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Abstract

Given f (x, y) ∈ Z[x, y] with no common components with xa − yb and xayb − 1, we prove that for p
sufficiently large, with C( f ) exceptions, the solutions (x, y) ∈ Fp × Fp of f (x, y) = 0 satisfy ord(x) +

ord(y) > c(log p/ log log p)1/2, where c is a constant and ord(r) is the order of r in the multiplicative
group F

∗

p. Moreover, for most p < N, N being a large number, we prove that, with C( f ) exceptions,
ord(x) + ord(y) > p1/4+ε(p), where ε(p) is an arbitrary function tending to 0 when p goes to∞.

2010 Mathematics subject classification: primary 11B75; secondary 11T22, 14G15, 11G20, 11T06,
11T30, 11T55, 11G99.

Keywords and phrases: multiplicative order, multiplicative group, finite fields, additive combinatorics.

1. Introduction

Given a finite field Fq, it is a major problem to produce quickly a generator of its
multiplicative group F∗q, and no deterministic polynomial-time algorithm seems to be
known so far. Short of being able to produce primitive elements, one can settle for
elements of large order. This question is also notoriously difficult and there is an
extensive literature with various contributions. This note is mainly motivated by a
paper of Voloch [V1] and earlier work of von zur Gathen and Shparlinski [GS, S1].
The main result in [V1] states roughly that if F(x, y) ∈ Fq[x, y] is absolutely irreducible
and F(x, 0) is not a monomial, given a solution (a, b) ∈ F

∗

q × F
∗

q of F(x, y) = 0 such
that d = [Fq(a) : Fq] is sufficiently large, then either a is of multiplicative order at least
d2−ε or b is of order at least exp(δ(log d)2). In particular, considering the equation
y − x − 1 = 0, it follows that either a or a + 1 is at least of order d2−ε . We recall the
following general conjecture due to Poonen (see also [V1]).
Let A be a semiabelian variety defined over Fq and X a closed subvariety of A. Denote
by Z the union of all translates of positive-dimensional semiabelian varieties over Fq

contained in X. Then, for every nonzero x in (X − Z)(Fq), the order of x in A(Fq) is at
least |Fq(x)|c, for some constant c > 0.
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The conjecture (if true) is very strong, compared with the presently known
results. In particular, those of [V1] (see also [V2]) appear as special cases, but are
quantitatively much weaker. In this paper we pursue the same line of investigation but
in a different direction. While the results of [V1] give lower bounds on the order of x
in terms of its degree [Fq(x) : Fq], we are interested in large characteristic. Thus, fix a
suitable f (x, y) ∈ Z[x, y], let p be a large prime and consider solutions (x, y) ∈ Fp × Fp

of f (x, y) = 0. What may be said about the orders of x and y? In particular, one can
ask for a lower bound on min0<x<p−1(ord(x) + ord(x + 1)) for p→∞. In this spirit, we
should cite the result of Bugeaud, Corvaja, and Zannier [BCZ], according to which
(ord(2) + ord(3))/ log p→∞ for p→∞. Although this seems a slight improvement
over the obvious, the argument is deep and involves the subspace theorem in an
ingenious way. It illustrates the difficulty of the problem, even in the restricted
setting. Note that for large characteristic, one may also explore the above questions
for ‘most’ p while expecting better results (see [EM]). In particular, we obtain the
following results.

T 1.1. Let f (x, y) ∈ Z[x, y]. Assume that the zero set of f has no common
components with that of xa − yb or xayb − 1 for any a, b ∈ Z+. Then there is a constant
C( f ), depending only on f , such that, for a sufficiently large prime p, for all but at
most C( f ) solutions (x, y) ∈ Fp × Fp of

f (x, y) = 0, (1.1)

we have

ord(x) + ord(y) > c
( log p
log log p

)1/2

, (1.2)

where c is a constant and ord(r) is the order of r in the multiplicative group F
∗

p.

Theorem 1.1 can be improved for almost all p as follows.

T 1.2. Let f (x, y) ∈ Z[x, y]. Assume that the zero set of f has no common
components with that of xa − yb or xayb − 1 for any a, b ∈ Z+. Then there is a
constant C( f ), depending only on f , such that, for a set of primes p of relative
density 1, for all but at most C( f ) solutions (x, y) ∈ Fp × Fp of

f (x, y) = 0,

we have
ord(x) + ord(y) > p1/4+ε(p), (1.3)

where ε(p) is an arbitrary function tending to 0 when p goes to∞.

Our arguments are based on elimination theory combined with a finiteness result
of torsion points on irreducible curves, conjectured by Lang and proved by Ihara,
Serre and Tate. (See [L1, L2] and Ailon and Rudnick [AR] for other applications
of this result in a similar vein.) The formulation appears in Lemma 2.3(a) below.
For the reader’s convenience, we include a proof based on the finiteness of solutions
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of linear equations in roots of unity. (See Theorem CJ in the next section.) On
the quantitative side, more precise statements appear in Corvaja and Zannier [CZ],
but these refinements are not essential for our modest purpose. In our detailed
presentation, we aim to illustrate the use of the subspace theorem and its consequences
for problems in finite fields. They may have other applications and the above results
are likely to have extensions to more variables.

In special cases, the above results can be made more precise.

T 1.3. Let F(x) = x + 1 or F(x) = x + (1/x).

(i) Let p be prime and (−3/p) = −1, where (−3/p) is a Legendre symbol. Then for
all x ∈ Fp, (1.2) holds.

(ii) For a set of primes p < N of relative density 1 such that (−3/p) = −1, all x ∈ Fp

satisfy (1.3).

This theorem should be compared with the ‘large order’ results due to von zur
Gathen and Shparlinski [GS] and Voloch [V1].

We conclude this section with some notation and conventions.

(1) Let f , fα ∈ C[x1, . . . , xn].
V( f ) = {(x1, . . . , xn) ∈ Cn : f (x1, . . . , xn) = 0}.
V({ fα}α) =

⋂
α V( fα).

(2) ε(x) is an arbitrary function tending to 0 when x goes to∞.
(3) A solution to the equation

∑n
i=1 aixi = 1 is nondegenerate if

∑
i∈I aixi , 0 for any

I ⊂ {1, . . . , n}.
(4) U = {roots of unity}.

φ(m) = the Euler’s totient function.
Φm = the mth cyclotomic polynomial, of degree φ(m).

2. The proofs

We will use the following result from elimination theory [CLO].

L 2.1. Let f (x, y) ∈ Z[x, y], P1(x) ∈ Z[x], P2(y) ∈ Z[y] such that

V( f , P1, P2) = ∅.

Write d0 = deg f , d1 = deg P1, d2 = deg P2 and let H be a bound on the coefficients of
f , P1, P2. Then there exist a ∈ Z \ {0} and g0, g1, g2 ∈ Z[x, y] such that:

(i) a = g0(x, y) f (x, y) + g1(x, y)P1(x) + g2(x, y)P2(y);
(ii) |a| < [(d0 + d1 + d2)2H]d0d1+d1d2+d2d0 .

P. The argument is standard and we include it for the sake of completeness.
Let A be an integral domain. Given u(x), v(x) ∈ A[x], we denote by Resx(u, v) ∈ A

the determinant of the Sylvester matrix of u and v. Recall that there are polynomials
U(x), V(x) ∈ A[x] such that

Resx(u, v) = U(x)u(x) + V(x)v(x).

Also, Resx(u, v) = 0 if and only if gcd(u, v) , 1.
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Take A = Z[y]. It follows that

r(y) = Resx( f (x, y), P1(x)) = U(x, y) f (x, y) + V(x, y)P1(x)

for some U, V ∈ Z[x, y].
Next, we apply elimination theory to the polynomials r(y), P2(y) ∈ Z[y] and

have

a = Resy(r, P2) = R(y)r(y) + W(y)P2(y)

= R(y)U(x, y) f (x, y) + R(y)V(x, y)P1(x) + W(y)P2(y).

Clearly, a , 0. Otherwise, for some y0, r(y0) = P2(y0) = 0. Then f (x, y0) and P1(x)
also have a common root x0. Hence (x0, y0) ∈ V( f , P1, P2). This is a contradiction.

It remains to evaluate a. Clearly, r(y) is of degree at most d0d1 with coefficients
bounded by (d0 + d1)!

(
d0
d1

)
Hd0+d1 < (d0 + d1)! d d1

0 Hd0+d1 and hence

|a| < (d0d1 + d2)!Hd0d1 [(d0 + d1)! d d1
0 Hd0+d1 ]d2

< (d0d1 + d2)!(d0(d0 + d1)H)(d0+d1)d2 Hd0d1 ,

so the proof is complete. �

R 2.2. In our application, f (x, y) will be a fixed polynomial; since d0 is a
constant, the bound (ii) turns out to be better than the estimate obtained from the
quantitative Nullstellensatz theorem in [KPS].

We also need the following version of a theorem of Conway and Jones about linear
equations in roots of unity. (See [CJ, E] for further reference and [DZ, E, Sc] for
results of this type over C.)

T CJ. Let a1, . . . , an ∈ C \ {0}. Then the number of nondegenerate solutions in
U of the equation

aiξ1 + · · · + anξn = 1

is at most O(exp(cn3/2(log n)1/2)).

From the theorem above, one can easily deduce the following corollary.

C CJ. Consider the linear equation

a1ξ1 + · · · + anξn = 0, ai ∈ Z \ {0} (2.1)

with solutions ξi ∈ U. Then there exists a subset U of Un with |U| ≤
O(exp(cn3/2(log n)1/2)) such that for any ξ = (ξ1, . . . , ξn) ∈ Un satisfying (2.1), there
is a partition {1, . . . , n} =

⋃
α Iα with |Iα| ≥ 2 and there is ζ = (ζ1, . . . , ζn) ∈ U such

that
ξi

ξ j
=
ζi

ζ j
, ∀α and ∀ i, j ∈ Iα.
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From the foregoing, we derive a further result.

L 2.3. Let f (x, y) ∈ Z[x, y]. Assume that V( f ) has no common components with
V(xa − yb) and V(xayb − 1) for any a, b ∈ Z+. Then:

(a) |V( f )
⋂

U2| <C( f );
(b) there exists K( f ) ∈ Z+ such that, for any cyclotomic polynomials Φk, Φ` with

max{k, `} ≥ K( f ),

we have
V( f , Φk(x), Φ`(y)) = ∅. (2.2)

P  L 2.3(a). Let f (x, y) =
∑

k,` ak,`xky`. Setting ξk,` = xky`, we obtain the
equation ∑

k,`

ak,`ξk,` = 0 (2.3)

to which we apply Corollary CJ. Hence, there is U, with |U| ≤C(deg f ), consisting
of triples ζ = (ζk,`), ζk,` ∈ U, such that, for any ξ = (ξk,`) with ξk,` ∈ U satisfying (2.3),
there is a partition Iα of the indices and some ζ ∈ U such that

ξk,`

ξk′,`′
=
ζk,`

ζk′,`′
, ∀α and ∀(k, `), (k′, `′) ∈ Iα.

Hence
xk−k′y`−`

′

= ζk,`ζk′,`′ .

If there exist α, α′ and (k1, `1), (k2, `2) ∈ Iα, (k3, `3), (k4, `4) ∈ Iα′ such that

k1 − k2

`1 − `2
,

k3 − k4

`3 − `4
,

then x, y are determined. Therefore, we assume that

dim〈(k1 − k2, `1 − `2) : (k1, `1), (k2, `2) ∈ Iα for some α〉 ≤ 1. (2.4)

For each α, we take some (kα, `α) ∈ Iα. Rewrite f as

f (x, y) =
∑
α

xkαy`α
∑

(k,`)∈Iα

ak,`x
k−kαy`−`α , (2.5)

where, by (2.4)
(k − kα, ` − `α) = ck,`(e, f ) (2.6)

for some (e. f ) ∈ Z2 \ {(0, 0)}.
Moreover, we may assume that there is some (x0, y0) ∈ U2 satisfying∑

(k,`)∈Iα

ak,`x
k
0y`0 = 0 for all α (2.7)

(since otherwise, we would not have to consider the partition {Iα}).
It follows from (2.5)–(2.7) that the curve V(x − x0t f ) ∩ V(y − y0t−e) is contained

in V( f ), contradicting our assumption on V( f ). �
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P  L 2.3(b). Clearly, from part (a), we may conclude that there is an
integer M = M( f ) such that

V( f ) ∩ U2 ⊂ V(xM − 1, yM − 1).

Also,
V( f , Φk(x), Φ`(y)) ⊂ V( f ) ∩ U2.

Hence, if V( f , Φk(x), Φ`(y)) , ∅, then Φk(x)|xM − 1 and Φ`(y)|yM − 1, which are
impossible assuming K > M. �

Combining Lemma 2.1 with Lemma 2.3(b) gives the following result.

L 2.4. Let f (x, y) ∈ Z[x, y]. Assume that V( f ) has no common components with
V(xa − yb) and V(xayb − 1) for any a, b ∈ Z+. Let K( f ) ∈ Z+ be given by Lemma 2.3(b)
and let Φk and Φ` be cyclotomic polynomials with max{k, `} ≥ K( f ).

Then there exist a ∈ Z+ and g0, g1, g2 ∈ Z[x, y] such that:

(i) a = g0(x, y) f (x, y) + g1(x, y)Φk(x) + g2(x, y)Φ`(y);
(ii) log a < c d2 log d, where d = max{φ(k), φ(`)}.

P  T 1.1. Let K = K( f ) be given by Lemma 2.4, and let

E = {ρ ∈ Fp : ∃ Φm with m ≤ K and Φm(ρ) = 0}.

Thus
|E| < K2 <C( f ).

We claim that (1.2) holds, except possibly for those (x, y) ∈ Fp in E × E. Let
(x, y) ∈ Fp × Fp satisfy (1.1) and (x, y) < E × E. Let k = ord(x) and ` = ord(y).
Then Φk(x) ≡ 0 (mod p) and Φ`(y) ≡ 0 (mod p). Since (x, y) < E × E, we have
max{k, `} > K. Lemma 2.4(i) gives

a , 0 and a ≡ 0 (mod p)

by the foregoing. It follows from Lemma 2.4(ii) that

log p ≤ log a < c(φ(k)2 log φ(k) + φ(`)2 log φ(`)) < c(k2 + `2) log(k + `)

and hence (1.2) holds. �

P  T 1.2. Let N be a large integer and M = [N1/4−ε]. Let K = K( f ) be
given by Lemma 2.4. For any k, ` satisfying K < max{k, `} < M, we apply Lemma 2.4
to Φk and Φ`. Lemma 2.4(i) gives

ak,` = g0,k,`(x, y) f (x, y) + g1,k,`(x, y)Φk(x) + g2,k,`(x, y)Φ`(y) (2.8)

with ak,` ∈ Z
+, ak,` < McM2

and g0,k,`, g1,k,`, g2,k,` ∈ Z[x, y].
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Define
a =

∏
k,`

K<max{k,`}<M

ak,` ∈ Z,

which satisfies
a < McM4

. (2.9)

We will repeat the argument for Theorem 1.1.
Given prime p, let Ep = E as defined in the proof of Theorem 1.1. Assume

that (x, y) ∈ Fp × Fp \ Ep × Ep and f (x, y) = 0. Let k = ord(x), ` = ord(y). Assume
that k, ` < M. It follows from (2.8) that ak,` ≡ 0 (mod p) and hence p | a. Since
ω(a) ≤ cM4 < N1−ε by (2.9), for most primes p < N and any (x, y) ∈ Fp satisfying
f (x, y) = 0, we have ord(x) + ord(y) > M = N1/5−ε > p1/5−ε .

Combining this last statement with the following theorem by Erdős and Murty
(see [EM, Theorem 2]), we conclude the proof of Theorem 1.2. �

T EM. Let δ > 0 be fixed and ε(x) be an an arbitrary function tending to 0
when x goes to ∞. Then the number of primes p ≤ x such that p − 1 has a divisor in
(xδ, xδ+ε(x)) is o(x/ log x).

P  T 1.3. We note that if x and x + 1 ∈ U, then x satisfies

x2 + x + 1 = 0. (2.10)

Indeed, let x = cos θ + i sin θ and x + 1 = cos γ + i sin γ. Then cos θ = −1 + cos γ. On
the other hand, from sin θ = sin γ, we have cos θ = ± cos γ. Hence cos θ = − 1

2 and
x = e

2
3 πi is a cubic root of unity.

Therefore, we have (2.2) for max{k, `} > 3. Combining with Lemma 2.1, we have
Lemma 2.4.

Similarly, for part (ii), if x and x + (1/x) ∈ U, then x satisfies either (2.10) or

x2 − x + 1 = 0. (2.11)

If (−3/p) = −1, then (2.10), (2.11) have no solutions (mod p). The rest of the argument
is the same as that for part (i). �

R 2.5. If (−3/p) = 1, then (2.10) has a solution and y = x + 1 satisfies y2 − y +

1 ≡ 0 (mod p). Hence
ord(x) = 6, ord(x + 1) = 3.

R 2.6. According to a result in [S2], there are at least p1/2 elements x ∈ Fp with

ord(x) + ord(x + x−1) < p3/4+ε ,

if p − 1 has a divisor d ∈ [p3/4+ε/2, p3/4+ε]. (By a result of Ford [F], there is a
positive proportion of such primes.) The same proof works if x + x−1 is replaced by a
nonmonomial rational function F.
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