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GROUP-THEORETIC AXIOMS FOR PROJECTIVE GEOMETRY 

ALEX D. GOTTLIEB AND JOSEPH LIPMAN 

ABSTRACT. We show that a certain category Q whose objects are pairs 
G D H of groups subject to simple axioms is equivalent to the category of 
^ 2-dimensional vector spaces and injective semi-linear maps; and deduce 
via the "Fundamental Theorem of Projective Geometry" that the category of 
^ 2-dimensional projective spaces is equivalent to the quotient of a suitable 
subcategory of Q by the least equivalence relation which identifies conjuga
tion by any element of H with the identity automorphism of G. 

0. Introduction. Let V be a left vector space of dimension ^ 2 over a (not neces
sarily commutative) field F. For any pair 0 / Û G F, v G V, let [a, v]: V —-> V be the map 
given by 

[a, v](w) = aw + v (w G V). 

The set G of all such maps is closed under composition: 

[a,v] o [a,v] = [ad, av + v] ; 

and each [a, v] is bijective, with inverse 

[^v]-1 = [a~l
9 -a~lv]. 

So G is a group of transformations of V, with identity element e — [1,0]. 
Denote by H the subgroup of G consisting of all maps of the form [a, 0]. H is iso

morphic to the multiplicative group of non-zero elements in F. 
Denote by T the subgroup of G consisting of all maps of the form [ 1, v]. T is a normal 

subgroup of G, isomorphic to the additive group V. Every element of G is uniquely of 
the form th, with t eT,heH: 

[fl,v] = [l,v][fl,0]. 

The elements of T are called translations. One checks that: 
(0.1) A non-identity element g G G is a translation if and only if no conjugate of g lies 

in//. 
Recall that for g G G, the double coset HgH is the set 

HgH= {hlgh2 | geGtmdhuh2 G / / } . 
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One verifies the following properties of the pair (G, H). 
(GH1) For all g G G, 

G ^ HgHU H. 

(In other words H has at least three distinct double cosets in G.) 

(GH2) For all g G G, 

gHg-lCHgHU{e}. 

(GH3) For all g G G, 
HgH = //g"1 / / . 

REMARKS. 

(i) With regard to (GH2), note that for g G G and h G //, 

g/ig-1 = e ^=> h — e. 

(ii) The property (GH3) follows formally from (GH2), except when H = {e} , in 
which case (GH2) says nothing at all. Indeed, if g G G and e ^ h £ H, then 
applying (GH2) twice we get 

gh-lg-leHgH, 

gh~lg-1 = ( g / ^ - V G (//g/zr1 - //g-1//; 

so the double cosets HgH and Hg~lH meet, and hence they are equal, 
(iii) We will see later (Remark 1.11) that given (GH1), conditions (GH2) and (GH3) 

together are group-theoretically equivalent to: 

(GH2Y f)gHg-] = {e},md 
gee 

(G//3)* for each g G G, HgHU H is a subgroup of G. 

Now let V be the category whose objects are all pairs (V, F) as above, and whose 
arrows are injective semi-linear maps 

(C,0):(V,f) —(V,f ) -

More specifically: 
— 6 : F —• /<* is a homomorphism of fields. 
— £ : V —• V' is an injective map satisfying 

C(vi + v2) = Ç(vi) + C(v2) ( v i ' v2 e V), 
C(av) = 6(aX(v) (a G F, v G V). 

Let Ç be the category whose objects are pairs (G, //) consisting of a group G and a 
subgroup H satisfying (GH1)-(GH3) above, and whose arrows (G,//) —> (G',H') are 
those group homomorphisms/: G^> G* satisfying 
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(0.2.1) f(H)C(H% and 
(0.2.2) if g G G has no conjugate lying in //, then/(g) G G' has no conjugate lying in //'. 

We define a functor T: V —• Ç as follows: 
— For any object (V, F), T( V7, F) is the pair (G, //) described at the beginning of this 

Introduction. 
— For any arrow (C, 6 ): (V, F) —• ( V7, f ) , the arrow 

r(c,6/).r(v,F)-^r(v/,fy) 

is given by the formula 

r(C,fl)[fl,v] = [fl(fl),C(v)]. 

To verify that T is indeed a functor, check that it respects categorical identities 
and composition, and that T(£,0) is a group homomorphism satisfying (0.2.1) 
and (0.2.2)—cf. (0.1). 

Our main result is: 

THEOREM 1. T is an equivalence of categories. 

In other words, there exists a functor 0 : Q —* V together with isomorphisms of 
functors 

re^-iç, er-^i^ 
(where 1 denotes an identity functor). Such a functor 0 is called a pseudo-inverse of V. 

The title of this paper refers to Theorem 2 below. By way of explanation, we first 
reformulate the Fundamental Theorem of Projective Geometry [A, p. 88] in the language 
of categories. 

The projective space P = P(V,F) is, by definition, the set of one-dimensional sub-
spaces of V. A projective subspace of P is a subset consisting of all the one-dimensional 
subspaces of some vector subspace of V. 

A sequence (x\,*2,... ,xn) in P is linearly independent if for each i — 1,2,..., n, 
xt lies outside some projective subspace Pi C P which contains Xj for all j ^ /; l and 
linearly dependent otherwise. Three points x\,X2,x$ G P are collinear if (JCI,JC2,JC3) is 
linearly dependent. 

A map 
TT: P(V,F) = P-^Pf = P(V,F*) 

is a collineation if for any three collinear points x\,xi,x$ G P the points 
7r(jci),7r(jt2), 7T(JC3) G P are also collinear. A rather simple induction shows that this is 
equivalent to n mapping every linearly dependent sequence in P to a linearly dependent 

1 i.e., if the subspace x\ + X2 + . . . + x„ C V spanned by the xt has dimension n. 
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sequence in P/. We say that ix is linearly faithful if it satisfies the following conditions, 
which are (exercise) equivalent: 

— A sequence (JCI , X2,..., xn) in P is linearly independent if and only if the sequence 
(7T(JCI), 7r(jt2),..., 7r(xn)) in P' is linearly independent. 

— Every projective subspace Pi C P is of the form 7r_1(^i) for some projective 
subspace P ' jCP ' . Any linearly faithful map is an injective collineation. A bijec-
tive collineation 7r is linearly faithful if and only if 7r_1 is a collineation. 

We define fy, the category of projective spaces of dimension ^ 2, as follows: 
— The objects of f?2 are the vector spaces (V, F) of dimension ^ 3. 
— The arrows (V,F) —» (Vf,F) in fy are the linearly faithful maps n: P(V, F) —> 

P(V\F). 
Let 1^ be the subcategory of V with objects the vector spaces (V,F) of dimension 

^ 3, and with arrows the semi-linear maps 

(C,0):(V,F> — ( V , ^ ) 

such that £ is linearly faithful in the sense that it satisfies the following equivalent con
ditions: 

— A sequence (vi, V2,..., vn) in V is linearly independent (over F) if and only if the 
sequence (Ç (x\ ), £ fe),..., C, (xn)) in V is linearly independent (over F). 

— Every linear subspace V\ C V is of the form £_1(V{) for some linear subspace 
V[ C V. 

REMARKS. 

(i) If £ is linearly faithful then £ is injective. 
(ii) If £ is injective and 0 is bijective then £ is linearly faithful. 2 

(iii) If dim V ^ 3, and if a is any non-zero element of F, then the automorphism 
(C,0a):(V,/O->(V,F) given by 

C(v) = tfv (vGV) 

0fl(6) - flftfl"1 (ft € F) 

is an arrow in V^. 
We define a functor II: 1À, —+ îP2 by 

n(V,F) = (V,F), 

n((C,0) : (V,F)^(V / , f y ) ) = ^c 

where for each non-zero v € V, 7r̂  takes the subspace Fv e P(V,F) to the subspace 
F((v)eP(V\F). 

2 More generally, £ is linearly faithful <=*• the map F ®FV —+V induced by (£, 0 ) is 
injective. 
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Next we form a quotient category of lA, through which n factors. Let R be the e-
quivalence relation under which two arrows in V3 

are equivalent if there exists a non-zero Û G F ' such that 

(<2,02) = (CA)o(Ci,0i). 

The quotient category V^j R has the same objects as ^ ; but for two objects (V, F), 
(V*,/^), the l^/R-arrows (V,F) —> (V\Ff) are the equivalence classes under R of ar
rows in lA, between these two objects, composition being defined in the natural way. 

There is a canonical functor p : 1^ —-+ % / R taking any object to itself and taking any 
arrow to its equivalence class; and it is easily checked that there is a unique functor 

n:0>3/R —2> 2 

such that 

n = ïïop. 
Now, at last, we can state: 

FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY. The functor ÏÏ is an isomor
phism of categories. 

In other words, Ft is bijective on objects (clearly) and on arrows: every arrow in T2 is 
of the form n^, and 

TTC = irc <=^ C = C' ( m ° d R ) 

The proof is essentially given by E. Artin in [A, pp. 88-91]. Artin restricts his attention 
to finite-dimensional spaces and to arrows which are isomorphisms; but his arguments 
are easily modified to cover the present statement. 

The Fundamental Theorem in some sense reduces Projective Geometry to Linear Al
gebra. Consequently, using Theorem 1, we can reduce Projective Geometry to Group 
Theory. Here is a precise formulation; proofs are provided in § 2. 

Let Ç3 be the subcategory of Q whose objects are pairs (G,H) satisfying (GH2), 
(GH3)—or (GH2)*, (GH3)*—and 

(GH1)* Fora l l£ i , s 2 €G, 

(*) G^(HglUH)(Hg2UH); 

and whose arrows/: (G,H) —• (G', H') are those of Ç which further satisfy: 

(0.3) Every subgroup G\ of G containing H is of the form/~1(G/
1) for some subgroup 

G\ of G' containing H'. 

If 0 is, as above, a pseudo-inverse of T, then (GH1)* is equivalent to the vector space 
0(G,//) having dimension ^ 3 (cf. Corollary (2.2), which also shows that if (*) holds 
for some two elements g\,g2 £ G such that 

H ? Hg]H ̂  Hg2H ^ H 
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then it holds for all gi,g2 £ G); and (0.3) is equivalent to G(f) being linearly faith
ful. In fact the above functors T and 0 induce pseudo-inverse equivalences between the 
categories V^ C V and Q^ C Ç. 

Note that if (G,//) G Ç3 then for any h G //, the inner automorphism lh\G —> G, 
given by 

7*(s) = hgh~l (g G G) 

is an arrow in (73. 
On ^3 we consider the equivalence relation R* under which two arrows 

fuf2:(G,H)-^(G\H') 

are equivalent if there exists an h G H1 such that jfe = lh °f\- As above, we have 
a quotient category (73/R\ together with a canonical functor p*: Q^ ~* (73/R*. And 
there is a unique functor 0 : Ç^/ R* —-> 1^/ R making the following diagram commute: 

£3 - ^ ^3 

P ' i 1 P 

0 

77n's 0 is also an equivalence of categories. 
Following 0 by the isomorphism II, we obtain the above-indicated group-theoretic 

foundations for projective geometry: 

THEOREM 2. The category fP2 of projective spaces of dimension ^ 2 is equivalent 
to the quotient category £73/ R* just described. 

1. Proof of Theorem 1. We first define a category S which will serve as an inter
mediary in the proof of the equivalence of Q and V. 

The objects of 5, called "pointed geometries," are triples (G, S,p) with S a set, p G S, 
and G a group acting faithfully on S, i.e., there is a map G x 5 —• 5—for which the image 
of a pair (g, s) is denoted gs—such that 

(gh)s = g(hs) (g,heG;seS) 

and such that 
gs = s for all s G S <=ï g = e, the identity. 

(For motivation, consider the triple (G, V, 0) described at the beginning of the Introduc
tion; or cf. [L]). A translation of (G,S,/?) is defined as in [L, p. 272] to be an element 
g G G such that either g = e or g has no fixed points (i.e., gs ^ s for all s G 5). A line of 
(G, S,/?) is by definition a subset of S of the form 

si + $2 = { s G S I ^ = si or 3g G G with gs\ = si, g$2 = s } 
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where s\, S2 are distinct points in 5. It is assumed further that G acts doubly transitively 
on lines, but not on all of S. (Cf. [L, p. 268, AXIOM 1, and p. 271, AXIOM 2]; recall 
that a group acts doubly transitively on a set if for any s\, si, S3, s4 in the set with s\ ^ S2, 
S3 ^ 54, there is a g in the group such that gs\ — S3 and gS2 = S4.) Note that then G acts 
transitively on S, i.e., for any s\,S2 in S there is a g in G with gs\ = 52. (There is even 
such a g which furthermore satisfies gS2 = s\: this is obvious if s\ = S2, and otherwise 
holds because s\ and S2 both lie on the line s\ +52). 

The arrows of 5 are pairs 

(</>,0):(G,S,/7)-+(G',SV) 

where <j> : G —-> G' is a group homomorphism and t/; : S —• S' is a map of sets with 
i/> (/?) = //, such that 

(1.1) V(gs) - <Ê($W> W (^ € G, se SI and 
(1.2) </> takes non-identity translations of (G, S,p) to non-identity translations of 

(G' ,SV). 
The composition of the two arrows (0 ,0 ) : (G,S,/?) —• (G\S\pf) and 

(</>', VO: (G', S',//) -> (G", S",//') is defined in the obvious way: 

((/>^t/;0o((/>,^) = ((/> ,o(/>,^/oV;):(G^,/7)-^(G , ,,5 , ,,/7 , ,). 

We observe in passing the following facts. 

REMARKS 1.3. Let (<j> ,ip)be a pair as above satisfying (1.1). 
(1) Ifx/j is bijective then (1.2) holds. 
(2) If (1.2) /*<?/<& //Ï£TZ fotf/i <j> and 0 are injective. 

PROOF. (1) Assuming i/; to be bijective, let g be a non-identity translation of 
(G, 5,/?), so that gs ^ s for any ^ G 5 . Since V> is injective, therefore 

<l>(g)il)(s)= *p(gs)^ VO); 

and since -0 is surjective, this means that </> (g)^ ^ ^ for any sf G S', i.e., <j> (g) is a 
non-identity translation of (G', S',//). Thus (1.2) holds. 

(2) Assuming (1.2), let us show first that \jj is injective. Let s\,S2 be distinct points 
of S. By [L, p. 272, Thm. 8] there exists a translation g (obviously non-identity) with 
gs\ = S2. Then 

0 f e ) = i>(gsi) = (f>(g)^(si) ± ip(s{) 

because <j> (g) is a non-identity translation. So \j) is indeed injective. 
Finally, if g G G is such that 0 (g) = e', the identity in G', then for every s G S we 

have 
\l>(gs) = (t>(g)il)(s) = ^(s), 

and since -0 is injective, therefore gs = s. So g = e, and <j> is injective, as asserted. • 
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We show now that: 

THEOREM 1A. The categories Q and S are equivalent. 

PROOF. The asserted equivalence is induced by a well-known equivalence 

0 > : £ - + 5 

where the categories Q D Q and S D S are as follows: 
The objects of Q are pairs (G, H) with G a group and H a subgroup of G; and the arrows 

(G, H) —> (G', # ') are the group homomorphisms/: G -+ G' for which/(//) C H'. 
The objects of 5 are triples (G, S,/?) with S a set, /? G 5, and G a group acting tran

sitively on S\ and the arrows (G,S,p) —•* (G',Sf,p') are pairs of maps (</>,V0 a s above, 
satisfying (1.1) (but not necessarily (1.2)). 

For (G, //) G Ç, let G/ / / be the set consisting of all the left cosets of HinG.G acts 
transitively on Gj H by left multiplication. 

The above equivalence O is the functor given by 

<D(G,//) = (G, G/ / / , / / ) 

0 ( / : (G, //) — (G;, //') ) = (A V/): (G, G/H,H)-> (G', G'/ //', //') 

where 
%(gH)=f(g)Hf (geG). 

For (G, S,p) G 5, let Gp C G be the stabilizer of /?, i.e., the subgroup 

G p ^ f g e G l g / ? ^ / ? } . 

It is straightforward to verify that a pseudo-inverse of 0 is the functor 4/: 5 —* Q given 
by 

¥(G,S,p) = (G,G„) 

^((</>,^):(G,5,/7)^(G , ,y,/7 ,)) = (/>:(G,Gp)-,(G ,,G;,). 

In fact ^ O = 1-̂  ; and a functorial isomorphism O ^ — • 1^ is given for (G, 5,/?) G 5 
by 

( l ,^ ) :OH'(G,5 ,p)=(G,G/G p ,G p )^U(G,S,p) 

where VK#G>) = gp. _ 
We will show that O maps the subcategory Ç oî Ç into the subcategory S of 5, and 

that 4* maps S into £7. It is easily checked that an isomorphism in Q between two objects 
of Q is actually an isomorphism in Q\ and similarly for 5 C S. It will follow then 
that the restrictions 0/O and*? to the respective subcategories Ç, S are pseudo-inverse 
equivalences, proving Theorem 1 a. 

From the simple fact that g G G is a non-identity translation of (G,S,p) G Ç (i.e., 
gs ^ s for all s G S) if and only if no conjugate of g lies in Gp, it follows easily that O 
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takes arrows of Q to arrows of S, and that *P takes arrows of S to arrows of Ç. So it 
remains to examine the effect of O (resp. *¥) on objects of Q (resp. S). 

Let us show that: 

(1.4) <D(G,#) = ( G , G / # , / 7 ) G 5 for(G,H)eÇ. 

(1.4.1) G acts faithfully on G JH. 
We must show: if g' G G is such that g'gH = gH for all gH G Gj //, i.e., g' G gHg~l 

for all g £ G, then g' = <?. But by (GH1) there is a g G G such that the double cosets 
//#// and / / are distinct, whence HgHD H — 0; and from (GH2) we then get 

g' G gHg~l n eHe~l C (//g//U {e})C\ H = {e}. 

(1.4.2) G does not act doubly transitively on Gj H. 
By (GH1) there exist three distinct double cosets //, HgH, Hg'H. Then H ^ g~lH and 

g'// ^ //, but there is no y G G such that y7/ = g'// and jg~l H — //, since such ay would 
l i e i n / / g 7 / n / / g / / = 0 . 

(1.4.3) G acts doubly transitively on lines. 
We first give a condition for cH EG/ H to lie on a line «// + bH. 

LEMMA 1.5. IfaH ^ bH and aH ^ cH are in Gj H, then 

cHEaH + bH <=> a~lc G Ha~lbH 
(i) 

*=> {aH)-\cH) = (aH)-l(bH). 
(ii) 

PROOF. Since c// ̂  a//, we have 

cH EaH + bH <==> 3g G G with ga// = «//, g&// = c// 

^=^//«~1^n«_1c//^0 
4=^ a~lc G Ha~lbH. 

This proves the logical equivalence (i); and (ii) is obvious. • 
Now let glH, g2H, g3H, g4H G aH + bH, glH ? g2H, g3H ̂  g4H. By (1.5), 

a-lgteHU Ha~lbH (i = 1,2,3,4). 

Note that a~lgi G H 4=> giH = a//. In particular, a_1gi and a~xg2 can't both lie in H. 
It follows that 

g - 1 ^ = (g-[la)(a~lg2) G Hb~laHU Ha~lbHU (Hb-laH)(Ha~lbH). 

By (GH3), 
//fc-1^// = Ha~lbH, 
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and by (GH2), 

(Hb-laH)(Ha~lbH) = H(b~laHa~lb)H C Hb~laHU //; 

since g\H ^ g2H, therefore g\xg2 £ H, and we conclude then that g\xgi G HaTxbH. 
Similarly, gJxg4 G Ha~xbH. So 

Hgîlg2H = Ha-lbH = Hgïlg4H, 

i.e., there exist h\, h2 G H such that 

h\g^xg2h2 = gïlg4. 

Thus, for g\H,g2H,g3H,g4H on one line, g\H ^ g2H, g3// ^ g4H, there is an ele
ment of G, (namely g3>h\g\x = g4h2Xg2

x) which sends g\Hto g3// and g2# to g4H. 
This completes the proof of (1.4) • 
Let us show finally that 

(1.6) *F(G,S,p) = (G,GP) G Ç for (G,S,p) G 5. 

For convenience, set Gp — H. 
(1.6.1) G ^ HgHU H for any g G G. 
For, were G — HgHU H, then for any point/? ^ p\ G S we would have (by transitivity, 

see the definition of 5), for some g\ G G, 

Pi = £iP = ^i#P (M G //) , 

and since h\p — p thereforep\ G p + gp- Thus the line/? + g/? would be all of 5; and since 
G acts doubly transitively on lines, but not on all of S, we would have a contradiction. 

(1.6.2) HgH = Hg-XH for any g G G. 
We may assume that g £ H, i.e., g/? ^ p. Since G acts doubly transitively on the line 

p + gp, there exists g\ G G such that 

S iP = £P> £i£P = P-

It follows that there exist h\,h2 G H such that 

Si = gh\ = h2g~l. 

Hence g G //g"1 / / , i.e., HgH = / /g ' 1 / / . 
(1.6.3) g/Zg-1 C //g//U { e} for any g <E G. 
We may assume that g £ H. Let h G H, with /* ^ g~lHg. Then/7, g~~xp, and hg~xp 

are three distinct points on the line L = p + g~xp. Since G acts doubly transitively on L, 
there is a 7 G G such that 

JP = g~lP and 7g"1/? = hg~xp. 
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Then we have j — g~lh\ for some h\ G H, and g~lh\g~xp = hg~lp, so that hg~l G 
g~lh\g~lH, whence 

ghg-^Hg-^^HgH. 

It remains to consider elements of the form ghg~l with h G H H g~lHg. Such an h has 
the two distinct points p, g~lp € S as fixed points, and so by [L, p. 271, Thm. 5], h = e, 
and ghg~l = e. 

This completes the proof of ( 1.6), and of Theorem la. • 
Our next task is to describe a functor 0: Q —• V pseudo-inverse to T. This is basically 

an elaboration of [L, § 7]. 
For (G,H)e Ç, set 

T = TGyH = {translations of (G, H)} 

def 
— { ^ } U { g E G | n o conjugate of g lies in H} . 

The set T is closed under conjugation: 

jTj-1 = T (j e G). 

As above, 0(G, H) — (G, G/ // , / /) G 5; and it is immediate that T is the set of all trans
lations of (G, GI //, H)—cf. beginning of this § 1. Hence, by [L, p. 274, Thm. 11], T is an 
abelian (normal) subgroup of G. We also note, for later use, the following consequence 
of [L, p. 272, Thm. 8]: 

(1.7) Each left coset gH contains exactly one translation. 
Let E be the ring of additive endomorphisms of T, with zero-element 0 = 0E. We 

define a map7:H —+ Eby 

[l(h)](t) = hth~x (h G//, teT). 

According to [L, p. 276], 7 is injective and F = 1(H) U { 0} is a subfield of E. Thus 
T is a vector space over F. 

Extend 7 to 7 : H U {0} —> E sending 0 to 0. Since 7 is injective, there is a unique 
field structure on H = H U { 0} such that 7 is a field isomorphism. For this structure, 
the product of two elements h\, \i2 G H is the same as their product in G. In particular, 
the multiplicative identity 1^ is e. The additive inverse —h\ G H is the unique h £ H 
such that 

/tf/T1 = (/ i i^r1) - 1 = hirlh~l for all f G 7. 

If /*2 T̂  — /*i, then the sum h\ + hi G H is the unique /i G / / such that for all f G r 

(1.8) fo/T1 = hithilh2th2l. 

All this follows from [L, p. 276]. We leave it to the reader to explicate sums and products 
in H involving 0. 
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Accordingly, we can regard T as a vector space over //, with scalar multiplication 

h-t = hth~l (heH, teT). 

REMARK 1.9. Given huh2 G H, with h\ ^ -h2, if h G H is such that (1.8) holds 
for one non-identity t G T, then h = h\ + h2. 

This follows from [L, p. 275, Cor. 12.1] and the injectivity of 7. 
The above-mentioned functor 0 is specified by: 

S(G,H) = (TGM, H) 

0 ( / : ( G , / / ) ^ ( G ' , / / ' ) ) = «>, 0,): ( 7 ^ , H) — ( 7 ^ , H') 

where 
< / « = / ( ' ) (t€TGJi) 

ef(h)=f(h) (hem 

0/(0) = 0'. 

To see that 0 is indeed a functor from Ç to ^ we need to prove that (£/, 0/) is an 
injective semi-linear map. 

The injectivity of Q follows from that of/, which in turn follows from the fact that 
<D(f) = (/", ̂ ) is a map in S (cf. (2) in (1.3) above.) 

The conditions 

</(*i + ^ = CK'O + Ofe) Ci, *2 G TV?,*) 

0(fe) = fl/(fcX/(0 (heH,teT) 

9f(hih2) = 9f(hi)0f(h2) (huh2eH) 

are trivial to verify. It remains then to show that 

(1.10) 0f(hi+h2) = 0f(hi) + 0f(h2) (huh2 G H). 

If any one of h\, h2, or /zi + h2 is 0, then (1.10) is obvious. Otherwise, we can apply/ 
to (1.8), where h — h\ + h2 and t is a non-identity translation (which exists by (1.7), 
since G ^ //, cf. (GH1)) to get 

/(^/(o/w-^/^i^o/^o-y^)/^^^)-1. 
By (0.2.2), no conjugate of/(f) lies in //', i.e.,/(f) is a non-identity translation of (G', //')• 
Hence by (1.9), 

f(hl+h2)=f(h)=f(hl)+f(h2), 

proving (1.10). 
Now that we have the functor 0 , let us show that it is a pseudo-inverse of T. 
For (G, H) G Q, and T = TG,H, definitions yield 

T0(G,//) - ({[h,t]}, {[A,0] }) (heH9teT) 
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where [h,t]:T—>T is the map defined by 

[h,t](r) = (l(hyr)t = hrh~lt (r € T). 

We define a map 

a = aG,H: T0(G, H)-+(G,H) 

by 

a[hj] = th. 

Clearly a{[ft,0]} = //; and one checks (using the fact that T is an abelian normal 
subgroup of G) that 

a ( [h, t] o [//, / ] ) - fft/W = a [h, t]a [h\ tf], 

so that a is a map in the category Q. Furthermore, a is an isomorphism in Ç (hence, 
as previously remarked, in Ç) because, by (1.7), every element in G is uniquely of the 
form th. 3 Finally, a is functorial, i.e., for any arrow / : (G, H) —» (G', //') in Q, the 
resulting diagram 

T0(G,//) ^ (G,//) 

IW) i i / 

r0(G / , / / /) ^ (G',//') 

commutes, as follows easily from definitions. Thus we have an isomorphism of functors 

Next, for (V, F) € V, let (G, H) = T(V, F) be as in the Introduction, and let T be the 
subgroup of G consisting of all the translations [1, v] with v G V, so that with & as above 
we have 

er(V,F) = (T,H). 

We define a map 

(C ,0 ) = (CV,F, ^ , F ) : er(V, F)-+(V,F) 

by 

<[l,v] = v (vGV) 

9[a,0] = a (Of-aEF) 

9(0) = 0F. 

Both £ and 9 are bijective. We leave it to the reader to check (mechanically, via defini
tions) that (£, 9 ) is semi-linear, and hence is an isomorphism in ^ . For functoriality, we 

3 The reader who so desires can rephrase this argument in terms of semi-direct products. 
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need to check that for any arrow (£, 77): (V, F) —> (V, F) in V, the following diagram 
commutes: 

er(V,F) {iv^F) (V,F) 

er({,r,)J, ia,11) 

This again is a mechanical exercise. So we have an isomorphism of functors ST —• \y\ 
and 0 is indeed a pseudo-inverse of T. 

This completes the proof of Theorem 1. • 

REMARK 1.11. Let us verify Remark (iii) in the Introduction. Assuming (GH1)-
(GH3), we can prove (GH2)* as in (1.4.1); and we find that 

(HgHU H)(HgHU H)~l = (HgHU H)(Hg-lHU H) 

= HgHg-yHU HgHU Hg'lHU H 

C HgHU //, 

yielding (GH3)*. Conversely, (GH3)* easily implies (GH3) and that for any g G G, 

gHg~l C (HgHU H)(HgHU H)~l C (HgHU / / ) . 

So to prove (GH2), we need to show that if g £ H then 

gHg-lnH={e}. 

For this, observe that (GH3)* alone is enough for the proof of (1.4.3), (GH1) is enough 
for (1.4.2), and (GH2)* is enough for (1.4.1). So we can apply [L, p. 271, Thm. 5] to any 
h G gHg~x H H: since hH = H and hgH = gH, therefore h — e. • 

REMARK 1.12. Here is a variation on the theme of Theorem 1. 
Recall the definition of "faithful group action" given near the beginning of Section 1. 

Let H be a group acting faithfully on a group T, via automorphisms, i.e., 

h(tx • ti) = ht 1 • ht2 (h e H\ ti,t2€T) 

where • is the group operation in T. The orbit (t) of / G Tis the set 

(t) ={ht\h€H}. 

For example, the orbit of the identity element ej consists of ej alone. 
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THEOREM 1B. Let H be a group acting faithfully via automorphisms on a group T. 
Then the following conditions (1) and (2) are equivalent: 

(1) (i) There are at least three distinct orbits in T, and 
(ii)for any t G T, (t) U {ej} is a subgroup of T. 

(2) There is a vector space V of dimension ^ 2 over a field F, such that H is the 
multiplicative group ofF, T is the additive group of V, and the action HxT —+T 
is induced by the scalar multiplication F x V —• V. 

PROOF. Let G be the semi-direct product of H by T with respect to the given action: 
G is the set T x H with multiplication 

(t,h)(tf,h') = (t-ht',hh'). 

H can be identified with the subgroup { (ej, h) \ h G H } of G, T can be identified 
with the normal subgroup { (t, eu) \ t G T }, and then the action of H on T is given by 
conjugation inside G. Note that: 

(*) every element g G G is uniquely of the form g = th (t G T, h G H). 

In view of Remark (1.11) and the proof of Theorem 1, we can prove the implication 
(1) => (2) by showing that the pair G D H satisfies (GH1), (GH2)* and (GH3)*; and 
that T is the set of translations of (G, H), i.e., a non-identity element g G G is in T if and 
only if no conjugate of g is in H. 

For (GH1), choose t,t!Gl such that the orbits ( t), ( r7), and ( ej) are distinct. Insid-
e G,iff were in HtH we would have 

if = hth' = (hth-l)(hh') (h, h' e H) 

whence, by (*), f = hth~l G (t). So r7 jÉ HtH, and the three double cosets HtH, Ht1 H 
and H are distinct, proving (GH1). 

For (GH2)*, let t G T and consider an element heHCi tHt~\ We have 

eh = h = {thxr
lh\x)hx {hx G H) 

whence, by (*), e = th\t~xh\l and h — h\, so that hth~l = t. Thus if h G OtertHr1, 
then /tf/i-1 = t for all t € T, and since / / acts faithfully on 7\ therefore h = e, proving 
(GH2)*. 

For (GH3)*, note first that for any t G T we have, inside G, 

(**) H(t) =(t)H, 

as follows from the identities 

h\hth~x = (hihth~lh^l)hi 

hth~lhi = hx{K{xhth-%) ( M i G H). 
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For any g G G, writing g — th, cf. (*), we see then that 

HgHU H = HtHUH = H(t)UH, 

and we deduce easily from (ii) in (1) and from (**) that HgH U H is a subgroup of G, 
proving (GH3)*. 

Finally, since the normal subgroup T equals any of its conjugates in G, and since 
TH H = { e), it is clear that every t G T is a translation. Conversely, if g = th (cf. (*)) 
is a translation, then (1.7) implies that g = t E l . 

This completes the proof that (1) => (2); and the implication (2) => (1) is clear. • 
There is an obvious functor T* from the category ^ to the category whose objects are 

pairs (T, H) satisfying the conditions in Theorem lb, and whose arrows (F, H) —> (T\ H') 
are pairs (£, 77) where £ : F —» F' is an injective group homomorphism and 77 : / /—»// ' is 
a group homomorphism such that 

C(fe) = î?(A)C(0 (heH,teT). 

We leave it to the reader to verify that: T* /s an equivalence of categories. 

2. Proof of Theorem 2. 

PROPOSITION 2.1. L^ (V, F) ara/ T( V, F) = (G, H) be as in the Introduction. To each 
subspace V' of V associate the subgroup To(V') of G given by 

r0(V) = { [a, v] G G I 0 ^ a G F, v G V7} . 

(1) To w arc inclusion preserving bijective map from the set of sub space s of V onto 
the set of subgroups of G containing H. 

(2) For any element 0 ^ v G V and any non-zero c G F we have 

r0(Fv) = (H[c,v]H)U H. 

(3) For any two subspaces V\ C V, V2 C V, we /iave 

r0(Vi + v2) = r0(Vi)ro(v2) = r0(v2)r0(Vi). 

PROOF. (1) First of all it is clear that r0(V/) is a subgroup of G containing //. 
We show that r 0 is bijective by constructing an inverse map. For any subgroup G' C G 

with Gf D H set 
e 0 (G / ) - {vev\[i,v\ecf}. 

Since 
[l,vi][l,v2] = [l,vi +v2], 

therefore ©o(G') is closed under addition; and since for non- zero a G F we have [a, 0] G 
HC G' and 

[fl,0][l,v][fl,0]_1 = [l,av], 
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therefore Oo(G') is closed under scalar multiplication; so Oo(G') is a subspace of V. 
By définition 

v G 0 0 1 ^ ) <=ï [1, v] G r0(V) ^ v G V ' , 

i.e., G o W ) = V. 
Moreover, if [1, v] G G' and 0 ^ « G F, then 

[a,v] = [l,v][a,0] GG'; 

and conversely if [a, v] G G7, then 

[l,v] - [^vH^Or 1 GG'. 

It follows easily that ro0o(G') = G', and (1) is proved. 
(2) We have 

T0(Fv) = {[a,bv] | 0 ^ a G F, 0 ^ Z? G F} U { [«,0] | 0 ^ a G F} 

= {[b,0][c,v][c~lb-la,0] \ 0 ^ a e F, 0 ^ b e F}U H 

= (H[c,v]H)U H. 

(3) The inclusions 

ro(v2)ro(Vi) c r0(Vi + v2) D r0(Vi)ro(v2) 

are obvious; and the opposite inclusions follow from the equalities 

[l,v2][a,vi] = [a,v\ +v2] = [l,vi][a,v2]. 

• 

COROLLARY 2.2. Given vectors vo, v i , . . . , vn G V, and non-zero elements C[ G F 
(0 ^ i Û n), with gt — [Q, V/] we have that 

vo is linearly dependent on vi, v2 , . . . , vn 

^ go G (HglHU H)(Hg2HU H) • • • (//g„// U //). 

COROLLARY 2.3. To induces a one-one correspondence between the set of 1- di
mensional subspaces ofV (i.e., the points of the projective space P(V, F)) and the set of 
double cosets HgH ^ H. 

COROLLARY 2.4. Let (Ç,6): (V,F) —> (V, F*) be a semi-linear map, and let 

/ = r ( C , 0 ) : r ( V , F ) = (G,H)-+(G',H,) = r o ^ f * ) . 

77iew £ w linearly faithful4=^ (0. 3) /10/dfc. 

PROOF. Recall from the Introduction that £ linearly faithful means that every sub-
space Vi C V is of the form ( _1(Vi ) f° r some subspace Vj C V. The conclusion follows 
easily from (1) in (2.1). • 
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Let us show now that, as asserted in the Introduction, the functors Y and 0 induce 
pseudo-inverse equivalences between the categories I ^ C ^ and Q3 C Q. 

It will suffice to show that (a): T(^3) C Ç3, and (b): 0(£ 3 ) C fy. Then any pair of 
isomorphisms TO —> 1, 01" —> 1, will induce similar isomorphisms for the restric
tions of r and 0 to ^ and Ç3 respectively, because any isomorphism in V between 
objects of V3 is linearly faithful, and hence is an isomorphism in V-$\ and similarly any 
isomorphism in Q between objects of Ç3 is an isomorphism in Ç3. 

Assertion (a) follows easily for objects from (2.2) and for arrows from (2.4). 
As for (b), let us first consider an object (G, H) G Ç3, and set 0(G, H) — (V, F). Then 

(G, H) is isomorphic to T(V, F) (in Ç). By definition of Ç3, 

G^(HgxHUH)(Hg2HUH) for all gug2 G G, 

and it follows from (2.2) that V is not spanned by two 1-dimensional subspaces, i.e., 
dimV3 ^ 3,i.e.,(V,F) G V3. 

Let/:(G,tf) -+ (G',tf') be a map in £3, and let (V,F) = 0(G,//), (V^F*) = 
0(G', //')• Then the functorial isomorphism T0 —> 1 gives a commutative diagram 

r(V,F) - ^ (G,//) 

rw) J J / 

Y(V',F) -^-» (G',//') 

where the horizontal arrows are isomorphisms. Then YG(f) satisfies condition (0.3) since 
/ does; and hence by (2.4), 0(f) is linearly faithful. This completes the proof of (b). • 

Next let us note that T and 0 respect the equivalence relations R and R* defined in 
the Introduction. Indeed, if (G, H) = T( V, F), and if 0 ^ a G F, so that h = [a, 0] G //, 
then 

r(C,0 f l) = 7*. 

Conversely, if (V, F) = 0(G, / /) , then there is an a G F such that 

e(7A) = (C,0fl). 

To see this, recall that there is a functorial isomorphism 

/ : ( G , / / ) - ^ r 0 ( G , / / ) 

and hence r0(7/O = 7/(/o'» but as we just saw, there is an a such that Y{(#,Qa) — lf(h)\ 
and since the equivalence Y acts injectively on arrows, this a is as desired. 

The existence of the functor 0 defined near the end of the Introduction follows easily, 
as does the existence of a unique functor Y making the following diagram commute: 

Ç3 + 1 - ^ 3 

p* i [ P 

Ç3/R* *±- V3/R 
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Finally, 0 and T are pseudo-inverse equivalences. For example to get an isomorphism 

TO —y ^G /R* w e neec* f° r e a c n ^ = (G,H) G (73/R* an isomorphism T0(A) —> 

A. But T0(A) = T0(A), and we have an isomorphism / : T0(A) -^-> A in Ç3. The 

equivalence class of/ under R* gives what we want. 
Theorem 2 should now be clear. 
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