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INEQUALITIES INVOLVING THE INVERSES OF
POSITIVE DEFINITE MATRICES1

by RUSSELL MERRIS
(Received 8th November 1976, revised 26th May 1977)

Notation. Let G be a permutation group of degree m. Let x t>e a n irreducible
complex character of G. If A = (a;j) is an TO-square matrix, the generalised matrix
function of A based on G and x is defined by

d(A) = 2 X(g)
gee,

For example if G = Sm, the full symmetric group, and x is the alternating character,
then d = determinant. If G = Sm and x is identically 1, then d - permanent.

Let n be a positive integer. Denote by T the set of all functions from { 1 , . . . , m) to
{ 1 , . . . , n}. If X = (jc;y) is an n-square matrix and (3, y £ F, then X[/3|-y] is the w-square
matrix whose i,j entry is x ^ ^ . Fix a £ F . Let / be the function of the n-square
nonsingular matrices denned by f{X)= d{X~x[a\a]). Finally, let Hn denote the (con-
vex) set of positive definite Hermitian n-square matrices.

Theorem. Let A and ft be nonnegative numbers which sum to 1. / / A, B G Hn, then

(1)

This result was obtained in (10) when d = determinant. If a and b are nonnegative
numbers, then

aAb" =s \a + /j.b (2)

(1). It follows that / is convex on Hn. If we specialise to the case n - m, a = identity,
then (1) becomes

diikA + ixB)') ^ d(A-')x d(B-'Y. (3)

Further specialisation to d = det yields

det(AA + fiB) > (det A)x(det BY,

an inequality attributed to H. Bergstrom (10; 1; 2; 8).
If X is m -square and p is an integer, 1 « p =£ m, let Xp be the leading p -square

principal submatrix of X.

'The research leading to this article was supported in part by National Science Foundation Grant No.
MCS 76-05946.
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Corollary. Let A G Hm. Let p be a positive integer, p « m. Then
l]« d(A~\

Specialising to d = det, we obtain

1

(4)

)p det Ap,

an inequality of N. G. de Bruijn (3, Theorem 10.6), (10, Inequality (5.3)).

Proof. Let V be an n -dimensional complex inner product space. Let 0 m V be the
mth tensor power of V and denote by v} ® • • • (x) vm the decomposable (or pure)
tensor product of the indicated vectors. The inner product in V induces an inner
product in ®m V which has the following effect on decomposable tensors:

Vm Wm) = (5)

For each g G Sm, let P(g) denote the action of g on ®m V, i.e.,
^vi ® • • • ® vm = Ugd) ® • • • ® vgim) for all decomposable Vt ® • • • ® vm. Then

with respect to the inner product (5), P(g)* = P(g"') (4). It follows that

is Hermitian. By the generalised orthogonality relations (11, p. 16) and the fact that
P(g\gi) = P(gi)P(gi), T(G, X) is idempotent.

If E = {eu . . . , e n } is an orthonormal basis of V, then {e® = eym ® • • • ® ey(m}: y G
T} is a basis of ® m V. It follows that {e* = T(G, x) e®:-y G T} spans VX(G), the range of
T{G,X).

For each y G T, define Gy = {g G G : yg = y}. Compute

\\e*\\2 = (T(G,x)ef,T(G,x)ef)
= (ef,T(G,X)ef)

g € C,
Let

Then e* 5̂  0 if and only if y G fl.
If S is a linear operator on V, let

® m V, i.e.,
denote the induced linear operator on

® • • • ® (St)m),

for all vt,.. . ,vmG. V. Suppose now that A = (ai;) is an n by n matrix. Let S be the
linear operator on V whose matrix representation with respect to E is AT, i.e.,
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(Seh £,) = an. Since K(S) commutes with T(G, x), we have

• 0*\ — X('a) V* v ( o \ ( ^ o fi?\ • • • d?l ?/> o f}\ • • • /Q\ 0 \
3> t-y) — n(fl\ ZJ>^X\& )\'Je$U) yy lifJ^im), «W(|)1X) V9 eyg(m))

m

x(g) n (Se0Uh eW(0)
; 1=1

(6)

It follows from (6) that d(A[/3|y]) is zero if either y or /3 fails to lie in ft. (In case
G = 5m and x >s the alternating character, ft is the set of one-to-one functions.)

Lemma. (Generalised Cauchy-Binet Theorem). Let A and B be n-square matrices.
Let G be a subgroup of Sm and suppose x is an irreducible character of G. If /?, y G F,
then

d((AB)W\y]) = $& 2 f l d(A[p\a>Y) d(B[*>\y]),

and both sides are zero if either fi or y fails to lie in ft.

Proof. Let 5 and T be the linear operators on V whose matrix representations
with respect to E are, respectively, AT and BT. Then

d«AB)[p\y]) = (K(TS)ef, e*)

= (K(S)elK(T*)e*)

= 2 (K(S)et, e®){e®, K(T*)e*) (7)
wer

by Parseval's Identity. Since T(G, x) is Hermitian and idempotent, e® in (7) can be
replaced with e*. But, e* = 0 unless co G ft. We proceed:

= 2 ^pd(A[p\a>])d(B*[y\o,])
en O((J)

Since B*[y\a>] = B[co\y]* and d(X*) = d(X), the proof is complete.

To complete the proof of the Theorem, we follow the technique employed by
Muir: First observe that there exists a nonsingular matrix P such that P*AP = / and
P*BP = C = diag(C|, c 2 , . . . , cn) with c, > 0, 1 « i « n. It follows that (\A +
P{\I + fiCy'P*. Let H = diag(/i,, / i 2 , . . . , hn), where /i, = (A +
Then

nB)-l[a\a]) =

Observe that, since H is diagonal,
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I m
2 x(r~ltT)Y\hm, if y = /3T for some T G G
EC lI

0, otherwise.
Therefore,

(7r) d{P[am

because /3o- = ^ for all <r G G .̂ Now,

ft
l Pa(k)f>r(k)

Hence,

)) ft Pa

2
m

Z f l Pa

=„,„„„

2
pen

" by (2)

= 2 «ap(M

m

= 2 u*t> F I */3<»>. where (8)
pn 1

Continuing from (8) and substituting for H, we obtain

\ct \a]) = 2 (uj fl (A + MC«*))) (9)
pen \ k=\ I

by Holder's Inequality. Successively choosing A = 1, y, = 0 and A = 0, /u. = 1 in (9), we
obtain

| [« | a ] )=2«<*. and (11)
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d{B-\a\a]) = 2 (UJU <*<«)• (12)

A combination of (10)—(12) yields the result.

The proof of the corollary exactly parallels the development in (10, §5).
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