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GROUP-THEORETIC AXIOMS FOR PROJECTIVE GEOMETRY

ALEX D. GOTTLIEB AND JOSEPH LIPMAN

ABSTRACT. We show that a certain category G whose objects are pairs
G D H of groups subject to simple axioms is equivalent to the category of
2 2-dimensional vector spaces and injective semi-linear maps; and deduce
via the “Fundamental Theorem of Projective Geometry” that the category of
2 2-dimensional projective spaces is equivalent to the quotient of a suitable
subcategory of G by the least equivalence relation which identifies conjuga-
tion by any element of H with the identity automorphism of G.

0. Introduction. Let V be a left vector space of dimension = 2 over a (not neces-
sarily commutative) field F. For any pair 0 # a € F,v € V, let [a,v]: V — V be the map
given by

[a,vIw) =aw+v wev).

The set G of all such maps is closed under composition:
[a,v] o [d',V] = lad, aV +V];

and each [a, v] is bijective, with inverse

-1

lav ™' =[a"!, —al].

So G is a group of transformations of V, with identity element e = [1, 0].

Denote by H the subgroup of G consisting of all maps of the form [a,0]. H is iso-
morphic to the multiplicative group of non-zero elements in F.

Denote by T the subgroup of G consisting of all maps of the form [1, v]. T is a normal
subgroup of G, isomorphic to the additive group V. Every element of G is uniquely of
the form th, witht € T, h € H:

[a,v] = [1,V]][a,0].

The elements of T are called translations. One checks that:
(0.1) A non-identity element g € G is a translation if and only if no conjugate of g lies
inH.
Recall that for g € G, the double coset HgH is the set

HgH = { high, | g € Gand hy,h, €H} .
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One verifies the following properties of the pair (G, H).
(GH1) Forall g € G,
G#HgHU H.

(In other words H has at least three distinct double cosets in G.)

(GH2) Forallg € G,
gHg ' C HgHU {e} .

(GH3) Forall g € G,
HgH = Hg 'H.

REMARKS.
(i) With regard to (GH2), note that for g € G and h € H,

ghg ' =e<=h=c

(ii) The property (GH3) follows formally from (GH2), except when H = {e}, in
which case (GH2) says nothing at all. Indeed, if g € G and e # h € H, then
applying (GH2) twice we get

gh™'g™' € HgH,
gh™'g™! = (ghg™")" € (HgH)™' = Hg 'H;
so the double cosets HgH and Hg~'H meet, and hence they are equal.

(iii)) We will see later (Remark 1.11) that given (GH1), conditions (GH2) and (GH3)
together are group-theoretically equivalent to:

(GH2)* N gHg ™' = {e}, and
g€G
(GH3)* for each g € G, HgH U H is a subgroup of G.

Now let ‘V be the category whose objects are all pairs (V, F) as above, and whose
arrows are injective semi-linear maps

€,0):(V,F) — (V' F).

More specifically:
— 6:F — F' is a homomorphism of fields.
— (:V — V'is an injective map satisfying
Ci+v)=CvD+C(2) (i, eV),
Cav)=0(@a)}X(v) (aeF,veV).
Let G be the category whose objects are pairs (G, H) consisting of a group G and a

subgroup H satisfying (GH1)~(GH3) above, and whose arrows (G, H) — (G', H') are
those group homomorphisms f: G — G’ satisfying
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(0.2.1) f(H) C (H'), and
(0.2.2) if g € G has no conjugate lying in H, then f(g) € G’ has no conjugate lying in H'.
We define a functor T: V — @ as follows:
— For any object (V, F), I'(V, F) is the pair (G, H) described at the beginning of this
Introduction.
— For any arrow (¢,0): (V,F) — (V/, F'), the arrow

r¢,0):T(V,F)—T(V,F)

is given by the formula

I'¢.0)la, vl = [6(a), (V]

To verify that I' is indeed a functor, check that it respects categorical identities
and composition, and that I'({,6) is a group homomorphism satisfying (0.2.1)
and (0.2.2)—f. (0.1).

Our main result is:
THEOREM 1. T is an equivalence of categories.

In other words, there exists a functor ©: G — 7V together with isomorphisms of
functors
re——=1ig ©Or-—ly

(where 1 denotes an identity functor). Such a functor O is called a pseudo-inverse of T'.

* * *

The title of this paper refers to Theorem 2 below. By way of explanation, we first
reformulate the Fundamental Theorem of Projective Geometry [A, p. 88] in the language
of categories.

The projective space P = P(V,F) is, by definition, the set of one-dimensional sub-
spaces of V. A projective subspace of P is a subset consisting of all the one-dimensional
subspaces of some vector subspace of V.

A sequence (x1,X2,...,X,) in P is linearly independent if for eachi = 1,2,...,n,
x; lies outside some projective subspace P; C P which contains x; for all j # i; ' and
linearly dependent otherwise. Three points x;,x2,x3 € P are collinear if (x1,x2,x3) is
linearly dependent.

A map

mP(V,F)=P—P =PV, F)

is a collineation if for any three collinear points x;,x,x3 € P the points
7 (x1), m(x2), m(x3) € P are also collinear. A rather simple induction shows that this is
equivalent to 7 mapping every linearly dependent sequence in P to a linearly dependent

! j.e., if the subspace x; +x; +...+x, C V spanned by the x; has dimension 7.
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sequence in P'. We say that v is linearly faithful if it satisfies the following conditions,
which are (exercise) equivalent:

— A sequence (x, X2, ... ,X,) in P is linearly independent if and only if the sequence
(m(xy), m(x2), ..., m(x,)) in P is linearly independent.

— Every projective subspace P; C P is of the form =~ !(P}) for some projective
subspace P| C P'. Any linearly faithful map is an injective collineation. A bijec-
tive collineation ~ is linearly faithful if and only if 7! is a collineation.

We define Ps, the category of projective spaces of dimension 2 2, as follows:

— The objects of P, are the vector spaces (V, F) of dimension = 3.

— The arrows (V,F) — (V', F') in ‘P, are the linearly faithful maps m: P(V,F) —
PV, F).

Let V4 be the subcategory of ¥ with objects the vector spaces (V, F) of dimension
2 3, and with arrows the semi-linear maps

€,0):(V,F) = (V,F)

such that  is linearly faithful in the sense that it satisfies the following equivalent con-
ditions:
— A sequence (vi, V2, ...,V,) in Vis linearly independent (over F) if and only if the
sequence (€ (x1),¢ (x2),...,{(x,)) in V' is linearly independent (over F').
— Every linear subspace V; C V is of the form ¢ ~'(V}) for some linear subspace
vicV.

REMARKS.
(i) If ¢ is linearly faithful then ( is injective.
(ii) If¢ is injective and @ is bijective then ¢ is linearly faithful. >
(iii) If dimV 2 3, and if a is any non-zero element of F, then the automorphism
(¢ 02): (V. F) = (V. F) given by

G =av (veV)
0.b) = aba™' (bEF)

is an arrow in V5.
We define a functor IT: 15 — P, by

[V, F) = (V. F),
M((¢.0):(V.F)— (V.F)) = =

where for each non-zero v € V, m takes the subspace Fv € P(V,F) to the subspace
F¢w)y e P(V,F).

2 More generally, ¢ is linearly faithful <= the map F' ® V — V' induced by ((,8) is
injective.
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Next we form a quotient category of ¥} through which IT factors. Let R be the e-
quivalence relation under which two arrows in V;

&1,01), (&, 02):(V,F)— (V,F)

are equivalent if there exists a non-zero a € F' such that

(©,62) = (Gas 0a) © (1, 01).

The quotient category ‘V5/ R has the same objects as ¥3; but for two objects (V, F),
(V,F), the V3/ R-arrows (V,F) — (V', F') are the equivalence classes under R of ar-
rows in V3 between these two objects, composition being defined in the natural way.

There is a canonical functor p: V5 — 3/ R taking any object to itself and taking any
arrow to its equivalence class; and it is easily checked that there is a unique functor

ﬁ:%/R——’TZ

such that
I[M=1IIop.

Now, at last, we can state:

FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY.  The functor Il is an isomor-
phism of categories.

In other words, IT is bijective on objects (clearly) and on arrows: every arrow in P, is

of the form 7, and

T = T ¢:>C = C/ (mod R).
The proof is essentially given by E. Artin in [A, pp. 88-91]. Artin restricts his attention
to finite-dimensional spaces and to arrows which are isomorphisms; but his arguments
are easily modified to cover the present statement.

The Fundamental Theorem in some sense reduces Projective Geometry to Linear Al-
gebra. Consequently, using Theorem 1, we can reduce Projective Geometry to Group
Theory. Here is a precise formulation; proofs are provided in § 2.

Let G3 be the subcategory of G whose objects are pairs (G, H) satisfying (GH2),
(GH3)—or (GH2)*, (GH3)*—and

(GHD)* Forallg,8 € G,

(%) G # (Hg1 U H)(Hg, U H);

and whose arrows f: (G, H) — (G', H') are those of G which further satisfy:

(0.3) Every subgroup G, of G containing H is of the form f~!(G) for some subgroup
G, of G’ containing H'.
If © is, as above, a pseudo-inverse of I', then (GH1)* is equivalent to the vector space
O(G, H) having dimension 2 3 (cf. Corollary (2.2), which also shows that if () holds
for some two elements g;, g» € G such that

H # Hg\H # Hg;H # H
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then it holds for all g1,g, € G); and (0.3) is equivalent to O(f) being linearly faith-
ful. In fact the above functors ' and © induce pseudo-inverse equivalences between the
categories V5 C V and G3 C G.
Note that if (G,H) € Gs then for any h € H, the inner automorphism 7,: G — G,
given by
() =hgh™' (g €G)

is an arrow in Gs.
On G3 we consider the equivalence relation R* under which two arrows

fi.£:(G,H)— (G, H)

are equivalent if there exists an h € H’ such that f, = ¥, o fi. As above, we have
a quotient category G3/ R*, together with a canonical functor p*: G3 — G3/R*. And
there is a unique functor ©: G3/ R* — 74/ R making the following diagram commute:

G 2, (!
) Lo
Gs/R* - 73/R

This © is also an equivalence of categories.
Following © by the isomorphism IT, we obtain the above-indicated group-theoretic
foundations for projective geometry:

THEOREM 2. The category ‘P, of projective spaces of dimension 2 2 is equivalent
to the quotient category G3/ R* just described.

1. Proof of Theorem 1. We first define a category .S which will serve as an inter-
mediary in the proof of the equivalence of G and V.

The objects of .S, called “pointed geometries," are triples (G, S, p) with S a set, p € S,
and G a group acting faithfully on S, i.e., there is a map G X S — S—for which the image
of a pair (g, s) is denoted gs—such that

(gh)s = g(hs) (g.heG;sel)

and such that
gs =sforall s € S <= g = e, the identity.

(For motivation, consider the triple (G, V, 0) described at the beginning of the Introduc-
tion; or cf. [L]). A translation of (G, S, p) is defined as in [L, p. 272] to be an element
g € G such that either g = e or g has no fixed points (i.e., gs # s for all s € S). A line of
(G, S, p) is by definition a subset of S of the form

si+so={s€S|s=s ordg € Gwithgs; = sy, g5 =5}

https://doi.org/10.4153/CJM-1991-006-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-006-2

GROUP-THEORETIC AXIOMS FOR PROJECTIVE GEOMETRY 95

where s, s> are distinct points in S. It is assumed further that G acts doubly transitively
on lines, but not on all of S. (Cf. [L, p. 268, AXIOM 1, and p. 271, AXIOM 2]; recall
that a group acts doubly transitively on a set if for any sy, 57, 53, 54 in the set with s; # 57,
$3 # s4, there is a g in the group such that gs; = s3 and gs; = s4.) Note that then G acts
transitively on S, i.e., for any sy, s in S there is a g in G with gs; = ;. (There is even
such a g which furthermore satisfies gs, = s,: this is obvious if 51 = s,, and otherwise
holds because s; and s, both lie on the line s; + 55).
The arrows of .S are pairs

(¢,%):(G,S.p) — (G,S,p)

where ¢: G — G’ is a group homomorphism and 1:S — §' is a map of sets with
¥ (p) = p/, such that
(L.L1) ¥(gs) =9 (@Y(s) (8EG, s€S) and
(1.2) ¢ takes non-identity translations of (G,S,p) to non-identity translations of
(G, S, p).
The composition of the two arrows (¢,%):(G,S,p) — (G,S.p) and
(¢",¥"):(G,S,p))— (G",8",p") is defined in the obvious way:

@' 90 (4,¥)= (9" 00, ¥ 09):(G,S,p) = (G". 5", p").
We observe in passing the following facts.

REMARKS 1.3.  Let (¢,v) be a pair as above satisfying (1.1).
(1) If is bijective then (1.2) holds.
(2) If(1.2) holds then both ¢ and 1 are injective.

PROOF. (1) Assuming i to be bijective, let g be a non-identity translation of
(G, S, p), so that gs # s for any s € S. Since v is injective, therefore

¢ (@ (s) = P (gs) # Y (s);

and since 1 is surjective, this means that ¢ (g)s’ # & forany & € §, ie., ¢(g)isa
non-identity translation of (G, §', p’). Thus (1.2) holds.

(2) Assuming (1.2), let us show first that ¢ is injective. Let s;, s, be distinct points
of S. By [L, p. 272, Thm. 8] there exists a translation g (obviously non-identity) with
gs1 = s2. Then

Y (s2) = Y (gs1) = ¢ (@Y (s) # P(s1)

because ¢ (g) is a non-identity translation. So ¢ is indeed injective.
Finally, if g € G is such that ¢ (g) = ¢, the identity in G, then for every s € S we
have

P(gs) = ¢ (@)Y (s) = ¥ (s),

and since 1 is injective, therefore gs = 5. So g = ¢, and ¢ is injective, as asserted. =
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We show now that:

THEOREM 1A. The categories G and S are equivalent.

PROOF. The asserted equivalence is induced by a well-known equivalence
®:G— S

where the categories G D G and S D § are as follows:

The objects of G are pairs (G, H) with G a group and H a subgroup of G; and the arrows
(G,H) — (G', H') are the group homomorphisms f: G — G’ for which f(H) C H'.

The objects of S are triples (G, S, p) with S a set, p € S, and G a group acting tran-
sitively on S; and the arrows (G, S,p) — (G, S, p’) are pairs of maps (¢,1)) as above,
satisfying (1.1) (but not necessarily (1.2)).

For (G,H) € G let G/ H be the set consisting of all the left cosets of H in G. G acts
transitively on G/ H by left multiplication.

The above equivalence @ is the functor given by

®(G,H)= (G, G/H, H)
(I)(f: (G,H) — (G’,H’)) = (f,¥):(G, G/H,H)— (G, G'/H, H')

where
Yr(gH)=f(@H (g €G).

For (G, S,p) € S, let G, C G be the stabilizer of p, i.e., the subgroup

G,={g€Glgp=p}.

It is straightforward to verify that a pseudo-inverse of @ is the functor ¥: S — G given
by
Y(G,S,p) = (G,G,)

¥((¢.9):(G,S.p)— (G.,S.p))) = $:(G,G,) = (G, G))).

In fact Y& = la; and a functorial isomorphism ®¥ = 13 is given for (G, S,p) € S
by
(1,9): ®¥(G, S,p) = (G,G/ G,,Gp) — (G, S, p)

where ¥ (gG,) = gp. B B

We will show that @ maps the subcategory G of G into the subcategory S of S, and
that ¥ maps S into G. It is easily checked that an isomorphism in G between two objects
of @G is actually an isomorphism in G; and similarly for § C S. It will follow then
that the restrictions of ® and ¥ to the respective subcategories G, S are pseudo-inverse
equivalences, proving Theorem 1la.

From the simple fact that g € G is a non-identity translation of (G, S, p) € G (i.e.,
gs # sforall s € S) if and only if no conjugate of g lies in G, it follows easily that ®
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takes arrows of G to arrows of S, and that \¥ takes arrows of S to arrows of G. So it
remains to examine the effect of ® (resp. W) on objects of G (resp. ).
Let us show that:

(1.4) ®(G,H) = (G,G/H,H) €S for(G,H) € G.

(1.4.1) G acts faithfully on G/ H.

We must show: if ¢’ € G is such that g'gH = gH for all gH € G/ H, ie., g € gHg™!
for all g € G, then g’ = e. But by (GH1) there is a g € G such that the double cosets
HgH and H are distinct, whence HgH N H = {); and from (GH2) we then get

g €gHg 'NeHe ' C(HgHU {e})N H = {e}.

(1.4.2) G does not act doubly transitively on G/ H.

By (GH1) there exist three distinct double cosets H, HgH, Hg'H. Then H # g~'H and
g'H # H, but there is no j € G such that jH = g’H and jg~'H = H, since such a j would
lie in Hg'H N HgH = {).

(1.4.3) G acts doubly transitively on lines.

We first give a condition for cH € G/ H to lie on a line aH + bH.

LEMMA 1.5. IfaH # bH and aH # cH are in G/ H, then

cH € aH + bH ﬁ a'c € Ha 'bH
1

ﬁ (aH)™'(cH) = (aH)"'(bH).
11

PROOF. Since cH # aH, we have

cH € aH + bH <= Jg € G with gaH = aH, ghH = cH
<= aHa 'NcHb™ ' #
< Ha'bNnallcH#D
<= a'c € Ha 'bH.

This proves the logical equivalence (i); and (ii) is obvious. u
Now let g1H, goH, g3H, g4H € aH + bH, giH # g,H, g3H # g4H. By (1.5),

a'¢i€e HUHa '"bH  (i=1,2,3,4).

Note that a~'g; € H <= g;H = aH. In particular, a~'g; and a~'g, can’t both lie in H.
It follows that

gr'gr = (g7'a)a "g2) € Hb™'aHU Ha 'bHU (Hb™'aH)(Ha 'bH).

By (GH3),
Hb~'aH = Ha 'bH,
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and by (GH2),
(Hb~'aH)(Ha™'bH) = H(b"'aHa 'b)H C Hb'aHU H,

since g\H # g2 H, therefore g7'g, ¢ H, and we conclude then that g7 'g> € Ha™'bH.
Similarly, g5 'gs € Ha~'bH. So

Hgy'g,H = Ha™'bH = Hgy 'g4H,
i.e., there exist hy, hp € H such that

higt g2y = g5 'ga

Thus, for g1 H, g2H, g3H, g4H on one line, g1H # g.H, g3H # gaH, there is an ele-

ment of G, (namely g3h1g7! = g4h; 'g; ") which sends g H to g3H and g,H to g4H.
This completes the proof of (1.4) .
Let us show finally that

(1.6) ¥(G,S,p) = (G,G,) € G for (G,S,p) € S.

For convenience, set G, = H.

(1.6.1) G # HgH U H for any g € G.

For, were G = HgHU H, then for any pointp # p, € S we would have (by transitivity,
see the definition of .§), for some g, € G,

P1=g\p = higp (hy € H),

and since hp = p therefore p; € p+ gp. Thus the line p + gp would be all of S; and since
G acts doubly transitively on lines, but not on all of S, we would have a contradiction.
(1.6.2) HgH = Hg 'H for any g € G.
We may assume that g ¢ H, i.e., gp # p. Since G acts doubly transitively on the line
p + gp, there exists g; € G such that

81p = 8D, 818P = P-
It follows that there exist h;, hy € H such that

g1 =ghi=hg™".
Hence g € Hg 'H, i.e., HgH = Hg 'H.
(1.6.3) gHg™! C HgHU {e} forany g € G.
We may assume that g ¢ H.Leth € H, with h ¢ g~ 'Hg. Then p, g”'p, and hg~'p
are three distinct points on the line L = p + g~ 'p. Since G acts doubly transitively on L,
there is a j € G such that

jp=g"'p and jg''p=hg 'p.
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Then we have j = g~ 'hy for some h; € H, and g~'hjg~'p = hg™'p, so that hg™! €
g 'hg~'H, whence
ghg™' € Hg™'H 152 HgH.

It remains to consider elements of the form ghg~! with h € HN g~'Hg. Such an h has
the two distinct points p, g~'p € § as fixed points, and so by [L, p. 271, Thm. 5], h = e,
and ghg™' = e.

This completes the proof of (1.6), and of Theorem 1a. n

Our next task is to describe a functor ©: G — v pseudo-inverse to I'. This is basically
an elaboration of [L, §7].

For (G,H) € G, set

T = T u = { translations of (G, H)}
d:ef{e} U {g € G| no conjugate of g lies in H} .

The set T is closed under conjugation:

iTit=T (€G).

As above, ®(G,H) = (G,G/ H,H) € §; and it is immediate that T is the set of all trans-
lations of (G, G/ H, H)—f. beginning of this § 1. Hence, by [L, p. 274, Thm. 111, T is an
abelian (normal) subgroup of G. We also note, for later use, the following consequence
of [L, p. 272, Thm. 8]:
(1.7) Each left coset gH contains exactly one translation.

Let E be the ring of additive endomorphisms of 7, with zero-element 0 = 0z. We
define a mapv: H — E by

[Y(W))(t) = hth™! (heH, teT).

According to [L, p. 276], 7Y is injective and F = Y(H) U {0} is a subfield of E. Thus
T is a vector space over F.

Extend ¥ to ¥: HU {0} — E sending 0 to 0. Since 7 is injective, there is a unique
field structure on H = HU {0} such that ¥ is a field isomorphism. For this structure,
the product of two elements h;, h, € H is the same as their product in G. In particular,
the multiplicative identity 1 is e. The additive inverse —h; € H is the unique h € H
such that

hth™" = (hyth7)) " = bWl forall reT.

If hy # —hy, then the sum h; + h, € H is the unique & € H such that forallt € T
(1.8) hth™' = hyth] ' hyths .

All this follows from [L, p. 276]. We leave it to the reader to explicate sums and products
in H involving 0.
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Accordingly, we can regard T as a vector space over H, with scalar multiplication

h-t=hth™! (heH, teT).

REMARK 1.9. Given hy,hy € H, with hy # —h,, if h € H is such that (1.8) holds
for one non-identity ¢t € T, then h = h; + h,.

This follows from [L, p. 275, Cor. 12.1] and the injectivity of Y.

The above-mentioned functor O is specified by:

O(G,H) = (T, H)
O(f: (G, H)— (G, H')) = (. 0p): Tou, H)— Tomw, H)
where
Cr(H) = f(0) (te€Ten)
Or(h) =f(h)y  (heH)
6;(0)=0.
To see that © is indeed a functor from G to ¥ we need to prove that ((y,6y) is an
injective semi-linear map.
The injectivity of (; follows from that of f, which in turn follows from the fact that
O(f) = (f,4y) is amap in S (cf. (2) in (1.3) above.)
The conditions
(it + 1) = Cr(t) +(p(t)  (t1,12 € To )
(r(hr) = Op(h)s(1) (h € H, tE€T)
s (hihy) = 8p(h1)0s(hy)  (hy,hy € H)
0:(13) = 15
are trivial to verify. It remains then to show that

(1.10) 0:(hy + ha) = G;(hy) + O(h) (h, hy € H).

If any one of hy, hy, or h; + h; is 0, then (1.10) is obvious. Otherwise, we can apply f
to (1.8), where h = h; + hy and ¢t is a non-identity translation (which exists by (1.7),
since G # H, cf. (GH1)) to get

FFOFR)™" = FR)FOFf (h) " Fh)f()f (ho) .

By (0.2.2), no conjugate of f(¢) lies in H', i.e., f(¢) is a non-identity translation of (G, H').
Hence by (1.9),
f(hi +hy) = f(h) = f(l) +f(hy),

proving (1.10).
Now that we have the functor ©, let us show that it is a pseudo-inverse of T".
For (G,H) € G, and T = Ty, definitions yield

reG, o = ({nn}, {h01}) (heH teD
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where [h,t]: T — T is the map defined by
[hArT)=(YWr)t=hrh™t (€T

We define a map
a = agu:10(G, H) — (G, H)

by
alh,t] = th.

Clearly a{ [A, 0] } = H; and one checks (using the fact that T is an abelian normal
subgroup of G) that

a([hnoK,11)=th'H = alh,Na[K,1],

so that « is a map in the category G Furthermore, « is an isomorphism in G (hence,
as previously remarked, in G) because, by (1.7), every element in G is uniquely of the
form th.3 Finally, « is functorial, i.e., for any arrow f: (G,H) — (G',H') in G, the
resulting diagram

aGH

re(G,Hy — (G,H)

re¢ | Lr

[e2e74
—

oG, H') (G, H)

commutes, as follows easily from definitions. Thus we have an isomorphism of functors
re —1g.

Next, for (V, F) € V, let (G, H) = I'(V, F) be as in the Introduction, and let T be the
subgroup of G consisting of all the translations [1,v] with v € V, so that with H as above
we have

OI(V,F) = (T, H).

We define a map
€,0) = v, Ovp): OI(V,F) — (V,F)

by
(lLvl=v (veV)
fla,0l=a (0#a€F

Both ¢ and @ are bijective. We leave it to the reader to check (mechanically, via defini-
tions) that ((, @) is semi-linear, and hence is an isomorphism in V. For functoriality, we

3 The reader who so desires can rephrase this argument in terms of semi-direct products.
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need to check that for any arrow (£,7): (V,F) — (V/,F') in V/, the following diagram

commutes:
v.rbvF)

OI'(V,F) — (V,F)

er¢m | Lem

Gyt > Oyt )
—

er\V,F) (V',F)

This again is a mechanical exercise. So we have an isomorphism of functors O —— 1;
and O is indeed a pseudo-inverse of I'.

This completes the proof of Theorem 1. n

REMARK 1.11. Let us verify Remark (iii) in the Introduction. Assuming (GH1)-
(GH3), we can prove (GH2)* as in (1.4.1); and we find that

(HgH U H)(HgHU H)™' = (HgHU H)(Hg™'HU H)
= HgHg 'HU HgHU Hg 'HU H
CHgHU H,

yielding (GH3)*. Conversely, (GH3)* easily implies (GH3) and that for any g € G,
gHg™' C (HgH U H)(HgHU H)™' C (HgHU H).
So to prove (GH2), we need to show that if g ¢ H then
gHg 'NH={e}.

For this, observe that (GH3)* alone is enough for the proof of (1.4.3), (GH1) is enough
for (1.4.2), and (GH2)* is enough for (1.4.1). So we can apply [L, p. 271, Thm. 5] to any
h € gHg ' N H: since hH = H and hgH = gH, therefore h = e. .

REMARK 1.12. Here is a variation on the theme of Theorem 1.
Recall the definition of “faithful group action” given near the beginning of Section 1.
Let H be a group acting faithfully on a group 7, via automorphisms, i.e.,

h(ty -ty =ht1-hty (hE€ H; t;,t, €T)
where - is the group operation in 7. The orbit (t) of t € T is the set
() ={ht|heH}.

For example, the orbit of the identity element er consists of e alone.
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THEOREM 1B. Let H be a group acting faithfully via automorphisms on a group T.
Then the following conditions (1) and (2) are equivalent:
(1) (i) There are at least three distinct orbits in T, and
(ii) forany t € T, (t) U { er} is a subgroup of T.
(2) There is a vector space V of dimension Z 2 over a field F, such that H is the
multiplicative group of F, T is the additive group of V, and the action HXT — T
is induced by the scalar multiplication F X V — V.

PROOF. Let G be the semi-direct product of H by T with respect to the given action:
G is the set T X H with multiplication

&, h)(?, W) = (t-ht,hH).

H can be identified with the subgroup { (er,h) | h € H} of G, T can be identified
with the normal subgroup { (t,ey) | t € T}, and then the action of H on T is given by
conjugation inside G. Note that:

(%) every element g € G is uniquely of the formg =th (t €T, h € H).

In view of Remark (1.11) and the proof of Theorem 1, we can prove the implication
(1) = (2) by showing that the pair G D H satisfies (GH1), (GH2)* and (GH3)*; and
that 7 is the set of translations of (G, H), i.e., a non-identity element g € Gis in T if and
only if no conjugate of g is in H.

For (GH1), choose ¢,/ € T such that the orbits (), (¢}, and (er) are distinct. Insid-
e G, if ¥ were in HtH we would have

! = hth' = (hth™"\ht') (h,K € H)

whence, by (), 7 = hth™' € (t). So ¢ ¢ HtH, and the three double cosets HtH, Hf H
and H are distinct, proving (GH1).
For (GH2)*, let t € T and consider an element h € H N tHt~!. We have

eh = h= (thit 'hyYhy (b € H)

whence, by (%), e = thit"'hy! and h = hy, so that hth™! = 1. Thus if h € N tHt™!,
then hth™! = tfor all t € T, and since H acts faithfully on T, therefore h = e, proving
(GH2)*.

For (GH3)*, note first that for any ¢ € T we have, inside G,

(%) H(t) = (1)H,

as follows from the identities
hyhth™" = (hyhth™ By YRy
hth™'hy = hy(hy'hth™"hy) (b, by € H).
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For any g € G, writing g = th, cf. (x), we see then that
HgHU H = HtHU H = H(t) U H,

and we deduce easily from (ii) in (1) and from (*x) that HgH U H is a subgroup of G,
proving (GH3)*.

Finally, since the normal subgroup 7' equals any of its conjugates in G, and since
TN H= {e},itis clear that every ¢ € T is a translation. Conversely, if g = th (cf. (x))
is a translation, then (1.7) impliesthat g =t € T.

This completes the proof that (1) = (2); and the implication (2) = (1) is clear. .

There is an obvious functor I'™* from the category ¥ to the category whose objects are
pairs (T, H) satisfying the conditions in Theorem 1b, and whose arrows (T, H) — (T', H')
are pairs (£,7) where £ : T — T is an injective group homomorphism and n: H — H' is
a group homomorphism such that

E)y=n)E@) (heH teT).

We leave it to the reader to verify that: I™* is an equivalence of categories.

2. Proof of Theorem 2.

PROPOSITION 2.1.  Let (V,F)and T'(V,F) = (G, H) be as in the Introduction. To each
subspace V' of V associate the subgroup To(V') of G given by

Iﬂo(V')={[a,v]EGlO;éaeF,vEV'}.

(1) T is an inclusion preserving bijective map from the set of subspaces of V onto
the set of subgroups of G containing H.
(2) For any element 0 # v € V and any non-zero ¢ € F we have

I'y(Fv) = (H[c,vIH)U H.
(3) For any two subspaces V) C V, V, C V, we have
To(Vi + V2) = To(V)Io(V2) = To(V2)[o(V1).

PROOF. (1) First of all it is clear that To(V’) is a subgroup of G containing H.
We show that Iy is bijective by constructing an inverse map. For any subgroup G’ C G
with G’ D H set

0yG) = {veV|llved}

Since
[I,Vl][l,VZ] = [1,\)] +V2],

therefore ©y(G’) is closed under addition; and since for non- zero a € F we have [a,0] €
H C G and
[a,01[1,v][a,0]"" = [1,av],
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therefore @¢(G’) is closed under scalar multiplication; so @g(G’) is a subspace of V.
By definition

RS OOFO(V') < [1,v] € FO(V’) —ve V’,

ie., OOFO(V’) =V.
Moreover, if [1,v] € G’ and 0 # a € F, then

la,v] = [1,v][a,0] € G';
and conversely if [a,v] € G, then
[1,v] = [a,v][a,0]" € G

It follows easily that Ty@y(G’) = G, and (1) is proved.
(2) We have

To(Fv) = {[a,bv] | 0#£a €F, 0#£beF}U {[a,01| 0# a € F}
= {[b,0)[c.vllc™'b™'a,0] |0 £ a€F, 0#bEF UH
= (Hlc,vIH)U H.
(3) The inclusions
Lo(Va)T'o(Vi) CTo(Vi + V2) D To(Vi)Io(V2)
are obvious; and the opposite inclusions follow from the equalities
(1, v2lla, vil = [a,vi +v2] = [1,vi]la, v2].
[ ]

COROLLARY 2.2. Given vectors vy, Vi,...,vs € V, and non-zero elements ¢; € F
(0 = i £ n), with g; = [c;, vi] we have that

Vo is linearly dependent on vy, vy, ..., v,
<= go € (Hg1HU H)(Hg,HU H)- - - (Hg,H U H).

COROLLARY 2.3. T induces a one-one correspondence between the set of 1- di-
mensional subspaces of V (i.e., the points of the projective space P(V,F)) and the set of
double cosets HgH # H.

COROLLARY 2.4. Let ((,0):(V,F) — (V',F) be a semi-linear map, and let
f=T,0):T(V,F) = (G,H)— (G ,H) = T(V,F).
Then ¢ is linearly faithful <= (0. 3) holds.

PROOF. Recall from the Introduction that { linearly faithful means that every sub-
space V; C V is of the form ¢ ~!(V}) for some subspace V| C V'. The conclusion follows
easily from (1) in (2.1). n
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Let us show now that, as asserted in the Introduction, the functors T and © induce
pseudo-inverse equivalences between the categories V5 C V and G C G.

It will suffice to show that (a): I'(14) C G3, and (b): ©(G3) C 74. Then any pair of
isomorphisms 'O AN 1, 8 =5 1, will induce similar isomorphisms for the restric-
tions of I" and © to V4 and Gj respectively, because any isomorphism in ¥ between
objects of V4 is linearly faithful, and hence is an isomorphism in 74; and similarly any
isomorphism in G between objects of Gj is an isomorphism in G;.

Assertion (a) follows easily for objects from (2.2) and for arrows from (2.4).

As for (b), let us first consider an object (G, H) € G3, and set ©(G, H) = (V, F). Then
(G, H) is isomorphic to I'(V, F) (in G). By definition of G3,

G # (HgiHU HYHg,HU H) forall gy,g, € G,
and it follows from (2.2) that V is not spanned by two 1-dimensional subspaces, i.e.,
dim V3 = 3,ie., (V,F) € 1.

Let f:(G,H) — (G',H') be a map in G3, and let (V,F) = O(G,H), (V.F) =

O(G', H'). Then the functorial isomorphism I'© 1 gives a commutative diagram

I'V,F) — (G,H)

re¢) | lr

~

rv,rF) — (G,H)
where the horizontal arrows are isomorphisms. Then I'O(f) satisfies condition (0.3) since
f does; and hence by (2.4), O(f) is linearly faithful. This completes the proof of (b). =
Next let us note that I' and © respect the equivalence relations R and R* defined in
the Introduction. Indeed, if (G, H) = I'(V, F), and if 0 # a € F, so that h = [a,0] € H,
then

I'(Gas 04) = Vh.
Conversely, if (V, F) = ©(G, H), then there is an a € F such that
O(Vn) = (s ba).
To see this, recall that there is a functorial isomorphism
f:(G,H) = TO(G, H)

and hence I'O(7;) = Ysu); but as we just saw, there is an a such that I'({;,0,) = Yy
and since the equivalence I" acts injectively on arrows, this a is as desired.
The existence of the functor © defined near the end of the Introduction follows easily,
as does the existence of a unique functor I' making the following diagram commute:
r

G — N
P Lo

Gs/ R* L 5/ R
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Finally, © and T are pseudo-inverse equivalences. For example to get an isomorphism

re =1 G/R' we need foreach A = (G, H) € G3 / R* an isomorphism re|) —
A. But T®(A) = T'O(A), and we have an isomorphism f:®(4) — A in G;. The
equivalence class of f under R* gives what we want.

Theorem 2 should now be clear.
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