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1. Introduction

In general, given a variety A of algebras, it is of independent interest to determine the
group of automorphisms of End(A), where A is a free algebra in A and End(A) is the
monoid of endomorphisms of A. Many years ago, Schreier [22] and Mal’cev [15] solved
this problem for unstructured sets (that is, algebras without operations) and Glusǩın [11]
solved it for vector spaces. In recent years, this kind of question has gained in importance
and attracted wider attention for its links to universal algebraic geometry. (For a detailed
explanation of these links, a list of references and related problems, see the excellent paper
by Mashevitzky et al . [17].) Given the large number of published papers, preprints,
lectures and, especially, open problems that have recently appeared on this subject—
prompted by the links to universal algebraic geometry—we can anticipate that, for years
to come, many new papers will be written describing the group of automorphisms of
End(A) for various varieties A.

Along this line of research, our aim is to describe the automorphisms of End(A) for any
free object A of any variety V of bands (idempotent semigroups). Analogous problems
dealing with varieties of semigroups were solved by Mashevitzky and Schein [16] for the
variety of all monoids and by Formanek [8] for the variety of all groups. However, we
solve the problem not only for the variety of all bands but also for all subvarieties of this
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variety. In fact, with the very particular exceptions of sets and vector spaces, there is no
other variety of algebras for which this problem has been solved for all free objects of all
subvarieties.

Varieties of bands and their free objects have been studied by numerous authors.
The lattice of all varieties of bands was described by Birjukov [4], Fennemore [6,7] and
Gerhard [9] (see Figure 1 on p. 15). A simplified system of identities for band varieties
(one identity for each variety if one excludes x2 = x) and a solution of the world problem
in relatively free bands were given by Gerhard and Petrich [10].

For a non-empty set X and a variety V of bands, denote by BV(X) the relatively
free band in V on X and by End(BV(X)) the monoid of endomorphisms of BV(X). To
determine the group Aut(End(BV(X))), we use Theorem 2.1, which states that, for every
band B, the automorphisms of End(B) are induced by permutations on B. This theorem
and other preliminary material is presented in § 2. In § 3, we introduce the concept of a
d-invariant relatively free band and determine Aut(End(BV(X))) for every band variety V
that includes the variety SL of semilattices. This group is either S(X) × C2 or S(X),
depending on whether or not BV(X) is d-invariant. Section 4 deals with the varieties of
rectangular bands. It turns out that the variety V of all rectangular bands is exceptional
in the sense that Aut(End(BV(X))) is not encountered in any other band variety. In § 5,
we determine which relatively free bands are d-invariant and which are not. This gives us
corollaries that determine Aut(End(BV(X))) given any band variety V and any set X.
Finally, § 6 provides a number of open problems.

2. Preliminaries

Let S be a semigroup. Any bijection φ : S → S such that (ab)φ = (aφ)(bφ) for all a, b ∈ S

is called an automorphism of S. (We write mappings on the right, that is, aφ rather than
φ(a).) The group of automorphisms of S will be denoted by Aut(S). A subset C of S is
called characteristic in S if Cφ = C for every φ ∈ Aut(S), where Cφ = {aφ : a ∈ C}.

Let X be an arbitrary non-empty set. The full transformation semigroup T (X) con-
sists of all mappings from X to X (full transformations of X) with composition as the
semigroup operation. The semigroup T (X) has the symmetric group S(X) of all permu-
tations of X as its group of units. Let S be a subsemigroup of T (X). An automorphism
φ of S is called inner if there exists a g ∈ S(X) such that aφ = g−1ag for every a ∈ S.
(In such a case, we write φ = φg

S .) The set Inn(S) of all inner automorphisms of S is a
subgroup of Aut(S). We denote by GS the normalizer of S in S(X), that is, GS denotes
the subgroup of the symmetric group S(X) consisting of all permutations g of X such
that g−1Sg = S. Note that every element g ∈ GS induces an inner automorphism φg

S

of S.
A band is a semigroup in which every element is an idempotent. Let B be a band.

Define a ternary relation ρ on B by

ρ = {(x, y, z) : z = xy}.

Since x = xx for every x ∈ B, the relation ρ is reflexive. It is clear that, for every mapping
a : B → B, a is an endomorphism of B ((xy)a = (xa)(ya) for all x, y ∈ B) if and only if
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a preserves ρ ((x, y, z) ∈ ρ =⇒ (xa, ya, za) ∈ ρ for all x, y, z ∈ B). Thus, End(B), the
semigroup of endomorphisms of B, consists of all transformations of B that preserve the
reflexive relation ρ. It is well known (see [24, Theorem 1] or [3, Lemma 2.1]) that if S is
a semigroup of transformations of X that preserve a given reflexive relation on X, then
Aut(S) ∼= GS (where ‘∼=’ means ‘is isomorphic to’). Hence, we have the following result.

Theorem 2.1. Let B be any band. Then

Aut(End(B)) ∼= GEnd(B).

We now introduce some standard material about band varieties in order to clearly
establish notation and definitions. A variety of semigroups is a class of semigroups closed
under subsemigroups, homomorphic images and direct products. Let A be a countably
infinite set. Denote by A+ the free semigroup on A. Let u, v ∈ A+. We say that a
semigroup S satisfies the identity u = v if uα̂ = vα̂ for every α : A → S, where α̂ is
the unique extension of α to a homomorphism from A+ to S. Let R be a binary relation
on A+. We denote by [R] the class of all semigroups S such that S satisfies the identity
u = v for every (u, v) ∈ R. If R is finite, say R = {(u1, v1), . . . , (un, vn)}, we write
[u1 = v1, . . . , un = vn] for [R]. Now, for every binary relation R on A+, the class [R] is
a variety of semigroups. Conversely, for every variety V of semigroups, there is a binary
relation R on A+ such that V = [R] (see [13, p. 111]). For example, [xy = yx] is the
variety of commutative semigroups.

Let V be a non-trivial (containing a semigroup with at least two elements) variety of
semigroups, and let X be a non-empty set. We say that a semigroup F ∈ V is a V-free
semigroup on X (or a relatively free semigroup in V on X) if it satisfies the following
properties:

(1) X generates F ;

(2) for every S ∈ V and every mapping φ : X → S, there is an extension of φ to a
homomorphism φ̄ : F → S.

Since X generates F , an extension φ̄ is necessarily unique. For the variety T of trivial
semigroups, we define a T -free semigroup on X to be any trivial semigroup. A V-free
semigroup on X is isomorphic to X+/ρV , where ρV is the congruence on X+ defined by

(u, v) ∈ ρV ⇐⇒ for every S ∈ V and every α : X → S, uα̂ = vα̂ (2.1)

(see [13, p. 110]). If V is a non-trivial variety, then X is embedded in X+/ρV via the
injection x → xρV (where x ∈ X and xρV is the congruence class of x modulo ρV) [19,
Lemma I.8.5]. Note that, for all varieties V1 and V2 of semigroups,

V1 ⊆ V2 ⇐⇒ ρV2 ⊆ ρV1 . (2.2)

A variety of bands is a variety of semigroups in which every semigroup is a band. The
band varieties form a lattice (under inclusion), with B = [x2 = x] as the greatest elements
and T = [x = y] as the least element (see Figure 1).
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For a variety V of bands and a non-empty set X, we denote by BV(X) the V-free
semigroup on X. We will refer to BV(X) as the V-free band on X, and assume that
BV(X) = X+/ρV , where ρV is the congruence on X+ defined by (2.1). That is,

BV(X) = {wρV : w ∈ X+}.

We will represent the congruence classes modulo ρV (the elements of BV(X)) by their
representatives, that is, we will write w ∈ BV(X) instead of wρV ∈ BV(X). Moreover, for
u, v ∈ X+, we shall write u = v both when uρV = vρV (that is, when u and v are equal
as elements of BV(X)) and when u and v are equal as words in X+. It should always be
clear from the context which equality is meant.

Let V be a non-trivial variety of bands. Since the mapping x → xρV from X to BV(X)
is injective, we have the following:

for all x, y ∈ X, x = y in BV(X) ⇐⇒ x = y in X+. (2.3)

Our objective is to determine the group of automorphisms of End(BV(X)), where V is
an arbitrary variety of bands and X is an arbitrary non-empty set. Almost all varieties
of bands contain the variety of semilattices (see Figure 1). We begin our study with these
varieties.

3. Band varieties V with SL ⊆ V

A semilattice is a commutative band. The class SL of semilattices is a variety. Throughout
this section, we assume that X is a non-empty set and that V is a variety of bands such
that SL ⊆ V.

Our objective is to prove that Aut(End(BV(X))) is isomorphic to either S(X) or
S(X) × C2, where C2 is the group with two elements. In view of Theorem 2.1, it suffices
to prove the statement for GEnd(B), where B = BV(X). Recall that GEnd(B) is the group
of permutations g ∈ S(B) such that g−1 End(B)g = End(B).

For w ∈ X+, the content C(w) of w is defined as the set of all elements of X (letters)
that occur in w. For example, if w = abacabc, then C(w) = {a, b, c}. For the SL-free
band BSL(X), we have the following [13, Proposition 4.6.5]:

for all u, v ∈ X+, u = v in BSL(X) ⇐⇒ C(u) = C(v). (3.1)

Since SL ⊆ V, it follows from (2.2) and (3.1) that

for all u, v ∈ X+, u = v in BV(X) =⇒ C(u) = C(v). (3.2)

Let x ∈ X. It follows from (3.2) that xρV = {xk : k � 1}, which we shall always represent
by x.

Let B = BV(X). We say that a subset J of B is independent if, for all u, v ∈ J ,
u �= v (in BV(X)) =⇒ C(u) ∩ C(v) = ∅. (Note that this definition makes sense because
of (3.2).) If J ⊆ B is not independent, we say that it is dependent.

Lemma 3.1. Let B = BV(X) and g ∈ GEnd(B). Then Xg = X.

https://doi.org/10.1017/S0013091505000672 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000672


Automorphisms of endomorphism monoids of relatively free bands 5

Proof. Suppose X is finite with, say, n elements. Since g is a bijection, |Xg| = n.
Observe that if J ⊆ B is dependent and a ∈ End(B) restricted to J is one-to-one, then
Ja is dependent. (Indeed, if u, v ∈ J with u �= v and x ∈ C(u) ∩ C(v), then ua, va ∈ Ja

with ua �= va and C(xa) ⊆ C(ua) ∩ C(va).)
Define a ∈ End(B) by xa = xg−1 for every x ∈ X. (Such an a exists and is unique

since B is the V-free band on X.) For every x ∈ X,

(xg)(g−1ag) = xag = xg−1g = x.

Thus, (Xg)(g−1ag) = X. It follows that g−1ag restricted to Xg is one-to-one (since
|Xg| = |X| = n). Hence, by the observation above, Xg must be independent (since
g−1ag is an endomorphism and X is independent). It follows that Xg = X (since X is
the only subset of B that is independent and has n elements).

Suppose X is infinite. Let x ∈ X. We claim that xg ∈ X. Let u = xg and suppose, by
way of contradiction, that u /∈ X. Then u = pu′ for some p ∈ X and u′ ∈ B.

Let v = xg−1 and w = pg−1. Then w �= x (since w = x would imply u = xg = wg =
(pg−1)g = p ∈ X, but we have that u /∈ X). Since X is infinite, there exists z ∈ X such
that z /∈ C(v). Define a ∈ End(B) by xa = v and ya = z for every y ∈ X − {x}. Then

u(g−1ag) = x(ag) = vg = x.

Hence, since g−1ag ∈ End(B), we have

x = u(g−1ag) = p(g−1ag)u′(g−1ag).

Then C(p(g−1ag)u′(g−1ag)) = C(x) = {x}, and so p(g−1ag) = u′(g−1ag) = x. Thus,
x = p(g−1ag) = (pg−1)ag = (wa)g, and so wa = v (since x = vg and g is one-to-
one). Since w �= x, there exists y ∈ C(w) such that y �= x. But then z = ya, and so
{z} = C(ya) ⊆ C(wa) = C(v), which is a contradiction (since z /∈ C(v)).

The claim has been proved, that is, Xg ⊆ X. By the foregoing argument applied to
g−1, we also have Xg−1 ⊆ X. The result follows. �

For a function f : A → B and A1 ⊆ A, we denote by f | A1 the restriction of f to A1.

Lemma 3.2. Let B = BV(X) and let g ∈ GEnd(B) be such that g | X = idX . Then
for every w ∈ B, C(wg) = C(w).

Proof. Let w ∈ B. We first show that C(wg) ⊆ C(w). Let w = x1 · · ·xk and wg =
y1 · · · yn, where xi, yj ∈ X. Define a ∈ End(B) by xa = x for every x ∈ C(w), and
za = x1 for every z ∈ X − C(w). Note that C(ua) ⊆ C(w) for every u ∈ B. Now,

(x1 · · ·xk)(gg−1ag) = (x1 · · ·xk)ag = ((x1a) . . . (xka))g = (x1 · · ·xk)g = wg.
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On the other hand,

(x1 · · ·xk)(gg−1ag) = (y1 · · · yn)(g−1ag)

= y1(g−1ag) · · · yn(g−1ag) (since g−1ag ∈ End(B))

= (y1ag) . . . (ynag) (since g | X is the identity)

= (y1a) . . . (yna) (since each yja ∈ X and g | X is the identity)

= (y1 · · · yn)a.

Thus, wg = (y1 · · · yn)a, and so C(wg) = C((y1 · · · yn)a) ⊆ C(w).
By the foregoing argument applied to g−1 and wg, we have C(w) = C((wg)g−1) ⊆

C(wg). Hence, C(wg) = C(w). �

Let S be a semigroup. A bijection φ : S → S is called an anti-automorphism of S if
(ab)φ = (bφ)(aφ) for all a, b ∈ S.

For a word w ∈ X+, the dual w̄ of w is the word obtained from w by reversing the
order of the letters. For example, if w = cabacba, then w̄ = abcabac. Note that, for all
u, v ∈ X+,

¯̄u = u and uv = v̄ū. (3.3)

Let B = BV(X). We say that B is d-invariant if for all u, v ∈ X+,

u = v in B =⇒ ū = v̄ in B.

Let B = BV(X) be d-invariant. The mapping d : B → B defined by wd = w̄ will be
called the duality mapping on B. Since B is d-invariant, we have, for all u, v ∈ B, that

u = v ⇐⇒ ū = v̄ ⇐⇒ ud = vd.

Thus, d is a well-defined bijection on B, that is d ∈ S(B). It follows from the definition
of d and (3.3) that d has the following properties:

(1) d | X = idX , that is, xd = x for every x ∈ X;

(2) d is an anti-automorphism of B, that is, d is a bijection and (uv)d = (vd)(ud) for
all u, v ∈ B;

(3) d = d−1, that is, w(dd) = w for every w ∈ B.

Note that if B = BV(X) and d : B → B given by wd = w̄ is well defined, then B is
d-invariant.

We prove that if B = BV(X) and g ∈ GEnd(B), then g is an automorphism of B or an
anti-automorphism of B (Lemmas 3.3–3.7).

Lemma 3.3. Let B = BV(X) be d-invariant and let d be the duality mapping on B.
Then d ∈ GEnd(B).
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Proof. Since d−1 = d, it suffices to show that d End(B)d ⊆ End(B). Let a ∈ End(B)
and u, v ∈ B. Then

(uv)(dad) = (vdud)(ad) = (v(da)u(da))d = u(dad)v(dad).

Thus, dad ∈ End(B), and the result follows. �

In fact, using a similar argument, one can prove a more general statement: if
B = BV(X) and g is an anti-automorphism of B, then g ∈ GEnd(B).

Lemma 3.4. Let B = BV(X), let g ∈ GEnd(B) be such that g | X = idX , and let
x, y ∈ X with x �= y. Then,

(1) if (xy)g = xy, then g is the identity mapping on B,

(2) if (xy)g = yx, then g is the duality mapping on B.

Proof. Let u and v be arbitrary elements of B. Let a ∈ End(B) be such that xa = u

and ya = v. Then

(xy)(gg−1ag) = (xy)(ag) = (xaya)g = (uv)g.

To prove (1), suppose (xy)g = xy. Then, since g−1ag ∈ End(B) and g | X = idX , we
have

(xy)(gg−1ag) = (xy)(g−1ag) = x(g−1ag)y(g−1ag) = x(ag)y(ag) = (ug)(vg).

Thus, (uv)g = (ug)(vg), and so g is an automorphism of B. But the only automorphism
of B that fixes every element of X is idB . Hence, g = idB .

To prove (2), suppose that (xy)g = yx. Then, since g−1ag ∈ End(B) and g | X = idX ,
we have

(xy)(gg−1ag) = (yx)(g−1ag) = y(g−1ag)x(g−1ag) = y(ag)x(ag) = (vg)(ug).

Thus, (uv)g = (vg)(ug), and so g is an anti-automorphism of B. But the only anti-
automorphism of B that fixes every element of X is d, the duality mapping on B. Hence,
g = d. �

Lemma 3.5. Let B = BV(X), let g ∈ GEnd(B) be such that g | X = idX , and let
x, y ∈ X with x �= y. Then either (xy)g = xy or (xy)g = yx.

Proof. By Lemma 3.2, C((xy)g) = C(xy) = {x, y}. Since B is a band, the only
elements of B with content {x, y} are xy, yx, xyx and yxy.

Suppose (xy)g = xyx. Let a ∈ End(B) be such that xa = xy and ya = x. Then

(xy)(gg−1ag) = (xy)(ag) = (xaya)g = (xyx)g.

On the other hand, since (xy)g = xyx, g−1ag ∈ End(B), and g | X = idX , we have

(xy)(gg−1ag) = (xyx)(g−1ag) = x(g−1ag)y(g−1ag)x(g−1ag) = x(ag)y(ag)x(ag)

= ((xy)g)(xg)((xy)g) = (xyx)x(xyx) = xyx.
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Thus, (xyx)g = xyx = (xy)g, implying that xyx = xy (since g is one-to-one). Hence,
(xy)g = xyx = xy.

Using a similar argument (with a ∈ End(B) such that xa = y and ya = xy), we can
prove that if (xy)g = yxy, then yxy = xy, and so (xy)g = yxy = xy.

Since the only remaining possibilities are (xy)g = xy and (xy)g = yx, the result
follows. �

Lemma 3.6. Let B = BV(X) and let g ∈ GEnd(B) be such that g | X = idX . Then
g = idB or g = d.

Proof. If |X| = 1, say X = {x}, then B = {x}, and so g = idB . If |X| � 2, then the
result follows immediately from Lemmas 3.4 and 3.5. �

Lemma 3.7. Let B = BV(X) and g ∈ GEnd(B). Then we have the following.

(1) If B is d-invariant, then g is an automorphism of B or an anti-automorphism of B.

(2) If B is not d-invariant, then g is an automorphism of B.

(3) If |X| � 2 and g is both an automorphism of B and an anti-automorphism of B,
then V = SL.

Proof. To prove (1) and (2), define θ : GEnd(B) → S(X) by hθ = h | X. By
Lemma 3.1, θ is well defined. Since (h1h2) | X = (h1 | X)(h2 | X) for all h1, h2 ∈ GEnd(B),
we find that θ is a group homomorphism.

Let α = gθ (that is, α = g | X). Consider h ∈ End(B) defined by xh = xα for every x ∈
X. Then h is an automorphism of B. (Indeed, define h′ ∈ End(B) by xh′ = xα−1 for every
x ∈ X. Then x(hh′) = x(h′h) = x for every x ∈ X, which implies that hh′ = h′h = idB .)
Clearly, hθ = α = gθ.

Suppose that B is d-invariant. Then, by Lemma 3.6, Ker(θ) = {idB , d}. Thus, since
hθ = gθ, we have gh−1 ∈ Ker(θ) = {idB , d}, that is, g = idB h or g = dh. In the former
case, g is an automorphism of B; and, in the latter case, it is an anti-automorphism of
B. This proves (1).

Suppose that B is not d-invariant. Then the duality mapping d is not well defined on
B, and so, by Lemma 3.6, Ker(θ) = {idB}. Thus, θ is one-to-one, and so hθ = gθ implies
h = g. Since h is an automorphism of B, (2) follows.

To prove (3), suppose |X| � 2 and g is both an automorphism of B and an anti-
automorphism of B. Let x, y ∈ X. Since g is onto, there exist u, v ∈ B such that x = ug

and y = vg. Since g is both an automorphism and an anti-automorphism, we have

xy = (ug)(vg) = (uv)g = (vg)(ug) = yx.

Thus, since B is the V-free band on X and |X| � 2, it follows that, for every S ∈ V
and for all a, b ∈ S, ab = ba. Hence, every band in V is a semilattice, which implies
V = SL. �
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With the preceding lemmas, we can determine the group of automorphisms of the
semigroup End(BV(X)) for any variety V of bands that contains the variety SL of semi-
lattices. We denote by C2 the cyclic group of order 2, say C2 = {1, t}.

Theorem 3.8. Let X be a set with |X| � 2, let V be a variety of bands such that
SL ⊆ V, and let B = BV(X). Then we have the following.

(1) If V = SL or B is not d-invariant, then Aut(End(B)) is isomorphic to S(X).

(2) If V �= SL and B is d-invariant, then Aut(End(B)) is isomorphic to S(X) × C2.

Proof. Since Aut(End(B)) is isomorphic to GEnd(B) (Theorem 2.1), Aut(End(B)) in
statements (1) and (2) can be replaced with GEnd(B).

To prove (1), suppose that V = SL or V is not d-invariant. Define θ : GEnd(B) → S(X)
by gθ = g | X. By the proof of Lemma 3.7, θ is a well-defined group homomorphism,
Ker(θ) = {idB}, and for every α ∈ S(X) there exists an h ∈ GEnd(B) such that α = hθ.
(If V = SL, then V is d-invariant, and so, according to the proof of Lemma 3.7, Ker(θ) =
{idB , d}. But if V = SL, then d = idB , and so Ker(θ) = {idB}.) Hence, θ is a group
isomorphism, which proves (1).

To prove (2), suppose that V �= SL and V is d-invariant. Define φ : GEnd(B) →
S(X) × C2 by

gφ =

{
(g | X, 1) if g is an automorphism of B,

(g | X, t) if g is an anti-automorphism of B.

Then φ is well defined by Lemmas 3.1 and 3.7. It is routine to verify that φ is a group
homomorphism. For example, suppose that g1, g2 ∈ GEnd(B) are anti-automorphisms of
B. Then g1g2 is an automorphism of B, and so

(g1g2)φ = ((g1g2) | X, 1) = ((g1 | X)(g2 | X), 1) = (g1 | X, t)(g2 | X, t) = (g1φ)(g2φ).

Suppose gφ = (idX , 1). Then g | X = idX and g is an automorphism of B. Thus,
g = idB . Hence, Ker(φ) = {idB}, and so φ is one-to-one.

Let α ∈ S(X). By the proof of Lemma 3.7, there is an automorphism h of B such
that h | X = α and hd | X = α. Hence, hφ = (α, 1) and (hd)φ = (α, t) (since d is an
anti-automorphism of B, and so hd is an anti-automorphism of B), which shows that φ

is onto. Thus, φ is a group isomorphism, which proves (2). �

4. Varieties of rectangular bands

A semigroup S is called a rectangular band if aba = a for all a, b ∈ S. It is called a left
zero semigroup if ab = a for all a, b ∈ S, and it is called a right zero semigroup if ab = b

for all a, b ∈ S. It is clear that the left zero semigroups and right zero semigroups are
rectangular bands.

The classes of all rectangular bands, left zero semigroups and right zero semigroups
are varieties of bands, which we shall denote, respectively, by RB, LZ and RZ. These
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three varieties and the variety T of trivial bands are the only varieties of bands that do
not contain the variety SL of semilattices (see Figure 1).

Every left zero semigroup B is relatively free in LZ on X = B. Since ab = a for all
a, b ∈ B, every transformation of B is an endomorphism, that is, End(B) = T (B). It is
well known [15,22] that Aut(T (B)) ∼= S(B). The same argument applies to right zero
semigroups. It follows that if V = LZ or V = RZ, then Aut(End(BV(X))) is isomorphic
to S(X).

It remains to consider the variety RB of all rectangular bands. Every rectangular band
B is isomorphic to a semigroup L × R, where L = Bz and R = zB (for a fixed z ∈ B),
with multiplication (k1, p1)(k2, p2) = (k1, p2) [13, Theorem 1.1.3]. The monoid End(B)
is isomorphic to T (L) × T (R). The following lemma shows that if B is a V-free band on
X, then B = X × X.

Lemma 4.1. Let V = RB, B = BV(X), and z ∈ B. Then

(1) Bz = Xz and zB = zX,

(2) |Xz| = |zX| = |X|.

Proof. To prove (1), let wz ∈ Bz, where w = x1 · · ·xn ∈ B (n � 1, xi ∈ X).
Since B is a rectangular band, uvp = up for all u, v, p ∈ B [13, Theorem 1.1.3]. Thus,
wz = x1 · · ·xnz = x1z ∈ Xz. Hence, Bz = Xz. By a similar argument, we obtain
zB = zX.

To prove (2), define f : X → Xz by xf = xz. It is clear that f is onto. Let x, y ∈ X

with x �= y. Consider the rectangular band L × R with L = {1, 2} and R = {1}. Since
B is the RB-free band on X, there exists a homomorphism φ : B → L × R such that
xφ = (1, 1) and yφ = (2, 1). We have zφ = (a, 1), where a = 1 or a = 2, and so

(xz)φ = (xφ)(zφ) = (1, 1)(a, 1) = (1, 1) and (yz)φ = (yφ)(zφ) = (2, 1)(a, 1) = (2, 1).

It follows that xz �= yz, and so f is one-to-one. Hence, |Xz| = |X|. By a similar argument,
we obtain |zX| = |X|. �

We first consider B = X × X with |X| = 2, say X = {1, 2}. Here we use the fact
that Aut(End(B)) ∼= GEnd(B). Let a : B → B. We say that a left-splits k0 ∈ X if there
exist p1, p2 ∈ X such that (k0, p1)a = (k1, q1) and (k0, p2)a = (k2, q2) with k1 �= k2. We
have a dual definition of what it means that a right-splits p0 ∈ X. It follows from [13,
Proposition 4.4.2] that a ∈ End(B) if and only if there exist a1, a2 ∈ T (X) such that
a = a1 × a2. (For f : A → B and g : C → D, we denote by f × g the mapping from
A × C to B × D defined by (x, y)(f × g) = (xf, yg).) The existence of such a1 and a2 is
clearly equivalent to a not (left- or right-) splitting any element of X.

Let g ∈ GEnd(B). (We continue to assume that X = {1, 2}.) Suppose that g left-splits 1,
that is,

(1, 1)g = (k, p) and (1, 2)g = (l, q)
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with k �= l. We claim that p = q. Suppose p �= q. Then either

(i) (2, 1)g = (k, q) and (2, 2)g = (l, p) or

(ii) (2, 1)g = (l, p) and (2, 2)g = (k, q).

Suppose that (i) is true. Consider a = a1 × a2 ∈ End(B), where 1a1 = 2a1 = 1, 1a2 = 1,
and 2a2 = 2. Then (k, p)(g−1ag) = (k, p) and (l, p)(g−1ag) = (l, q). Thus, g−1ag right-
splits p, which is a contradiction since g−1ag ∈ End(B). If (ii) is true, we obtain a
contradiction in a similar way. Hence,

(1, 1)g = (k, p), (1, 2)g = (l, p), (2, 1)g = (m, q) and (2, 2)g = (n, q),

where k �= l, m �= n and p �= q. It follows that if g left-splits 1, then it left- and right-
splits 1 and 2, and ({1} × X)g = X × {p}. We can use a similar argument when g

right-splits 1, and when g left- or right-splits 2, obtaining the following lemma.

Lemma 4.2. Let X = {1, 2}, B = X × X, and g ∈ GEnd(B). If g splits any element
of X, then, for every i ∈ X,

({i} × X)g = X × {pi} and (X × {i})g = {ki} × X.

Lemma 4.3. Let X = {1, 2}, B = X × X and g : B → B. Then g ∈ GEnd(B) if and
only if there exist g1, g2 ∈ S(X) such that g = g1 × g2 or g = (g1 × g2)δ, where δ ∈ S(B)
is defined by (k, p)δ = (p, k).

Proof. It is clear that if g = g1 × g2 or g = (g1 × g2)δ, then g ∈ GEnd(B). To prove
the converse, suppose g ∈ GEnd(B). If g does not split any element of X, then g = g1 ×g2

for some g1, g2 ∈ S(X). Suppose that g splits an element of X. Define g1, g2 ∈ S(X) by
ig1 = pi and ig2 = ki, where pi and ki are the elements from Lemma 4.2 (i = 1, 2). It is
routine to check that, for all k, p ∈ X, (k, p)g = (pg2, kg1), that is, g = (g1 × g2)δ. �

We now consider B = X × X with |X| > 2. Here we use the fact that End(B) ∼=
T (X) × T (X). Let S be a characteristic subsemigroup of a semigroup T . Then a lift of
φ ∈ Aut(S) is any ψ ∈ Aut(T ) such that ψ | S = φ.

Lemma 4.4. Let X be a set with |X| > 2, T = T (X), and ψ : T × T → T × T .
Then ψ ∈ Aut(T × T ) if and only if there exist g1, g2 ∈ S(X) such that ψ = φg1

T × φg2
T or

ψ = (φg1
T × φg2

T )λ, where λ : T × T → T × T is defined by (a, b)λ = (b, a).

Proof. Let S = S(X), and let φ : S × S → S × S. It is well known that if |X| > 2,
then φ ∈ Aut(S × S) if and only if there exist φ1, φ2 ∈ Aut(S) such that φ = φ1 × φ2 or
φ = (φ1 × φ2)µ, where µ : S × S → S × S is defined by (g, h)µ = (h, g).

Since S × S is the group of units of T × T , it is characteristic in T × T . Thus, the
automorphisms of T × T are precisely the lifts of the automorphisms of S × S.

We claim that every φ ∈ Aut(S ×S) has at most one lift to T ×T , or equivalently, that
idS×S , the identity of Aut(S × S), has exactly one lift, namely idT×T . Indeed, suppose
τ is a lift of idS×S , that is, τ ∈ Aut(T × T ) and τ | S × S = idS×S . For u, v ∈ T , let
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12 J. Araújo and J. Konieczny

(u, v)τ = (u∗, v∗). For x ∈ X, denote by ax the element of T with range {x}, and by Sx

denote the stabilizer of x in S. Let u ∈ T . Then ug = u for every g ∈ Sx if and only if
u = ax. Let x, y ∈ X. Then, for all g ∈ Sx and h ∈ Sy,

(a∗
x, a∗

y) = (ax, ay)τ = ((ax, ay)(g, h))τ = (ax, ay)τ(g, h)τ = (ax, ay)τ(g, h) = (a∗
xg, a∗

yh).

It follows that, for all x, y ∈ X, (a∗
x, a∗

y) = (ax, ay), that is, (ax, ay)τ = (ax, ay).
Now let x, y ∈ X and u, v ∈ T . It is obvious that (ax, ay)(u, v) = (axu, ayv). Thus,

(axu, ayv) = (axu, ayv)τ = ((ax, ay)(u, v))τ = (ax, ay)τ(u, v)τ

= (ax, ay)((u, v)τ) = (ax, ay)(u∗, v∗) = (axu∗ , ayv∗).

Thus, if (u∗, v∗) = (u, v)τ , then xu∗ = xu and yv∗ = yv for all x, y ∈ X. It follows that
(u, v)τ = (u, v), so τ = idT×T . The claim has been proved.

Now, let ψ ∈ Aut(T × T ). Then ψ is a lift of φ = ψ | S × S ∈ Aut(S × S). Since
|X| > 2, there exist φ1, φ2 ∈ Aut(S) such that φ = φ1 × φ2 or φ = (φ1 × φ2)µ. Suppose
|X| �= 6. Then every automorphism of S = S(X) is inner, so φ1 = φg1

S and φ2 = φg2
S for

some g1, g2 ∈ S(X). Then φ1 × φ2 can be lifted to φg1
T × φg2

T ∈ Aut(T × T ). Clearly, µ

can be lifted to λ. Since a lift of φ is unique, we have ψ = φg1
T × φg2

T or ψ = (φg1
T × φg2

T )λ.
If |X| = 6, then there are outer automorphisms of S(X). However, we will prove that

since φ can be lifted to ψ, φ1 and φ2 must be inner. Suppose φ = φ1 × φ2. We claim that
(T × {1})ψ = T × {1}, where 1 = idX . For x ∈ X, let (ax, 1)ψ = (ux, vx). Let g ∈ S and
x ∈ X. Since (ax, 1) = (g, 1)(ax, 1), we have

(ux, vx) = (g, 1)φ(ax, 1)ψ = (gφ1, 1φ2)(ux, vx) = (gφ1ux, vx).

Since g was arbitrary, it follows that ux = hux for every h ∈ G, which implies that ux

is a constant mapping. Thus, for every x ∈ X, (ax, 1)ψ = (ax1 , vx), where x1 ∈ X. In
a similar way, we prove that, for every y ∈ X, (1, ay)ψ = (wy, ay2), where wy ∈ T and
y2 ∈ X.

It is clear that M = {(ax, ay) : x, y ∈ X} is the minimal ideal of T ×T . Let x′, y′ ∈ X.
Since ψ maps M onto M , there exist x, y ∈ X such that (ax, ay)ψ = (ax′ , ay′). Since
(ax, ay) = (ax, 1)(1, ay), we have

(ax′ , ay′) = (ax, 1)ψ(1, ay)ψ = (ax1 , vx)(wy, ay2) = (ax1wy, vxay2).

Thus, ay′ = vxay2 , which implies y′ = y2. Using (ax, ay) = (1, ay)(ax, 1), we obtain
ay′ = ay2vx = ay′vx. This gives y′vx = y′, and so, since y′ was arbitrary, vx = 1. Let
z ∈ X. Select g ∈ S such that xg = z. Then (az, 1) = (ax, 1)(g, 1), and so

(az1 , vz) = (ax, 1)ψ(g, 1)φ = (ax1 , 1)(gφ1, 1) = (ax1gφ1, 1).

Thus, vz = 1. We proved that, for every x ∈ X, (ax, 1)ψ = (ax1 , 1).
Let a ∈ T and x ∈ X. Let (a, 1)ψ = (ua, va). Since (ax, 1) = (a, 1)(ax, 1), we have

(ax1 , 1) = (a, 1)ψ(ax, 1)ψ = (ua, va)(ax1 , 1) = (ax1 , va).

Thus, va = 1, and so (a, 1)ψ = (ua, 1). The claim has been proved.
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Define ψ1 : T → T by aψ1 = ua. It is clear that ψ1 ∈ Aut(T ) and ψ1 | S = φ1. It is
well known that all automorphisms of T (X) are inner. Thus, ψ1 is inner, and so φ1 is
also inner. In a similar way, we prove that ({1} × T )ψ = {1} × T , which implies that φ2

is inner. A proof that φ1 and φ2 are inner when φ = (φ1 × φ2)µ is similar. (In this case,
we have (T × {1})ψ = {1} × T and ({1} × T )ψ = T × {1}.) Now we complete the proof
as in the case when |X| �= 6. �

Let C2 = {1, t} be the cyclic group of order 2. Consider the semidirect product [S(X)×
S(X)]�C2, where C2 acts on S(X)×S(X) by (g1, g2)1 = (g1, g2) and (g1, g2)t = (g2, g1).
Note that the multiplication in [S(X) × S(X)] � C2 is given by

((g1, g2), 1)((h1, h2), s) = ((g1, g2)(h1, h2)1, 1s) = ((g1h1, g2h2), s),

((g1, g2), t)((h1, h2), s) = ((g1, g2)(h1, h2)t, ts) = ((g1h2, g2h1), ts).

Let M = {1, 2}. We can interpret S(X) × S(X) as S(X)M (the set of functions from
M to S(X)) and C2 as S(M). With this interpretation, the semidirect product [S(X) ×
S(X)] � C2 becomes the wreath product S(X) 
 C2.

Theorem 4.5. Let X be a non-empty set, let V be a variety of rectangular bands and
let B = BV(X). Then we have the following.

(1) If V = LZ or V = RZ, then Aut(End(B)) ∼= S(X).

(2) If V = RB and |X| � 2, then Aut(End(B)) ∼= S(X) 
 C2.

Proof. We established (1) at the beginning of this section. To prove (2), let B be a
free rectangular band. By Lemma 4.1, B = X × X.

Suppose that |X| = 2 and let g ∈ GEnd(B). By Lemma 4.3, g = g1×g2 or g = (g1×g2)δ,
where g1, g2 ∈ S(X) and (k, p)δ = (p, k) (k, p ∈ X). Map GEnd(B) to [S(X)×S(X)]�C2

by
g1 × g2 → ((g1, g2), 1) and (g1 × g2)δ → ((g1, g2), t).

It is routine to check that this mapping is a group isomorphism. Thus, Aut(End(B)) ∼=
GEnd(B)

∼= [S(X) × S(X)] � C2 ∼= S(X) 
 C2.
Suppose that |X| > 2 and let ψ ∈ Aut(T (X) × T (X)) and T = T (X). By Lemma 4.4,

ψ = φg1
T × φg1

T or ψ = (φg1
T × φg1

T )λ, where g1, g2 ∈ S(X) and (a, b)λ = (b, a) (a, b ∈
T (X)). Map Aut(T (X) × T (X)) to [S(X) × S(X)] � C2 by

φg1
T × φg1

T → ((g1, g2), 1) and (φg1
T × φg1

T )λ → ((g1, g2), t).

Again, it is routine to check that this mapping is an isomorphism. Thus,

Aut(End(B)) ∼= Aut(T (X) × T (X)) ∼= [S(X) × S(X)] � C2 ∼= S(X) 
 C2.

�
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5. Relatively free bands that are d-invariant

Let V be a variety of bands with SL ⊆ V and SL �= V. Then, by Theorem 3.8, the
group Aut(End(BV(X))) is isomorphic either to S(X) × C2 (if BV(X) is d-invariant) or
to S(X) (if BV(X) is not d-invariant). Therefore, to have a complete picture, we need to
determine which relatively free bands BV(X) are d-invariant and which are not.

Figure 1 shows the lattice of band varieties. At the bottom we have the sublattice
generated by the atoms SL = [xy = yx], LZ = [xy = x] and RZ = [xy = y] (see [13,
p. 137]). In addition to the atoms, the sublattice contains the varieties T = [x = y] of
trivial bands, RB = [xyx = x] of rectangular bands, LN = [xyz = xzy] of left normal
bands, RN = [xyz = yxz] of right normal bands and N = [xyzx = xzyx] of normal
bands. (Note that we omit the identity x2 = x in the system of identities that define
band varieties.) At the top we have the variety B of all bands. The remaining varieties
are labelled with the identities given in [10]. The words that occur in the identities are
defined inductively as follows:

G2 = x2x1, H2 = x2, I2 = x2x1x2,

Gn = xnḠn−1, Hn = GnxnH̄n−1, In = GnxnĪn−1, (n � 3).

For example, G3 = x3x1x2 and H3 = x3x1x2x3x2. Thus, if V is the variety labelled
G3 = H3 (second from the bottom in column 1), then V = [x3x1x2 = x3x1x2x3x2].

The varieties V in column 3 are self-dual, that is, if V is given by the identity A = B,
then Ā = A and B̄ = B. It easily follows that, for all u, v ∈ BV(X),

u = v in BV(X) ⇐⇒ ū = v̄ in BV(X).

In other words, for every variety V in column 3 and every set X, BV(X) is d-invariant.
The varieties in column 5 are dual to the corresponding (same-level) varieties in col-

umn 1. That is, if a variety V in column 1 is given by the identity A = B, then the
corresponding variety V∗ in column 5 is given by Ā = B̄. Similarly, the varieties in col-
umn 4 are dual to the corresponding varieties in column 2.

Let V = [A = B] be a variety in column 1 (column 2) and V∗ = [Ā = B̄] the dual variety
in column 5 (column 4). Let X be any set with cardinality at least max{|C(A)|, |C(B)|}.
Then Ā �= B̄ in BV(X), since otherwise every semigroup S in V would satisfy the identity
Ā = B̄ and we would have V ⊆ V∗, which is a contradiction. Hence, for every variety
V = [A = B] not in column 3 and every set X with |X| � n, where n is the number of
variables (letters) in the identity A = B, BV(X) is not d-invariant.

The foregoing discussion and Theorems 3.8 and 4.5 give us the following corollaries.

Corollary 5.1. Let X be any set with |X| � 2, let V be any variety of bands in
column 3 of Figure 1 (including B), and let B = BV(X). Then we have the following.

(1) If V = T , then Aut(End(B)) = {1}.

(2) If V = SL, then Aut(End(B)) ∼= S(X).

(3) If V = RB, then Aut(End(B)) ∼= S(X) 
 C2.

(4) If V �= T , V �= SL, and V �= RB, then Aut(End(B)) ∼= S(X) × C2.
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B

Ḡ5G4 = H̄5I4 Ḡ4G5 = Ī4H5

Ḡ4G4 = Ī4H4 Ḡ4G4 = H̄4I4

Ḡ4G3 = H̄4I3 Ḡ3G4 = Ī3H4

Ḡ3G3 = Ī3H3 Ḡ3G3 = H̄3I3

G4 = H4 Ḡ4G4 = Ī4I4 Ḡ4 = H̄4

G3 = I3 Ḡ4G4 = H̄4H4 Ḡ3 = Ī3

G3 = H3 Ḡ3G3 = Ī3I3 Ḡ3 = H̄3

G2 = I2 N Ḡ2 = Ī2
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Figure 1. The lattice of band varieties.

https://doi.org/10.1017/S0013091505000672 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000672
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Corollary 5.2. Let V = [A = B] be any variety of bands in Figure 1 that is not in
column 3. Then, for every set X with |X| � n, where n is the number of variables in
A = B,

Aut(End(BV(X))) ∼= S(X).

It remains to investigate the free bands BV(X) such that V = [A = B] is not in
column 3 and |X| < n, where n is the number of variables in A = B. By duality, it
suffices to consider the varieties in columns 1 and 2.

We will use the operators on X∗ = X+ ∪ {1} introduced in [10], which solve the word
problem in the relatively free bands (see also [20,23]). We say that an operator t : X∗ →
X∗ solves the word problem in the relatively free band BV(X) if for all u, v ∈ X+, u = v

in BV(X) if and only if t(u) = t(v) in X∗. (Note that we write the operators on X∗ on
the left, that is, t(w) rather than wt.) Any such operator t is called an invariant for the
variety V. (We assume, of course, that the definition of t makes sense for every non-empty
set X.)

Following [10], we define operators h2, i2, σ, s, ε and e on X∗ by h2(1) = i2(1) =
σ(1) = s(1) = ε(1) = e(1) = 1 and, for any w ∈ X+,

h2(w) = the first letter occurring in w,

i2(w) = the word obtained from w by retaining only the first occurrence of each letter,

σ(w) = the letter in w that is last to make its first appearance,

s(w) = the subword of w that precedes the first appearance of σ(w),

ε(w) = the letter in w that is first to make its last appearance,

e(w) = the subword of w that follows the last appearance of ε(w).

For example, h2(xzxyz) = x, i2(xzxyz) = xzy, σ(xzxyz) = y, s(xzxyz) = xzx,
ε(xzxyz) = x and e(xzxyx) = yz.

For an operator t : X∗ → X∗, define the dual operator t̄ by t̄(w) = t(w̄). For n � 3,
define inductively operators hn and in on X∗ by

hn(w) = hn(s(w))σ(w)h̄n−1(w),

in(w) = in(s(w))σ(w)̄in−1(w).

The operators hn (n � 3) and in (n � 2) are invariants for the varieties [Gn = Hn] and
[Gn = In], respectively [10]. The duals h̄n and īn are invariants for the corresponding
dual varieties. The operators h2 and h̄2 are invariants for LZ and RZ, respectively.
Recall that, for the variety SL of semilattices, we have u = v in BSL(X) if and only
if C(u) = C(v). If t1 and t2 are invariants for varieties V1 and V2, respectively, then
the conjunction of t1 and t2 is an invariant for the join V1 ∨ V2. For example, since
V = [Ḡ4G3 = H̄4I3] is the join of [G3 = H3] and [Ḡ2 = Ī2] (see Figure 1), then, for all
u, v ∈ X+, u = v in BV(X) if and only if h3(u) = h3(v) and ī2(u) = ī2(v) in X+.

The above paragraph gives us invariants for all band varieties except the variety B of
all bands. An invariant b : X∗ → X∗ for B is given in [10]. We define b(w) inductively
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on the number of letters in a word w as follows:

b(1) = 1 and b(w) = b(s(w))σ(w)ε(w)b(e(w)), w ∈ X+.

5.1. Column 1

We show that, for all varieties V = [A = B] in column 1, if |X| < n, where n is the
number of variables in A = B, then BV(X) is d-invariant. The result will follow from the
following lemma.

Lemma 5.3. Let X be a non-empty set and n � 3. For all words u, v ∈ X+, if u = v

has less than n variables and hn(u) = hn(v), then b(u) = b(v).

Proof. We proceed by induction on n. Let n = 3. By [23, Proposition 3.7], h3(u) =
h3(v) implies h3(s(u)) = h3(s(v)), σ(u) = σ(v), and h̄2(u) = h̄2(v). Since n = 3, u = v

has one or two variables. If u = v has one variable, the result is trivial since b(u) = b(v) for
all words u and v in a single variable x. Suppose u = v has two variables, say x and y. Then
s(u) = s(v) has one variable, and b(s(u)) = b(s(v)) as above. We have h̄2(u) = h̄2(v),
that is, u and v have the same last variable, say y. It follows that ε(u) = ε(v) = x. Thus,
e(u) = e(v) has a single variable, y, and so b(e(u)) = b(e(v)). Hence, b(u) = b(v).

Let n � 4. By [23, Proposition 3.4], for every word w,

hn(w) = hn(s(w))σ(w)h̄n−1(w) = hn(s(w))σ(w)hn−2(w)ε(w)h̄n−1(e(w)).

Again by [23, Proposition 3.7], hn(u) = hn(v) implies that hn(s(u)) = hn(s(v)), σ(u) =
σ(v), ε(u) = ε(v) and h̄n−1(e(u)) = h̄n−1(e(v)). Furthermore, h̄n−1(e(u)) = h̄n−1(e(v))
implies that hn−1(e(u)) = hn−1(e(v)). Thus, since e(u) = e(v) has at most n−2 variables,
b(e(u)) = b(e(v)) by induction. Thus, b(e(u)) = b(e(v)) since the variety B of all bands
is self-dual.

To complete the proof that b(u) = b(v), we use the induction on the number of variables
in u = v. If u = v has one variable, the result is trivial. Suppose u = v has at least two
variables. Then hn(s(u)) = hn(s(v)) implies that b(s(u)) = b(s(v)), since s(u) = s(v)
has one less variable than u = v. We already established σ(u) = σ(v), ε(u) = ε(v) and
b(e(u)) = b(e(v)). It follows that b(u) = b(v). �

Proposition 5.4. Let V = [A = B] be any variety of bands in column 1 or column 5
of Figure 1. Then, for every set X with |X| < n, where n is the number of variables in
A = B, BV(X) is d-invariant.

Proof. By duality, we may assume that V is in column 1. Suppose that V = [Gn =
Hn], n � 3. Let u, v ∈ X+ be such that u = v in BV(X), that is, hn(u) = hn(v). Since
|X| < n, Lemma 5.3 gives b(u) = b(v), that is, u = v in BB(X), where B is the variety
of all bands. Since BB(X) is d-invariant, ū = v̄ in BB(X), and so ū = v̄ in BV(X) since
V ⊂ B.
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Suppose V = [Gn = In], n � 2. If n = 2, the result is trivial. Let n � 3. Then
V1 = [Gn = Hn] is included in V (see Figure 1). Thus, for all u, v ∈ X+,

u = v in BV(X) =⇒ u = v in BV1(X)

=⇒ u = v in BB(X)

=⇒ ū = v̄ in BB(X)

=⇒ ū = v̄ in BV(X).

This concludes the proof. �

Proposition 5.4, together with Theorem 3.8, gives us the following corollary.

Corollary 5.5. Let V = [A = B] be any variety of bands in column 1 or column 5 of
Figure 1. Then for every set X with 2 � |X| < n, where n is the number of variables in
A = B, Aut(End(BV(X))) ∼= S(X) × C2.

5.2. Column 2

Here the situation is more complicated than it is in column 1. Proposition 5.4 is true for
the varieties V = [ḠnGn = ĪnHn], n � 3, and the variety LZ of left zero semigroups, but
not for the varieties V = [ḠnGn−1 = H̄nIn−1], n � 3, or the variety LN of left normal
bands.

We first consider the former, for which the result will follow from the following lemma,
which is similar to Lemma 5.3.

Lemma 5.6. Let X be a non-empty set and n � 2. For all words u, v ∈ X+, if u = v

has at most n variables, in(u) = in(v) and h̄n(u) = h̄n(v), then b(u) = b(v).

Proof. We proceed by induction on n. Let n = 2. Then u = v has one or two variables.
If u = v has one variable, the result is trivial. Suppose u = v has two variables. Then
i2(u) = i2(v) implies that σ(u) = σ(v) and that s(u) = s(v) has one variable. Further,
h̄2(u) = h̄2(v) implies that ε(u) = ε(v) and that e(u) = e(v) has one variable. It follows
that b(u) = b(v).

Let n � 3. Since [Gn = Hn] ⊂ [Gn = In] (see Figure 1), in(u) = in(v) implies
hn(u) = hn(v). If u = v has less than n variables, then hn(u) = hn(v) implies b(u) = b(v)
by Lemma 5.3. Suppose u = v has n variables. We have that in(u) = in(v) implies
in(s(u)) = in(s(v)), σ(u) = σ(v) and īn−1(u) = īn−1(v), and h̄n(u) = h̄n(v) implies that
hn−1(u) = hn−1(v), ε(u) = ε(v) and h̄n(e(u)) = h̄n(e(v)) (by [23, Proposition 3.7]).
Since s(u) = s(v) and e(u) = e(v) have n − 1 variables each, it follows by Lemma 5.3
that b(s(u)) = b(s(v)) and b(e(u)) = b(e(v)). Thus, b(u) = b(v). �

Proposition 5.7. Let V be a variety of bands in column 2 or column 4 of Figure 1. If
V = [ḠnGn = ĪnHn] or V = [ḠnGn = H̄nIn], n � 3, then, for every set X with |X| < n,
BV(X) is d-invariant.
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Proof. By duality, we may assume that V = [ḠnGn = ĪnHn]. Then for all u, v ∈ X+,
u = v in BV(X) if and only if in−1(u) = in−1(v) and h̄n−1(u) = h̄n−1(v). Thus, the result
follows from Lemma 5.6. �

For the varieties V = [ḠnGn−1 = H̄nIn−1] and their duals, the result is as follows.

Proposition 5.8. Let V be a variety of bands in column 2 or column 4 of Figure 1.
If V = [ḠnGn−1 = H̄nIn−1] or V = [Ḡn−1Gn = Īn−1Hn], n � 4, then, for every set X,

(1) if |X| < n − 1, then BV(X) is d-invariant,

(2) if |X| = n − 1, then BV(X) is not d-invariant.

Proof. By duality, we may assume that V = [ḠnGn−1 = H̄nIn−1]. To prove (1), sup-
pose |X| < n−1, and let u, v ∈ X+ with u = v in BV(X). Consider V1 = [Gn−1 = Hn−1].
Since V1 ⊂ V, u = v in BV1(X), so hn−1(u) = hn−1(v). Since u = v has less than n − 1
variables, u = v in BB(X) by Lemma 5.3. Thus, ū = v̄ in BB(X), and so ū = v̄ in BV(X).

To prove (2), suppose that |X| = n−1. Then Gn−1, In−1 ∈ X+. We have Gn−1 = In−1

in BV(X) (since V ⊂ [Gn−1 = In−1]) and Ḡn−1 �= Īn−1 in BV(X) (since V �⊂ [Ḡn−1 =
Īn−1]) (see Figure 1). Thus, BV(X) is not d-invariant. �

We dealt with the variety LZ = [xy = x] of left zero semigroups and its dual RZ =
[xy = y] in § 4. It remains to consider the variety LN = [xyz = xzy] of left normal
bands. (Its dual is the variety RN = [xyz = yxz] of right normal bands.) The identity
[xyz = xzy] defining LN has three variables. Let X be a set with two variables, say
X = {x, y}. Since LN is the join of LZ and SL, for all u, v ∈ X+, u = v in BLN (X) if
and only if h2(u) = h2(v) and C(u) = C(v). It follows that BLN (X) is not d-invariant,
since xy = xyx in BLN (X) but yx �= xyx in BLN (X).

The foregoing discussion, Propositions 5.7 and 5.8 and Theorem 3.8 give us the fol-
lowing corollary.

Corollary 5.9. Let V be a variety of bands in column 2 or column 4 of Figure 1.
Then, for every set X with |X| � 2,

(1) if V = [ḠnGn = ĪnHn] or V = [ḠnGn = H̄nIn], n � 3, and |X| < n, then
Aut(End(BV(X))) ∼= S(X) × C2,

(2) if V = [ḠnGn−1 = H̄nIn−1] or V = [Ḡn−1Gn = Īn−1Hn], n � 4, and |X| < n − 1,
then Aut(End(BV(X))) ∼= S(X) × C2,

(3) if V = [ḠnGn−1 = H̄nIn−1] or V = [Ḡn−1Gn = Īn−1Hn], n � 4, and |X| = n − 1,
then Aut(End(BV(X))) ∼= S(X),

(4) if V = LN or V = RN , and |X| = 2, then Aut(End(BV(X))) ∼= S(X).

If |X| = 1, say X = {x}, then for, every variety V of bands BV(X) = {x}, and so
Aut(End(BV(X))) = {1}. Hence, we have covered all possible varieties of bands V and
all possible sets X, and our determination of Aut(End(BV(X))) is complete.
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6. Problems

In connection with the general problem that motivated this paper and in parallel with
many similar open problems in various branches of algebra, we suggest the following
problems from semigroup theory.

(1) Describe Aut(Aut(F )) and Aut(End(F )), where F is a free inverse semigroup, that
is, a free algebra in the variety of all inverse semigroups. (This is the most important
free semigroup apart from the free group (see [18, Chapter VIII]).)

(2) Solve analogous problems for other varieties of inverse semigroups (see [18, Chapter
XII]).

(3) Describe Aut(Aut(F )) and Aut(End(F )), where F is a free completely regular
semigroup or a free ∗-regular semigroup (see [14,21]).

(4) For a pseudovariety V of semigroups, describe Aut(Aut(F )) and Aut(End(F )),
where F is the free pro-V semigroup over a finite alphabet (see [1,2]).

(5) Describe Aut(Aut(F )) and Aut(End(F )), where F is an independence algebra (see
[5,12]).
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