nilpotent length i − 1. By [4, Corollary B.11.8], Gi−1 has a faithful and irreducible
module Vpi over the field of pi elements. Let Gi = [Vpi ]Gi−1 be the corresponding
semidirect product. Then F(Gi) = Vpi and hence the nilpotent length of Gi is equal
to i. Furthermore, by Lemma 2.3, Gi ∈ F. In particular, Gn is an F-group of nilpotent
length n. �

The following subgroup embedding property was introduced by Vasil’ev, Vasil’eva
and Tyutyanov in [9].

DEFINITION 2.7. A subgroup H of a group G is said to be P-subnormal in G if there
exists a chain of subgroups

H = H0 ⊆ H1 ⊆ · · · ⊆ Hn−1 ⊆ Hn = G

such that for every i = 1, 2, . . . , n, either |Hi : Hi−1| ∈ P or Hi−1 is normal in Hi.

Note that P-subnormality coincides with K-U-subnormality (see [1, Ch. 6]) in the
soluble universe.

LEMMA 2.8. Let A be a G-h-permutable subgroup of a soluble group G. Then, A is
P-subnormal in G. In particular, the supersoluble residual AU of A is subnormal in G.

PROOF. Let G be a group of smallest order for which the lemma is not true, and let
L be a minimal normal subgroup of G. Since G is soluble, |L| = pn for some prime
p ∈ π(G) and n ≥ 1. Suppose that G = AL. Then A is a maximal subgroup of G and
A ∩ L = 1. Let L1 be a subgroup of prime order of L. Then, ALx

1 = Lx
1A for some x ∈ G.

Consequently, ALx
1 is a subgroup of G. Since A is maximal in G and A � ALx

1, we see
that ALx

1 = G. Because

|G : A| = |ALx
1|/|A| = |L

x
1|/|A ∩ Lx

1| = |L
x
1|,

we conclude that |G : A| = p and then A is P-subnormal in G, which is a contradiction.
Hence, G � AL. Since |AL| < |G|, by Lemma 2.1, it follows that A is P-subnormal
in AL. By Lemma 2.1, AL/L is (G/L)-h-permutable in G/L, and from |G/L| < |G|,
it follows that AL/L is P-subnormal in G/L. In particular, AL is P-subnormal in
G by [1, Lemma 6.1.6]. However, then A is a P-subnormal subgroup of G by
[1, Lemma 6.1.7], which is a contradiction. Consequently, A is P-subnormal in G.
Applying [1, Lemma 6.1.9], we conclude that AU is subnormal in G. �

EXAMPLE 2.9. Let G be a group isomorphic to the alternating group of degree 6.
Since G does not have maximal subgroups of prime index, the identity subgroup 1 of
G is G-h-permutable but not P-subnormal in G. Thus, the solubility of the group G in
Lemma 2.8 is essential.

LEMMA 2.10. Let G ∈ F = {H | Sch(H) ⊆ U}. If Φ(G) = 1 and every Schmidt sub-
group of G is G-h-permutable in G, then G is supersoluble.

https://doi.org/10.1017/S0004972723000771 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000771


[6] Hereditarily G-permutable Schmidt subgroups 527

PROOF. We argue by induction on |G|. Let N be a minimal normal subgroup of G.
Since G is soluble by Lemma 2.3, it follows that N is p-elementary abelian for some
prime p. Since Φ(G) = 1, it follows that G = NM for some maximal subgroup M of G
and N ∩M = 1.

Suppose that NMp′ is p-nilpotent. Then NMp′ ⊆ CG(N). Then G/CG(N) is a
p-group. Since Op(G/CG(N)) = 1 by [4, Lemma A.13.6], we have N ⊆ Z(G). Then
G = N ×M. Now, M belongs to F and Φ(M) ⊆ Φ(G) = 1 by [4, Theorem A.9.2]. By
induction, M is supersoluble. Hence, G is supersoluble.

Assume that NMp′ is not p-nilpotent. Consequently, NMp′ contains a minimal
non-p-nilpotent group X. By [1, Corollary 6.4.5], X is an S〈p,q〉-subgroup X = [P]Q
and P ⊆ N. We can assume without loss of generality that Q ⊆ Mp′ . Since the
subgroup [P]Q is G-h-permutable, we may assume that ([P]Q)M = PM is a subgroup
of G. Consequently, P = N and NQ is an S〈p,q〉-subgroup G. By hypothesis, NQ is
supersoluble. Hence, in view of Lemma 2.2, |N/Φ(N)| = p by Lemma 2.2. Since
Φ(N) = 1, it follows that |N | = p.

Consequently, we may assume that every minimal normal subgroup of G is cyclic.
Then, by [4, Theorem A.10.6], F(G) is a direct product of normal subgroups of G of
prime order and so G/CG(F(G)) is abelian. Since CG(F(G)) ⊆ F(G) by [4, Theorem
A.10.6], it follows that G/ F(G) is abelian. In particular, G is supersoluble. �

3. Proof of Theorem 1.3

Since G is soluble and Φ(G) = 1, we conclude that F(G) = Soc(G) and G =
[Soc(G)]M for some subgroup M of G, that is, Soc(G) ∩M = 1 by [4, Theorem
A.10.6].

Let S be a Schmidt subgroup of M. Suppose that S is an S〈p,q〉-subgroup. Then, by
hypothesis, S is G-h-permutable in G. Consequently, by Lemma 2.8, S is P-subnormal
in G and SU is subnormal in G. In view of Lemma 2.2, we see that either SU � 1 is a
p-subgroup of S or SU = 1. Assume that SU � 1. Then,

SU ⊆ F(G) ∩M = 1,

which is a contradiction. Therefore, every Schmidt subgroup of M is supersoluble.
By Lemma 2.3, it follows that M ∈ F = LF(F), where F is the formation function

given by F(r) = NrDπ(r−1) for any prime r.
By Lemma 2.10, M is supersoluble provided that Φ(M) = 1.
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