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Introduction
A problem of considerable interest in combinatorial analysis is that of

determining the number of ways in which a connected figure can be constructed
in the plane by assembling n regular hexagons in such a way that two hexagons
abut on each other, if at all, along the whole of a common edge. Examples of
these constructions can be seen in the various figures in this paper.

The nomenclature for these figures varies. They are sometimes (4) called
" animals " by analogy with an organism which, starting as a single (hexagonal)
cell, grows in the plane by adding further similar cells to itself. They can also
be regarded as a generalization of the " polyominoes " introduced by Golomb
(2). Another interpretation, of interest to the chemist, is as organic chemical
compounds built up entirely from benzene rings. Thus the four simplest
figures of this kind, shown in Fig. 1, represent the chemical compounds whose
names are given in the figure.

Benzene Naphthalene Anthracene Phenanthrene

FIG. 1

In view of the extensive work in Balaban and Harary (1) on the listing and classi-
fication of these compounds we shall adopt their terminology and call these
figures " polyhexes ".

It is clear that some polyhexes will have points common to three hexagons.
A polyhex for which such a point exists has been called (in (1)) peri-condensed.
Another feature that a polyhex may have is that of a ring of hexagons as, for
example, in the configuration consisting of a central hexagon surrounded by six
adjacent hexagons. Such rings of hexagons certainly add to the difficulties of
the problem of enumerating polyhexes, but since we shall shortly exclude both
peri-condensed polyhexes and polyhexes having rings we need not discuss these
difficulties.
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2 FRANK HARARY AND RONALD C. READ

The problem of finding a formula for the total number of polyhexes with a
given number n of hexagons appears to be completely intractable, at least by any
enumeration techniques in current use. The numbers of polyhexes for n = \,
2, 3, 4, 5, 6 have been obtained by Klarner (7); they are 1, 1, 3, 7, 22, 83. Little
progress has yet been made with the general problem however, the only advance
in this direction known to the authors being a paper by Balaban and Harary (1)
which enumerates polyhexes in which no hexagon is joined to three others.

The ends of mathematical research are often furthered by the timely adoption
of the attitude epitomized in the dictum " If you can't solve the problem, change
it." Adopting this attitude, not as a counsel of despair but as a realistic
acknowledgment that one must learn to walk before attempting to run, we shall
address ourselves to a problem of the same type as the general one mentioned
above, but one in which certain simplifications have been made to bring it
within the range of present enumeration techniques.

The Problem
The two sources of difficulty in the enumeration of general polyhexes are

(i) the existence of a " peri-connexion ", i.e., three hexagons having a common

FIG. 2 FIG. 3

point, and (ii) the existence of rings of hexagons. We easily avoid the first
difficulty by stating that we shall not be interested in peri-condensed polyhexes.
To avoid the second, we stipulate that we shall not allow rings of hexagons,
but this stipulation requires some amplification.

It is convenient in this context to think of polyhexes as animals which have
grown, by addition, from a single hexagonal cell. We shall allow an ^-celled
animal to grow into an (n + l)-celled animal by adding a new hexagon at an
existing external edge, subject to the proviso that this does not create a point
which is common to three hexagons. This may lead to a configuration like
that of Fig. 2 in which a ring of six hexagons seems to be forming; but since
it will not be allowed for the two edges at AB to coalesce, no ring is actually
formed, despite appearances. If a further hexagon is added, we may get a
configuration like that of Fig. 3 where, if the hexagons are drawn accurately,
two parts of the polyhex must be considered to overlap, as shown. No signi-
ficance attaches to this, nor is it significant which of the overlapping parts is
drawn as being on top.
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THE ENUMERATION OF TREE-LIKE POLYHEXES 3

In short, then, we consider only those polyhexes which can be built up by
the following recursive procedure, starting with the polyhex of one hexagon.
An n-hex (polyhex of n hexagons) is obtained from one of the (« — l)-hexes by
adjoining a new hexagon at one of the edges on the perimeter of the (n— l)-hex,
with the proviso that neither endpoint of the edge in question is a reentrant
vertex of the perimeter of the (n — l)-hex (this avoids peri-connexion), and that
the new hexagon and the {n — l)-hex have only this edge in common (this prevents
the formation of rings).

Until further notice we shall regard two polyhexes as the same if one can be
brought into coincidence with the other by translations and rotations in the
plane. Later we shall allow reflection also, but until then a polyhex and its
mirror image will in general be distinct.

By a cata-polyhex we mean a polyhex with no peri-connexion and no rings
of hexagons. Consider the graph (see (11) for definitions) obtained from a given
polyhex by placing a point at the centre of each hexagon and joining two such
points by a line whenever the two hexagons have a common edge. Then one
has a cata-polyhex if, and only if, the graph obtained in this way is a tree. It is
for this reason that we can enumerate cata-polyhexes by making suitable
modifications to the existing techniques for counting trees. For brevity, we use
the term "polyhex " as an abbreviation for " cata-polyhex " in the rest of this
paper.

Polyhexes Rooted at an Edge
We first consider polyhexes in which one peripheral edge is distinguished

from the others; this is the " root edge ". Since we shall later wish to attach
such a polyhex by its root to another hexagon, we specify that no hexagon be
attached to the root edge, or to edges next to the root edge. The enumeration
of these " edge-rooted " polyhexes presents no great difficulty.

The root edge determines a unique " root hexagon " on whose boundary it
lies, and we can distinguish two kinds of polyhexes, according to whether one
or two hexagons are joined to the root hexagon (see Figs. 4a and 4b in which
the root edge is drawn heavier than the others). These are the only possibilities
if peri-connexion is to be avoided. Call them 5-polyhexes and D-polyhexes
respectively (S for single; D for double).

Let Sn and Dn denote the numbers of 5-polyhexes and D-polyhexes re-
spectively having n hexagons. Let Un be the total number of edge-rooted poly-
hexes of both kinds, so that Ux = 1 and

Un = Sn + Dn. (1)
It is easily seen that

Sn+l = 3Un, (2)

since we can regard an •S-polyhex with n +1 hexagons as having been constructed
by adding to the root hexagon at any one of the three available edges (not the
root edge or its neighbours) an S- or a D-polyhex.
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4 FRANK HARARY AND RONALD C. READ

To construct a Z>-polyhex with «+1 hexagons we take the root hexagon and
attach edge-rooted polyhexes (either S- or D-type) to each of the two available
edges, as shown in Fig. 1b. If these polyhexes have r and s hexagons, then
r+s = n and we have

Dn+1=-ZU,U, (r + s = n,r^l,s>l) (3)
since any of the Ur polyhexes on one side can go with any of the U, polyhexes
on the other side.

We now define the following generating functions,

S(x)= f S,x'; D(x)= f D^; U(x) = £ t/,xf. (4)
i i I ( i

(a) AnS-polyhex: (6) A .D-polyhex:
One hexagon adjoins Two hexagons adjoin
the root hexagon. the root hexagon.

FIG. 4

Then from (1) and the fact that UY = 1, St = 0, and Dj = D2 = 0, we
have

U(x) = S(x) + D(x)+x, (5)
while (2) implies

S(x) = 3xU(x), (6)
and from (3) we derive

D(x) = xU\x). (7)

From (5), (6) and (7) we obtain the functional equation

U(x) = 3xU(x)+xU2(x)+x, or

xU2(x)+(3x-l)U(x)+x = 0. (8)

Solving this quadratic equation we find that

U(x) = ± {1 -3x - V(l-x)(l-5x)} (9)

which is the required generating function. The first few terms of this series
are

U(x) =

Polyhexes Rooted at a Hexagon
We now enumerate polyhexes in which one hexagon (the root hexagon) has

been distinguished from the others. Any such polyhex with more than one

https://doi.org/10.1017/S0013091500009135 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009135
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hexagon can be obtained by taking the root hexagon and adjoining to one or
more of its edges polyhexes rooted at an edge. There are four ways in which
this can be done.

(i) only one edge-rooted polyhex is adjoined;
(ii) two edge-rooted polyhexes are joined at edges that are not diametrically

opposite;
(iii) two edge-rooted polyhexes are joined at diametrically opposite edges

of the root hexagon;
(iv) three edge-rooted polyhexes are adjoined.

These four possibilities are illustrated in Fig. 5, in which the root hexagon is
shaded.

(0 (ii) (iii)

FIG. 5. The four types of rooted polyhexes.

(iv)

We now obtain generating functions for these four types of rooted polyhexes.
Clearly the number of type (i) having n +1 hexagons is equal to the number Un

of edge-rooted polyhexes with n hexagons. Hence the generating function for
type (i) is just xU(x). To find the number of type (ii), we note that since reflection
in the plane is not allowed, we can distinguish between the two edges of the root
hexagon at which the edge-rooted polyhexes are joined. Thus to obtain a
rooted polyhex of this type having n +1 hexagons we choose two edge-rooted
polyhexes on r and s hexagons where r+s = n. This procedure is similar to
the calculation of Dn+l given above, and we find that the generating function
for the rooted polyhexes of type (ii) is xU2(x).

With the rooted polyhexes of type (iii) we have the possibility of polyhexes
which are invariant under a rotation through 180° as in Fig. 5 (iii). Such
polyhexes would be counted twice by the generating function xU2(x). To avoid
this, we make use of the well-known enumeration theorem of P61ya (9). Using
the nomenclature of this paper (as described in (4) and (6) for example) we
take U(x) to be the figure-counting series, and the configuration group to be
S2, the symmetric group of degree 2. Applying the Polya Theorem, we obtain

Z(S2, £/(*)) 2 2
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6 FRANK HARARY AND RONALD C. READ

as the configuration counting series. This ignores the root hexagon, however,
and if we include it (thus raising all the powers of x by 1) we obtain

as the required generating function for rooted polyhexes of type (iii).
To count rooted polyhexes of type (iv), we again use Polya's Theorem. This

time we have the possibility of symmetry under rotations through 120°, i.e.,
by elements of the cyclic group C3 of order 3. Thus applying Polya's Theorem
and multiplying by x to include the root hexagon we obtain

xZ(C3, U(x)) = ? [[/3(x) + 2C/(x3)]

as the generating function for rooted polyhexes of type (iv).
We now add these four generating functions, together with a single term of

x for the polyhex on one hexagon only (which otherwise is not included) to
CO

obtain the generating function F(x) = £ Fnx" for all rooted polyhexes:
n = 1

F(x) = x + xU(x) + ixU2(x) + ixU(x2) + ixU3(x) + ixU(xi). (10)

The first few terms are:

F(x) = x+x2 + 5x3 + 20x4 + S4x5 + ....

Unrooted Polyhexes
We now have to make the transition from rooted to unrooted polyhexes.

The method we shall use is precisely that by which a formula for the number of
trees (originally found by Otter in (8)) is most conveniently obtained from the
formula for rooted trees (see (5) and (6) for the exposition of the method that
we shall take as our model).

Polyhexes are essentially tree-like; in fact, as noted above, we can associate
a tree with a polyhex by placing a point at the centre of each hexagon and
joining by a line those pairs of points whose hexagons are contiguous. This
is illustrated in Fig. 6.

Consider any unrooted polyhex, and let it have p hexagons and q edges that
are common to two hexagons, corresponding to the p points and q lines of its
associated tree; thus p — q= 1. The only symmetry that a polyhex can have
is by rotation in the plane through 180° or 120°, as already remarked, since
reflection is not allowed. If it has symmetry by rotation through 120° then it
must have a " central hexagon " which rotates into itself, and the remaining
hexagons form sets of three " equivalent" hexagons which rotate into each
other. If the polyhex has symmetry under a 180° rotation, and has an odd
number of hexagons, then it again has a central hexagon, and the remaining
hexagons form a number of equivalent pairs. If the number of hexagons is
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even, however, the hexagons pair off, and the rotation takes place about the
midpoint of a central edge between two hexagons (see Fig. 6 for an example
of this).

For any polyhex let p* be the number of equivalence classes of hexagons
(points of the associated tree), let q* be the number of equivalence classes of
edges between hexagons (lines of the associated tree). Then from the above
observations we easily verify the following results.

(a) If there is no symmetry, then

P* = P, q* = q-

{b) If there is 120° symmetry, then the central hexagon is in a class by itself
and

FIG. 6

(c) If there is 180° symmetry and p is odd, then the central hexagon is in an
equivalence class by itself and

{d) If there is 180° symmetry and/» is even, then the central edge is in a class
by itself and

* y *
It follows that for any polyhex we have

l=p*-{q*-s) (11)

where 5 = 1 in case (d) above, and 0 otherwise. This fundamental equation is
identical in form to that for trees, cf. Otter (8).

Now sum equation (11) over all unrooted polyhexes with n hexagons. The
left-hand side becomes the number of unrooted polyhexes, say hn, with reflections
not permitted. The sum of the terms p* includes every unrooted polyhex as
many times as it has equivalence classes of hexagons, which is just the number
Fn of rooted polyhexes. Similarly the summation of the terms (q*—s) gives
the number of polyhexes in which an edge between two hexagons has been
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8 FRANK HARARY AND RONALD C. READ

distinguished, except those for which there is symmetry about this edge. Let
us consider the latter polyhexes first.

Polyhexes of this latter type can be constructed by joining together at their
root edges two edge-rooted polyhexes of the kind enumerated in Section 2,
as shown in Fig. 7. This must be done in such a way that the resulting polyhex
is not symmetrical about the edge, i.e., the two edge-rooted polyhexes must
not be the same. The generating function for these polyhexes can be obtained
from a variation of Polya's Theorem (see (9) or (6)) which disallows repetitions
of the same figure, and is found to be

HU2(x)-U(x2)l
This expression can also be obtained quite easily from first principles.

FIG. 7

Hence the summation of equation (11) over all unrooted polyhexes shows

that hn is Fn minus the coefficient of x" in i[U2(x)-U(x2)']. lfh(x)= £ hnx"
n = 1

is the generating function for the numbers of unlabelled polyhexes, we have
h(x) = F(x)-i[U2(x)- U(x2)]. (12)

Thus
h(x) =

This completes the enumeration of unrooted polyhexes, with no reflections
allowed.

Polyhexes with Reflectional Symmetry
So far we have regarded a polyhex and its mirror image as distinct, provided

that the polyhex has no symmetry which would allow it to be rotated into
coincidence with its mirror image. This attitude is not a very realistic one;
certainly one would not regard a plane chemical compound as having been
altered by turning it over. We shall therefore now count polyhexes in a way
which will not distinguish between mirror images.

The generating function h(x) just obtained in (12) will in general count every
polyhex (in the new sense) twice, since it includes each of a pair of mirror
images. Some polyhexes will be counted only once in h(x); they are those
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which have reflectional symmetry. If we can count these latter polyhexes we can
deduce the required result. To do this we classify these symmetrical polyhexes
into three types, as shown in Fig. 8.

It is easily seen that those of type (a) have an odd number of hexagons,
while the others have an even or odd number according as k is even or odd.

Let Wn be the number of polyhexes with n hexagons, having reflectional
symmetry. We consider separately the cases n odd and n even.

Consider a polyhex for which n is odd {n = 2m +1, say). If it is of type (Jb)
or (c) then the removal of the central hexagon results in a polyhex also of type
(b) or (c). This correspondence is one-to-one, and in this way we get W2m

contributors to W2m+i- In addition we have those of type (a), and these are

k hexagons

(k > 2)

(a) (c)

specified as soon as the edge-rooted polyhex A is specified. Hence there are
Um of these. Therefore

W2m+1=W2m+Um. (13)

We now consider polyhexes with an even number of hexagons, say n = 2m.
Each such hexagon will be of type (b) or (c). If k>2, then the removal of a
central hexagon gives a polyhex of 2m —I hexagons which is also of type (b)
or (c). In addition, if the polyhex is of type (b), with k = 2, and B empty, it
can be obtained from a polyhex of 2m— 1 hexagons of type (a) by adding another
hexagon to the central hexagon. This accounts for all the symmetrical polyhexes
of 2m— 1 hexagons, and gives us W2m^1 contributors to W2m.

The remaining contributors to W2m are

(i) those of type (c), with k = 2, A and B being nonempty and distinct;

(ii) those of type {b), with k = 2, A and B being nonempty and distinct;
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10 FRANK HARARY AND RONALD C. READ

(iii) those of type (b) (or (c)) for which A = B; and

(iv) those of type (c), with k = 2 and B empty.

The polyhexes under headings (i) and (iii) can be regarded as being con-
structed by joining together two identical contributors to Dm, as in the derivation
of equation (3). But the number Dm will include all such polyhexes twice
(because of the reflectional symmetry) except those under heading (iii), which
are counted only once. Similarly (by rotating the central two hexagons through
a right angle) we see that the same number Dm includes twice all those polyhexes
under heading (ii), but counts once those under (iii). Thus 2Dm counts all of
these polyhexes exactly twice, and the total number under headings (i), (ii) and
(iii) is therefore Dm.

Those under heading (iv) are determined when the edge-rooted polyhex A
is specified. Their number is therefore Um~l.

Taking the above results together we have

-Sm+Um.1 (from(l))

-2f/m_1 (from (2)). (14)

Now Wx = Wz = 1, W3 = 2 and WA = 3. Hence for n = 1, 2 we have

W2m = Um; IV2m+1 = Wm (15)

By mathematical induction, it follows readily from (13) and (14) that (15)
00

is true for all n. Thus, if we define W(x) = £ Wnx", we see that
n = 1

W(x) = x+(1 + 2x) U(x2). (16)

(We are indebted to the referee for suggesting this way of deriving equation
(16), instead of our much more cumbersome proof.)

The Final Enumeration
As remarked before, the generating function h(x) counts every polyhex

twice, except those which have reflectional symmetry, namely those that
are enumerated by W(x). Hence the desired polyhex generating function
H(x) = £/Tnjc", where Hn is the number of polyhexes on n hexagons when mirror
images are not regarded as distinct, is given by

H(x) = *[*(*)+ W(xj] (17)

= x + ixU(x)+i(3x- l)£72(jc) + K3 + 5x)f/(^2) + ̂ C/3(x) + ̂ t7(x3).

By means of (8) we can express the functions U2(x) and U3(x) in terms of
U(x), to derive

H(x) = ^(l +9x)-fj(l -*)(1 -5x)U(x)+i(3 + 5x)U(x2)+ixU(x3) (18)

which is the most convenient expression for obtaining the coefficients of H(x).
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We can also use (9) to exhibit H(x) as an algebraic expression in the single
variable x.

24x2H(x) = 2 *

For numerical information and as a check on the asymptotic results of the
next section, the first 40 coefficients in each of the series U{x), F(x), h{x), W(x),
and H{x) were obtained on a computer. Table 1 gives the first 12 coefficients
in each of these series.

TABLE 1

1 2 3 4 5 6 7 8 9 10 11 12

u
F

h

W

H

1

1

1

1

1

3

1

1

1

1

10

5

2

2

2

36

20

7

3

5

137

84

18

6

12

543

354

64

10

37

2219

1540

226

20

123

9285

6704

856

36

446

39587

29610

3306

72

1689

171369

131745

13248

137

6693

751236

591049

53794

274

27034

3328218 '

2669346

222717

543

111630

Some Asymptotic Results
It is of some interest to estimate the number of polyhexes of various kinds

for large values of n, the number of hexagons. We first consider the number
Un of edge-rooted polyhexes.

A theorem related to a result of Abel (see (10), p. 224) states that, if two

series £ anx" = a(x) and £ bnx" = b(x) have the same radius of convergence
n = 0 n = 0

R, then

^> (20)
x->R

Take a(x) to be the function y/(l-x)(l-5x) which appears in (9). Its radius
of convergence is clearly \. Take b{x) to be the function (1 — 5x)*, which also
has this radius of convergence. Then it is easily verified that

1.3.5...(2n-3)/5Y
n\ \2

Hence, provided the following limit exists, we have

y
lim —2 = lim yj\ — x = —=;
»-co bn x-*i J5

hence
_

n\
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12 FRANK HARARY AND RONALD C. READ

From equation (9) we have
Un = - iaB +i forn>l.

Consequently
l 3 S ( 2 n - l ) / 5 \ " ' ^ (2n-l)! /5> ^

We now look at the numbers Hn of polyhexes; these are given by the generat-

ing function H(x) = £ Hax" which was found in (18) and (19). From (18)
n = i

we see that for n>\
Hn= -A^ . + i+ i2 / . - 1 + i^2+F( , - . ) / l + i I / ( , . i , / 3 . (22)

where t/, is to be taken as zero is r is not an integer. From (21) it follows
readily that Unj2-, (̂n-i>/2> an(i ^(n-n/3 ^re small compared with the first three
terms. Hence in equation (19) we can ignore everything on the right-hand side
except the term (1 -x)*(l -5x)*.

Let us take

fix) = [(l_x)(l-5x)]* = £ JX and g(x) = (l-5x)* = £ gnx\
o o

Applying (20) again, we have,

Here

£
n = 1

whence
1.3...(

nl \2
From (19) we have Hn~^fnJrZ, and hence

1 1.3...(2»-1>/5VV

" 4 ( + 2)! \2j V V ;

1 (2«-1)! /5> /T
2 (B_l)!

A consequence of (22) and (23) is that

~2. (24)
(n+2)Hn
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For n = 40 we have a verification of (24); for

l/40 = 21949989502339625620014855

H 4 0 = 256364771375268976315575
and thus

42H
= 2.038574935....

40
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