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Abstract

In this paper we give a stronger form of Rouché’s theorem for continuous functions.
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1. Introduction

In this paper we extend a version of Rouché’s theorem for analytic functions
discovered by Irvin Glicksberg (see [1, pages 125 and 126] and [4]) to continuous
functions (see Theorem 3.1). Our version of Rouché’s theorem is stronger than the
versions given in [5, page 48] and [6]. At the end of the paper we give an application
of our main result to a harmonic polynomial.

2. A short account of the degree theory in the plane

We start with a short account of the degree theory in the complex plane C. A curve is
a continuous function y: [a, b] — C, where [a,b] C R is an interval, —oco < a < b < +co.
The range of a curve y: [a,b] — C we denote by y*, that is, y* = {y(¢) : t € [a, b]}.
Two curves vy, : [a,b] — C and y;: [c,d] — C are equivalent (we write y; ~ ;) if
there exists a strictly increasing and continuous function 7: [a, b] — [c, d] such that
Y1 =72 07. Of course, if y1 ~ y2, then y] = 73.

If y: [a,b] — C\{0} is a curve, then there exists a continuous function a,,: [a, b] —
C such that y(¢) = |y(1)| - € for all ¢ € [a, b]. Moreover, if y: [c,d] — C is a curve
and y ~7, then

ay(b) — a,(a) = az(d) — az(c).
For a rigorous proof, see [5, pages 27 and 28]. From this it follows thatif y: [a,b] — C
is a closed curve (that is, y(a) = y(b)) and zo € C\{y*}, then there exists an integer
Ind(y, zp) such that
a'TZOoy(b) - Q'TZOO)/(a)
2r ’

Ind(y, 20) =
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where T, is a translation defined as T, (z) := z — zo, z € C. We call Ind(y, zo) the index
of a closed curve y with respect to 7y (or the winding number of vy about 7, see [5]).
Obviously, if y; is a closed curve, y; ~ ¥2 and zg € C\y}, then Ind(y1, z0) = Ind(y2, zo).
Let y: [a,b] — C be a curve and let f: D — C be a continuous function, where
v* c D c C. Then f oy is acurve. Assuming that f # 0 on y*, we define the degree of
f on vy as the number
de(f.y) = @ foy(b)zﬂa/ foy(a).

If v is a closed curve, then f oy is a closed curve too and

deg(f,y) =Ind(f oy,0).

Let us mention some properties of the degree. Lety, : [a,b] = Cand vy, : [b,c] — Cbe
arbitrary curves, a < b < ¢, and let y;(b) = y,(b). Consider the curve y; & y,: [a,c] —
C defined as y; ® yaljap) = v1 and y1 @ y2ljp.c) = ¥2- Then

deg(f,y1 ®y2) = deg(f, 1) + deg(f,y2),

provided that f is a complex-valued continuous and nonzero function on (y; @ y;)*. In
particular,

deg(f’ 71) = _deg(f7 © 71),

where ©y1(t) = yi(—t + a + b), t € [a, b] (the reverse of ;). If in addition g: D — C
is continuous and g # 0 on y*, then

deg(f - g,y) = deg(f,y) + deg(g, ), deg(g, 7) = deg(f,y) — deg(g, 7).

We recall the definition of zero cycle (see for example [5, page 36]). Let ¢; be
arbitrary integers and vy; arbitrary curves for i = 1,2,...,n. Then the formal sum
y = 2ii(ci -y is called a chain. We define the trace of a chain y as y* = i, ;.
If f is a complex-valued nonzero continuous function on y*, then the degree of f on
the chain vy is defined as follows:

deg(f,y) := ) (¢; - deg(f, 7).

i=1

Let D c C be a domain and let y and ¥ be chains, y* Cc D and y* ¢ D. We say that y
is homologous toy relative to D if deg(f,y) = deg(f,7 ) for every continuous function
f: D — C\{0}. We say that a chain vy is a cycle relative to D if there exists a chain
)O/ =2"(b;i- ;/i) such that all ;/i are closed curves, )O/* C D and y is homologous to )0/
relative to D. If y is a cycle (relative to D) and zg € C\y*, then the winding number of
v about zg is defined as

Ind(% ZO) = deg(TZ()a 7)
A cycle y relative to D is called a zero cycle in D if Ind(y, zo) = 0 for every zg € (C\D).
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Tueorem 2.1 (The degree principle, see [5, page 37]). Let D C C be a domain and let
f: D — C\{0} be a continuous function. Then

deg(f,y) =0
for every zero cycle y in D.

For zp € C and p > 0, denote D(zp;p) :={z€ C: |z —z0| < p} and
Coop(0) =20+ pe”,  0€]0,2x].

Leta e C,R > 0 and let f be a complex-valued function continuous and nonzero in
the punctured neighbourhood D(a; R)\{a} of a point a. Then the point a is called the
isolated singularity of f and the number

mult(f, a) := deg(f,C,,), wherere (0,R),

is called the multiplicity of f at a (the definition does not depend on r). Let a € C be
an isolated singularity of f. We say that

removable singularity of f if dlim,_, f(z) € C\{0},

zero of f if Alim,,, f(z) =0,

pole of f if Alim,_,, f(z) = oo,

essential singularity of f  in all other cases.

TaeorEM 2.2 (The topological argument principle, see [5, page 44]). Suppose that f is
a complex-valued continuous and nonzero function in a domain D C C except on a set
E:={a;eD:a;#aj,i# ji,j€N} having no accumulation point in D. If vy is a zero
cycle in D and v* C D\E, then

deg(f.y)= ) (Ind(y.@) - mult(f, a).
i=1

Of course, the argument principle has many applications in function theory (for an
interesting application, see [2]).

Let D be a bounded Jordan domain in C, that is, there exists a Jordan curve
J:[0,1] = C such that J* = fr(D) (fr(D) means the topological boundary of D)
and Ind(J, zp) = 1 for zp € D. We denote the closure of D by cl(D). Suppose that
f: cl(D) — C is a continuous function and the set E of zeros of f is finite, say
E={a;ecl(D):i=1,2,...,m}. We assume that E N fr(D) = @. Then we define
the number of zeros of f in D as

Zy(D) := Z mult(f, a).
i=1

The following corollary is an immediate consequence of Theorem 2.2.

CoroLLARY 2.3. Let D C C be a bounded Jordan domain and let J: [0,1] = C be a
Jordan curve such that J* = fr(D) and Ind(J,z9) = 1 for zo € D. If f: cl(D) > Cisa
continuous function with finitely many zeros in D, then

Z¢(D) = deg(f, ).
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3. A generalisation of Rouché’s theorem

Now we formulate and prove a stronger version of Rouché’s theorem for continuous
functions compared to its classical version cited in [5, page 48].

TueoreM 3.1. Let D ¢ C be a bounded Jordan domain and let f and g be complex-
valued continuous functions in cl(D) which have finitely many zeros in D. If
/(@) + g@I < |f@I+Ig@)| VzefrD, 3.1
then
Z¢(D) = Z,(D).

Proor. Let J: [0,1] — C be a Jordan curve such that J* = fr(D) and Ind(J, zp) = 1
for some zop € D. By (3.1), neither f nor g have a zero on J*. Consider the
function F : fr(D) — C defined by F := (fl;+)/(gl,-). Then F(J*) c C\[0, +c0), where
[0,+00) ={we C:Imw =0, Rew > 0}. Indeed, if F(z9) = wy > 0 for some zy € J*,
then, by (3.1), we have [wy + 1| < wy + 1, which is a contradiction. Hence,

0=deg(F,J)= deg(g, J) =deg(f,J) — deg(g, J).

Now the assertion of the theorem follows from Corollary 2.3. O

As an application of Theorem 3.1, we consider the following example.

ExawmprE 3.2. Let us determine the number of zeros of the harmonic polynomial
p(R):=7 +z-2+47, zeC,
in the unit disk D(0; 1).

First we would like to emphasise that the number of zeros of p is finite (< 7> = 49)
because the coefficients at z and Z° have different moduli (see [5, pages 50-52]).
Set g(z) := —47°, z € C. We show that the functions p and g satisfy the conditions
of Theorem 3.1. Now we check that the sharp triangle inequality (3.1) holds for the
functions p and g on fr(D(0; 1)). Let z = €, 6 € R. Then

P@) +q@)| =12’ +z-2I <4 <|p@)| + g2 = Ip@2)| + 4.
Note that in this case equality in (3.1) holds if and only if
I’ +z-2l=4 and |p(z)|=0.

But |77 + z — 2> = 16 if and only if —2 cos(76) — 2 cos 6 + cos(60) = 5. On the other
hand, if |p(z)| = 0, then cos(76) + 4 cos(56) + cos 6 — 2 = 0. Hence, if in (3.1) we have
an equality, then 8 cos(56) + cos(66) = 9. So, the only possibility is z = 1. Butforz =1
the inequality (3.1) holds. Hence, by Theorem 3.1,

Zp(D(0; 1)) = Zy(D(0; 1)) = 5.
The zeros of p in D(0; 1), identified by a computer program, are z;, = —0.7415 +
0.53663 - i, z34 = —0.2135 £ 0.8831 - i and z5 ~ 0.7686.

Remark 3.3. In [3, page 414], the authors comment on the classical Rouché’s theorem
for harmonic functions. However, it would be hard to use that version of Rouché’s
theorem for the function p considered in Example 3.2.
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