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Abstract

In this paper we give a stronger form of Rouché’s theorem for continuous functions.
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1. Introduction
In this paper we extend a version of Rouché’s theorem for analytic functions
discovered by Irvin Glicksberg (see [1, pages 125 and 126] and [4]) to continuous
functions (see Theorem 3.1). Our version of Rouché’s theorem is stronger than the
versions given in [5, page 48] and [6]. At the end of the paper we give an application
of our main result to a harmonic polynomial.

2. A short account of the degree theory in the plane
We start with a short account of the degree theory in the complex planeC. A curve is

a continuous function γ : [a,b]→ C, where [a,b] ⊂ R is an interval, −∞ < a < b < +∞.
The range of a curve γ : [a, b]→ C we denote by γ∗, that is, γ∗ = {γ(t) : t ∈ [a, b]}.
Two curves γ1 : [a, b]→ C and γ2 : [c, d]→ C are equivalent (we write γ1 ∼ γ2) if
there exists a strictly increasing and continuous function τ : [a, b]→ [c, d] such that
γ1 = γ2 ◦ τ. Of course, if γ1 ∼ γ2, then γ∗1 = γ∗2.

If γ : [a, b]→ C\{0} is a curve, then there exists a continuous function αγ : [a, b]→
C such that γ(t) = |γ(t)| · eiαγ(t) for all t ∈ [a, b]. Moreover, if γ̂ : [c, d]→ C is a curve
and γ ∼ γ̂, then

αγ(b) − αγ(a) = αγ̂(d) − αγ̂(c).
For a rigorous proof, see [5, pages 27 and 28]. From this it follows that if γ : [a,b]→ C
is a closed curve (that is, γ(a) = γ(b)) and z0 ∈ C\{γ

∗}, then there exists an integer
Ind(γ, z0) such that

Ind(γ, z0) =
αTz0◦γ

(b) − αTz0◦γ
(a)

2π
,

c© 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 $16.00

268

https://doi.org/10.1017/S0004972714000896 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000896
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where Tz0 is a translation defined as Tz0 (z) := z − z0, z ∈ C. We call Ind(γ, z0) the index
of a closed curve γ with respect to z0 (or the winding number of γ about z0, see [5]).
Obviously, if γ1 is a closed curve, γ1 ∼ γ2 and z0 ∈ C\γ

∗
1, then Ind(γ1, z0) = Ind(γ2, z0).

Let γ : [a, b]→ C be a curve and let f : D→ C be a continuous function, where
γ∗ ⊂ D ⊂ C. Then f ◦ γ is a curve. Assuming that f , 0 on γ∗, we define the degree of
f on γ as the number

deg( f , γ) :=
α f◦γ(b) − α f◦γ(a)

2π
.

If γ is a closed curve, then f ◦ γ is a closed curve too and

deg( f , γ) = Ind( f ◦ γ, 0).

Let us mention some properties of the degree. Let γ1 : [a,b]→ C and γ2 : [b, c]→ C be
arbitrary curves, a < b < c, and let γ1(b) = γ2(b). Consider the curve γ1 ⊕ γ2 : [a, c]→
C defined as γ1 ⊕ γ2|[a,b] = γ1 and γ1 ⊕ γ2|[b,c] = γ2. Then

deg( f , γ1 ⊕ γ2) = deg( f , γ1) + deg( f , γ2),

provided that f is a complex-valued continuous and nonzero function on (γ1 ⊕ γ2)∗. In
particular,

deg( f , γ1) = −deg( f ,	 γ1),

where 	 γ1(t) = γ1(−t + a + b), t ∈ [a, b] (the reverse of γ1). If in addition g : D→ C
is continuous and g , 0 on γ∗, then

deg( f · g, γ) = deg( f , γ) + deg(g, γ), deg
( f

g
, γ

)
= deg( f , γ) − deg(g, γ).

We recall the definition of zero cycle (see for example [5, page 36]). Let ci be
arbitrary integers and γi arbitrary curves for i = 1, 2, . . . , n. Then the formal sum
γ =

∑n
i=1(ci · γi) is called a chain. We define the trace of a chain γ as γ∗ =

⋃n
i=1 γ

∗
i .

If f is a complex-valued nonzero continuous function on γ∗, then the degree of f on
the chain γ is defined as follows:

deg( f , γ) :=
n∑

i=1

(ci · deg( f , γi)).

Let D ⊂ C be a domain and let γ and γ̃ be chains, γ∗ ⊂ D and γ̃∗ ⊂ D. We say that γ
is homologous to γ̃ relative to D if deg( f , γ) = deg( f , γ̃ ) for every continuous function
f : D→ C\{0}. We say that a chain γ is a cycle relative to D if there exists a chain
◦
γ =

∑m
i=1(bi ·

◦
γi) such that all

◦
γi are closed curves,

◦
γ ∗ ⊂ D and γ is homologous to

◦
γ

relative to D. If γ is a cycle (relative to D) and z0 ∈ C\γ
∗, then the winding number of

γ about z0 is defined as
Ind(γ, z0) := deg(Tz0 , γ).

A cycle γ relative to D is called a zero cycle in D if Ind(γ, z0) = 0 for every z0 ∈ (C\D).
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Theorem 2.1 (The degree principle, see [5, page 37]). Let D ⊂ C be a domain and let
f : D→ C\{0} be a continuous function. Then

deg( f , γ) = 0

for every zero cycle γ in D.

For z0 ∈ C and ρ > 0, denote D(z0; ρ) := {z ∈ C : |z − z0| < ρ} and

Cz0,ρ(θ) := z0 + ρeiθ, θ ∈ [0, 2π].

Let a ∈ C, R > 0 and let f be a complex-valued function continuous and nonzero in
the punctured neighbourhood D(a; R)\{a} of a point a. Then the point a is called the
isolated singularity of f and the number

mult( f , a) := deg( f ,Ca,r), where r ∈ (0,R),

is called the multiplicity of f at a (the definition does not depend on r). Let a ∈ C be
an isolated singularity of f . We say that

a is a


removable singularity of f if ∃ limz→a f (z) ∈ C\{0},
zero of f if ∃ limz→a f (z) = 0,
pole of f if ∃ limz→a f (z) =∞,

essential singularity of f in all other cases.

Theorem 2.2 (The topological argument principle, see [5, page 44]). Suppose that f is
a complex-valued continuous and nonzero function in a domain D ⊂ C except on a set
E := {ai ∈ D : ai , a j, i , j, i, j ∈ N} having no accumulation point in D. If γ is a zero
cycle in D and γ∗ ⊂ D\E, then

deg( f , γ) =

∞∑
i=1

(Ind(γ, ai) ·mult( f , ai)).

Of course, the argument principle has many applications in function theory (for an
interesting application, see [2]).

Let D be a bounded Jordan domain in C, that is, there exists a Jordan curve
J : [0, 1] → C such that J∗ = fr(D) (fr(D) means the topological boundary of D)
and Ind(J, z0) = 1 for z0 ∈ D. We denote the closure of D by cl(D). Suppose that
f : cl(D)→ C is a continuous function and the set E of zeros of f is finite, say
E = {ai ∈ cl(D) : i = 1, 2, . . . ,m}. We assume that E ∩ fr(D) = ∅. Then we define
the number of zeros of f in D as

Z f (D) :=
m∑

i=1

mult( f , ai).

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3. Let D ⊂ C be a bounded Jordan domain and let J : [0, 1]→ C be a
Jordan curve such that J∗ = fr(D) and Ind(J, z0) = 1 for z0 ∈ D. If f : cl(D)→ C is a
continuous function with finitely many zeros in D, then

Z f (D) = deg( f , J).
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3. A generalisation of Rouché’s theorem
Now we formulate and prove a stronger version of Rouché’s theorem for continuous

functions compared to its classical version cited in [5, page 48].

Theorem 3.1. Let D ⊂ C be a bounded Jordan domain and let f and g be complex-
valued continuous functions in cl(D) which have finitely many zeros in D. If

| f (z) + g(z)| < | f (z)| + |g(z)| ∀z ∈ fr D, (3.1)

then
Z f (D) = Zg(D).

Proof. Let J : [0, 1]→ C be a Jordan curve such that J∗ = fr(D) and Ind(J, z0) = 1
for some z0 ∈ D. By (3.1), neither f nor g have a zero on J∗. Consider the
function F : fr(D)→ C defined by F := ( f |J∗)/(g|J∗). Then F(J∗) ⊂ C\[0,+∞), where
[0,+∞) = {w ∈ C : Im w = 0, Re w ≥ 0}. Indeed, if F(z0) = w0 ≥ 0 for some z0 ∈ J∗,
then, by (3.1), we have |w0 + 1| < w0 + 1, which is a contradiction. Hence,

0 = deg(F, J) = deg
( f

g
, J

)
= deg( f , J) − deg(g, J).

Now the assertion of the theorem follows from Corollary 2.3. �

As an application of Theorem 3.1, we consider the following example.

Example 3.2. Let us determine the number of zeros of the harmonic polynomial

p(z) := z7 + z − 2 + 4z5, z ∈ C,

in the unit disk D(0; 1).

First we would like to emphasise that the number of zeros of p is finite (≤ 72 = 49)
because the coefficients at z7 and z5 have different moduli (see [5, pages 50–52]).
Set q(z) := −4z5, z ∈ C. We show that the functions p and q satisfy the conditions
of Theorem 3.1. Now we check that the sharp triangle inequality (3.1) holds for the
functions p and q on fr(D(0; 1)). Let z = eiθ, θ ∈ R. Then

|p(z) + q(z)| = |z7 + z − 2| ≤ 4 ≤ |p(z)| + |q(z)| = |p(z)| + 4.

Note that in this case equality in (3.1) holds if and only if

|z7 + z − 2| = 4 and |p(z)| = 0.

But |z7 + z − 2|2 = 16 if and only if −2 cos(7θ) − 2 cos θ + cos(6θ) = 5. On the other
hand, if |p(z)| = 0, then cos(7θ) + 4 cos(5θ) + cos θ − 2 = 0. Hence, if in (3.1) we have
an equality, then 8 cos(5θ) + cos(6θ) = 9. So, the only possibility is z = 1. But for z = 1
the inequality (3.1) holds. Hence, by Theorem 3.1,

Zp(D(0; 1)) = Zq(D(0; 1)) = 5.

The zeros of p in D(0; 1), identified by a computer program, are z1,2 ≈ −0.7415 ±
0.53663 · i, z3,4 ≈ −0.2135 ± 0.8831 · i and z5 ≈ 0.7686.

Remark 3.3. In [3, page 414], the authors comment on the classical Rouché’s theorem
for harmonic functions. However, it would be hard to use that version of Rouché’s
theorem for the function p considered in Example 3.2.
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