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Abstract. We prove the meromorphicity of the zeta function on shifts of finite type
for Holder continuous functions assuming that the essential spectrum of the associ-
ated Ruelle operator is contained in the open unit disc. This result allows to extend
the region of meromorphicity of the zeta function for Axiom A flows by a strip
whose width is determined by the contraction rate of the flow.

1. Introduction

The classification of dynamical systems consists mainly in the search for invariants
one of which (to some degree) is the zeta function. In general the zeta function is
not very accessible, Axiom A systems being an exception. In this case the most
interesting applications are to determine exponential decay of correlation functions
(see for instance [12]) and to prove that closed orbits are equidistributed. Concerning
the latter, the foundation to a number of recent results, most of which involve
Ikehara’s Tauberian theorem, was laid in [8]. The introduction of Markov partitions
makes it much easier to extract properties of Axiom A diffeomorphisms. However
these partitions are not canonical and it is a constant problem whether a result
obtained for a Markov chain also applies to the underlying dynamical system. By
a result of Manning [6] it is known that the zeta function of an Axiom A diffeomorph-
ism is rational given by zeta functions on certain subshifts (which are rational
themselves). According to Bowen [3] a similar result concerning meromorphicity
applies to flows.

The main result of this paper, Theorem 4, is proved for the Banach space C,(2)
of exponentially decreasing functions (with rate e™“ <1) on shifts of finite type.
Usually as in [2, 9-12] u is taken to be a constant, here however we embark upon
a generalization and shall introduce modulus of continuity as we call 4 which will
be a continuous and strictly positive function on the subshift. For piecewise
monotone transformations of the unit interval and locally constant functions,
Hofbauer and Keller [5] proved meromorphicity of the zeta function in the case
where the essential spectrum of the transfer operator has radius less than 1. In this
case the spectrum consists of countably many discrete eigenvalues of finite multi-
plicity and an essential spectrum which is a disc centered at 0. In analogy to interval
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maps, Pollicott [10] Theorem 1, proved that under appropriate conditions the
spectrum of the Ruelle operator acting on C,(Z) looks the same for constant 6> 0.
In Lemma 2 we shall give a bound on the essential spectrum of the Ruelle operator
on the Banach space of functions which decrease at a rate determined by a continuous
function u which is the modulus of continuity.

The aim of the present note is to extend further results previously obtained by
Ruelle [11], Parry [9] and Pollicott [10] and to establish that the zeta function can
be meromorphically continued as long as the essential spectrum of Ruelle’s operator
is contained in the open unit disc. This result also allows to extend the region of
meromorphicity of the zeta function for Axiom A flows by half the contraction
parameter beyond the halfplane in which it is holomorphic.

2. Two sided subshift of finite type
Let A be some finite set with the discrete topology, let A be an |A| x}A|-matrix of
ones and zeros and define

2={ze IT A: Alz;, z;1]=1 VieZ},
ieZ

which we give the product topology. We call = a subshift of finite type and A its

alphabet. Define on X the two-sided shift transformation by o(z); = z;,,, i€ Z. The

shiftspace = has a natural set of Holder equivalent metrics given by d(x, y) = e **®»),

where k(x, y) is largest k such that x;=y,, |i|=k, and « is a positive number. A

basis for the topology on X is given by the open closed sets

U(x_’l .o x”)::{ZEZ: Z; = X, |ll$ n}’

n=1,..., where x_, - - - x, are words in X of length 2n+1. Usually U(x_,- - - x,)
is called a cylinder. Note that = has dimension zero. The variation of a complex
function f on X is defined by

var, f(x) =sup {|f(x) —f(p)|: y € Z satisfying k(x, y) = n},

= 1,2,...,and is a real and positive function on X. Let u: X - R be strictly positive
and continuous, then if the variation decays fast enough as n goes to infinity we have

var, f(x)<c-exp (=2 - min (u"(x), u™"(x))),

xeX, for some constant ¢. Here we used the abbreviation u"(x) for the sum
u(x)+uo(x)+- - -+uoc"(x) and u~"(x) for us '(x)+- - - uoc™"(x). If || f|. is the
smallest possible constant ¢ which satisfies the above inequality, then |||, =
|- llo+ 1l - i is @ norm, and the set of complex functions on £ which are finite with
respect to this norm is a Banach algebra which we denote by C,(Z). We have a
filtration C,(2) = C,(2),0< u' < u, where C,(2) isdense in C,(2), with( ., C,(2)
dense in C,(Z). We call u modulus of continuity. For convenience we shall assume
that the variation of u itself decays exponentially fast. If the modulus of continuity
is a constant >0, we get the usual Banach spaces of uniformly exponentially
decreasing functions in which case || f|, is the best possible Holder constant of f
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(or Lipshitz constant if the metric defined uses 6 in the place of «). In § 5 it will
become clear that this setup is tailor-made for the analysis of Axiom A flows on
manifolds. We shall assume that (%, o) is topologically mixing, in other words A"
is positive for large enough n, where A is the boolean matrix which defines the shift.

Let p be a o-invariant measure on 2 and denote by h(p) its measure theoretic
entropy. For continuous f:3 - R the pressure is defined by

P(f)=sup, (h(p)+dep),

where the supremum is taken over all o-invariant probability measures on 3. If f
is a real valued function in C,(X), some u >0, the supremum is always attained by
a unique invariant measure called the equilibrium state for £ From [2] we know
that the pressure equals

lim m™'log Y expf™(x),

m-—>co xeF(m)

where F(m) = {x € : 0™x = x} denotes the periodic points of period m. The pressure
function P(f) is Lipshitz continuous in the supremum norm (with Lipshitz constant
1) on the real functions of C,(2) and has an analytic continuation to an open
neighbourhood containing the real valued functions (cf. [9]). The topological entropy
of o, h(o)=sup, k(p), is equal to P(0).

3. The one-sided case

Some questions, one of which is the meromorphicity of the zeta function, are more
easily studied for one-sided shifts. For that purpose let us introduce the one-sided
shiftspace

2= {y€ [1 A: Aly;, yira]=1Vi= 1}-

i=1
The shift o : %> £, induced by the two-sided shift on X is locally a homeomorphism
and finite (at most |A|) to one. Let u, be a strictly positive and continuous one-sided
function. For f;:3,~> C the variation is given by (k(x, y) as in the two-sided case)

var, fo(x) = sup {| fo(x) = fo(¥)|: k(x, y) =1},
t=1, and a norm is defined by || folll, = [l follo+ [[fo]lu,> Where the Holder constant
|foll., which here is equal to sup,.s sup,=, exp (—uo(x)) var, fo(x) exists if the vari-
ation decays fast enough. As in the two-sided case we put C,(Z;) for the Banach
space of all functions which are finite in the ||-||,,-norm and call u, modulus of
continuity.

Two functions f, g € C,(2) are said to be cohomologous if there exists a ve C,(Z)
for some positive modulus of continuity u’ such that f~g = v —vo. A function that
is cohomologous to zero is a cocycle. The zeta function for some fe C,(2) is
invariant under adding cocycles which leaves some freedom for the choice of £ An
important and useful result involving the manipulation of Holder continuous func-
tions by cocyles is the following result by Sinai [13] of which we will give a
formulation suitable to our context.
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PROPOSITION 1. For fe C,(Z) there exists vy, fo€ Ci.(Z) such that fo=f+v,— ve0
satisfies fo(x) = fo(y) whenever x;=y;, i=0.
Proof. We adapt the proof given in [2, p. 11] for constant modulus of continuity
(u=0-1, 6>0) to our purpose. For each symbol a € A pick an allowed left infinite
sequence j = - - y_,J, such that A[J,, a]l=1 and define a map #w:3 > X2 by m(x)=

<P Poxix, -+, x€Z, with § depending merely on x,. We define v,=
Y izo (fo'm —fo') and put

fo=ftv—veo=fr+ ¥ (fo'iﬂ’”_fa'iﬂ'o'),

i=0

which depends only on positive coordinates. It is clear that the summation over i
converges absolutely. We have to prove that v, and f;, are as claimed in the Banach
space Ci,(X). We show this for f, and leave it to the reader to figure out that
vo€ C1,(Z). To estimate the variation of f, we have to consider

Jo(x)=fo(y) = ~§0F A(fo'nx — fo'my + fo'noy - fo'mox)

= Y (fo'mx—fo'ny+fo'roy — fo'mox)

O=i<j
+ Y (fo' 'my - fo'moy + fo'  ax — fo'wox),
i=j
where x, y are points in X such that x; = y,, |i| < k, for some positive k. With j € (0, k)
an integer chosen such that |u* 7/ (x) —u ™/ (x)| < | u||. we get
fo(X)=fo=c; T exp—-2u*"'(a'mx)+c, ¥ exp —2u'(c'mx)
O=i<j i=j
= ¢y exp —(u* 7 (o'mx) + u/ (' mx))
= ¢y exp —u*(mx)
for some ¢, since inf u>0 and ¢,, ¢;>0. Thus (¢,>0)
var, fo(x) = c, exp —uf(x),

where up=um+Y,., (uoc’"' 7w —uc'na) depends only on positive coordinates and
is cohomologous to u. Note that u, is well-defined since we assumed that u has
exponentially fast decaying variation. Thus f; can be identified with an element in
C.(2) where u, is a one-sided modulus of continuity. A priori we do no know
whether u, is strictly positive, however as u, is cohomologous to u one easily sees
there exists an integer n and a constant c;>0 such that u§=cs(k—n) for k=n.
Nevertheless in the following we shall for simplicity assume that u, is strictly positive.

|

From now on we drop the index 0 and without fear of confusion we denote the
one-sided shift by X. Given a (one-sided) Hélder continuous function fe C,(X),
then, following Ruelle, one defines a Perron-Frobenius operator (transfer matrix)
L:C,(Z)-» C,(X) by setting:

(Lx)(x)= % x(x)expf(x), xeCu(3),

x'ec 'x
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where the summation is over all x'€ X satisfying ox’=x. Let T,, n=1, be the set
of all Z-words of length n and set U(n), neT,, for the cylinder {yeX: n,=y,,
i=1,...,n}. Put f*(y) for the sum f(y)+- - -+fo" '(y) and one easily verifies

(L"x)(x) =Y x(nx) exp f"(nx),

where the summation is over all ne T,, such that the concatenation %x is an
admissible sequence in 3. As a consequence of the Perron-Frobenius theorem for
real valued f the largest eigenvalue A, of the associated operator L, is simple and
real while the rest of the spectrum is contained in a disc of radius strictly smaller
than A, (see [11, Proposition 5.24]). Moreover log A, is the pressure of f as defined
by the variational principle. For complex f we can now state the main result of this

section.

LemMma 2. The essential spectrum of L, has radius <e"®/ ™)

Proof. For u constant 8 >0 the lemma reduces to the result given in [10, Theorem
1]. We adapt the proof given there suitably. It is known that the measure w of
maximal entropy is positive on open sets and non atomic (w is the Parry measure,
see [14, Theorem 8.10]). Fix n=1 and denote by w,, n € T,, the induced measure
on U(n), that is w,(x) = @(x,x)/ @(x,) for (test) functions x € C,(Z). The radius
of the essential spectrum is by Nussbaum’s formula [7] the limit of (inf || L} — K, [Il.)"/"
for n—>co, where the infimum is over compact operators K, on C,(Z). For K, we
take L7 restricted to locally constant functions. We put K,, = L} o S,,, where S, maps
C,(Z) onto functions which are constant on cylinders of the form U(n), neT,,
and is given by

(8.8)=Y 0,(g)xn,

ge C,(2). Pick some ge C,(2) and put y =(id—S,)g for which one immediately
deduces the estimate |[x(nx)|<||g|l. exp —u"(nx),xe V(n)={zeX: nzeZ}, neT,.
By the variational principle we obtain (cs> 0)

(L)) =T [x(nx)] - lexp £ (1x)] = ¢g "7

and therefore ||[(L"x)||lw=cs e”"™® ™ for n=1,2,.... To estimate the variation of

L™y we need bounds on the variation of y as
var, y(x) =< {2 - max {var, g(y): k(x,y)=k} fork=n,
var, g(x) fork>n.

Now let x, y be two points in % which share the same symbols on the coordinates
form 1 to k. Thus (c;, cg>0)
[(L"x)(x) = (L"x)(¥)|
=¥ [x(nx) = x(ny)| exp Rf"(nx) + X |x(ny)| - 1
n n

—exp (f"(ny) —f"(nx)) exp Rf"(nx)
=Y lgll. exp Rf"(mx) = u" " (nx))+ ¢, T [x(ny)| exp (Rf"(nx) — u*(x))

<cgllgll. ™™™ exp —u*(x)
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and for the Holder constant we get ||(L™x)||. < cs||gll.e"*® ™, n=1,2,.... Hence
the lemma. O

It is clear that L = L, has discrete eigenvalues of finite multiplicity in the annulus
{zeC: e"® W <|z| = eP®} see [10]. Let E, be the eigenspace in C, () associated
to the eigenvalue A, |A|> e"® %) and E¥ the corresponding eigenspace in the dual
C.,(2)*. Wehave dim E, = dim E¥ as complex vectorspaces. For real f the eigenspaces
corresponding to the largest eigenvalue are one dimensional and spanned by u and
M respectively. (The equilibrium state for f is given by My, see [2].) In Ef, E, we
choose an orthogonal basis u,,, M,,, r=1,...,dimE,, normalized so that
(M, ;)= 8,,8,,, where 8, is the Kronecker symbol: §,,=1 if r=5 and 0
otherwise. The projections P, from C,(2) onto the eigenspaces E, then take the
form of a scalar product Mjyu,(-), where M, is the vector of eigenfunctions
(M, ,, M, ,,...) and similarly u, is the vector of functionals (m,,, Ms2,...) (*
denotes transposition). We can decompose the transfer operator as follows

L(x) =§: AMiL/\F'A(X)-FR(X)s

where the sum is over all discrete eigenvalues A whose modulus is larger than
eP®~") The remainder R = LP: C,(2) - C,(Z) has spectral radius =e”® ™ where
P=id-} , P, (summation again over the discrete spectrum) is the projection onto
the subspace of C,(Z) orthogonal to the eigenspaces E,, |A|> e”®/ ™. We assume
the matrices L, are in Jordan normal form (with ones in the diagonal).

4. The Zeta function
Let X be the one-sided subshift associated with the transition matrix A and define
for fe C,(X) the zeta function

{(f)=exp ZN {m/ m,

where the summation in {,(f) =X, ¢, €Xp.f" (x) is over periodic points x of

period m. It is clear that {(f) is non-zero and analytic whenever the summation

converges. Furthermore, the slightly more general zeta function
d(z,f)={(f+logz)=exp ¥ 2z"{n/m,

meN

is non-zero and analytic for |z| < e "®), The first substantial step in extending the
region of analyticity was achieved by Ruelle for constant modulus of continuity 6 > 0.

THEoREM 3. ([11, Theorem 5.29]). For real f there exists a function R(f)> —P(f)
such that d(z, f) is analytic for |z| < e®" with the exception of a single pole at e *.

This theorem contains already the ingredients for the further improvements made
subsequently. The proof essentially makes use of the fact that the largest eigenvalue
e” of the L, operator is real and single and the rest of the spectrum is contained
in a disc of radius strictly less than e”"’. The function f is approximated by
stepfunctions f,, which are constant on cylinders of the form U(x, - - - x,,) where
the length of the words x, - - - x, depends linearly on m, that is n=am. 0<a <1.
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With perturbation theory on Banach spaces it then follows that d(z, f) has the
claimed meromorphic extension. This result was generalized by Parry, [9, Theorem
1], to a neighbourhood of the real valued functions in the complex space Co(Z).
Using a more complete characterization of the spectrum of the transfer operator,
Pollicott [10, Theorem 2]}, showed that the proof of Ruelle’s theorem can in fact be
adapted to the situation where one has to single out a larger number of eigenvalues,
thus replacing the function R(f) by a constant C(8)= 6*/(6+ h) which depends
only on the space C4,(X), h being the topological entropy of the shift. However,
since the only way to estimate the traces of the approximating transfer matrices
modulo a subspace of some fixed dimension is by adding up the moduli of the
eigenvalues whose number grows like e, C(8) depends explicitly on the topological
entropy and yields particularly poor estimates if h is large.

The aim of this paper is to establish meromorphicity of d(z f) in the disc
{zeC:|z]<e P®~“). We choose a more elementary approach which explicitly
(however implicitly) does not involve perturbation theory but relies upon repeated
use of the variational principle.

To show that the zeta function in general does not admit a meromorphic extension
to the entire complex plane, Gallovotti [4] constructs a function f such that d(z, f)
has an essential singularity at finite distance. By adapting this example suitably,
Pollicott shows in [10] that d(z, f), fe Co(2), can have an essential singularity
arbitrarily close to the disc of radius e® *®”, In view of this example, the result
presented here is the best possible that can be obtained without further restriction
other than on the pressure.

THEOREM 4. {(f) is analytic and non-zero for {fe C,(3): P(Rf) <0} and extends
in the function space meromorphically to the domain where P(Rf —u) <0.

For every 8¢ A we choose X € X such that 8% is an element in 2. We also write
nx € X, n € T,, for the concatenation of 7 with X = %(7,,), define a complex function
F on T, by F(n)=f"(nX) and set ®,(x)=exp (f"(nx)—F(n)) whenever x¢
V(n)={z€X: nze X} and 0 otherwise. It is clear that ®,(x) lies in C,(Z). Denote
by x. the characteristic function of U(n). For the proof of Theorem 4 we shall
need the following identity.

LEMMA 5: Let we C,(2)* and ne T,,, m=1, then
(L*"u)(e™ T Px,) = u(®,).
Proof. We do the manipulations

(L*"u) (e Mxy) = I e "MLy, )(x) du(x)

Vin)

=1 )ZX,,(UX) exp (f"(vx) = F(n)) du(x) = n(®,),

where the summation is over ve T,,. a
Proof of Theorem 4, The fact that {(f) is analytic and non-zero for P(Rf) <0 follows
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from the variational principle

lim sup vZ,.(Rf) =e"® < 1.
The condition P(Rf) <0 implies that L; has spectral radius less than one. In the
more general case we face here, one singles out a finite number of eigenvalues, in
particular these with modulus =1, and uses a similar argument applied to a remainder
term which has spectral radius =p <1.

The proof splits into two parts. In the first step (1) we use the decomposition (1)
of Ruelle’s operator and show that {,,(f) —¥,~, A™ + R, decays exponentially fast
for m- oo, where the A's are discrete eigenvalues of L,. The remainder terms R,
originate from the R-term in (1) plus the contribution made by discrete eigenvalues
whose moduli are less than p. In the second part (II) we prove that the R,, decay
exponentially fast as m goes to infiity and therefore add up to a function which is
holomorphic in the halfplane given by P(Rf—u) <0.

Since P = P(Rf —u) <0 the essential spectrum of L, (and L¥) is contained in a
disc with radius strictly less than one and all but a finite number of discrete
eigenvalues are in modulus less than one. We shall show that ¢, is approximately
2iaj=p A" where the remainder term decreases exponentially fast as m goes to infinity.

(I) Obviously (L™x,,)(x) equals exp f™(7x) for x € 2 such that the composition
7x is again in X and zero otherwise. With w,, n€ T,,, as in Lemma 2, we get that

@, (LX) = 0(x,) ™" J ( )expf"'('flx) dw(x)

is zero if nm is not admissible in 3 and otherwise satisfies the inequation
l@, (L7xx) = exp f™(n*) = colexp (f —u)™(n*)],

as f has modulus of continuity u, for some ¢, <o, where 7 is the periodic point
which one obtains by repeating the string 7 infinitely often. Hence

Y expf"(x) =L 0 (LX) | = colm(Rf —u)=c,e™ =c}p",

xeF(m)

where the summation is over n € T,,. Here we made use of the part of the variational
principle which implies that {,.(Rf —u)=<constx e™ (for details see Bowen [2,
p. 32]). We want to show the second sum on the left hand side is up to some
remainder terms equal to ), .., A ™. For discrete eigenvalue A let P, be the projection
onto the eigenspace E,. Set P=id—}, ., R, and we obtain by (1)

Lo, (L"x,)= ¥ T, (My)pa(L"x,) +Z @, (L"Pxy,).

n [Al=p 7 n
Observe that the spectral radius of L™P is bounded by p™. Since there are only
finitely many eigenfunctions M, for which |A| is at least p there exists a ¢, such
that in the C,-topology [|M, . < ¢, and therefore

|“‘)-17(A4A,r)—AJI\.r("’x)lS C; €Xp "“m(")x), xXe V(ﬂ), ne Tm9
r=1,...,dimE,, |Alz=p,
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with a new constant ¢;. For £ as in Lemma 5 depending on 7,, we find that the
functions S, ,,(x) = w,(M, ,)1(x) — M, ,(nx) defined on V() are in the supremum
norm bounded by ¢; exp —u™(7X) and that their variations can be estimated as

V?r SA,r,n(x) = val-m+r M/\,r(nx)'

Therefore |[S, .../l = csexp —u™(n%£), c,>0, and once more employing the vari-
ational principle we get

% @ (M, I ptr (LX) =A™ (LY,
S% l0n (M, ) pa s (LX) = ptas (M (7 - ) Lx)|
=§ |a.s(Snrn LX)
= [lpeaslll % l1Sa.r.n L Xl
=cs %l lexp (—u™(n%)+£™(nX))|,

¢s> 0, as the functionals u, ,, |A| = p, are in the C%-norm uniformly bounded. Thus
we see that for some ¢¢ involving the dimension of the largest eigenspace E,

Y w,(My)pa(L™x,) —trace (AL, )™ \ =cseM=cep™
n
and (¢,>0)

=cp™

{n— T A" =L w,(L"Px,)

|Al=p
(II) We are finished if we can show that in the last inequality the third term on
the left hand side goes exponentially fast to zero as m goes to infinity. Lemma 5
applied to the functional P*w, yields
w,(L™Px,) = e (L*"P*w,)(e " x,) =" (P*w, /(®,).
We can replace (P*w,)(®,,) by P®, evaluated at the point nX plus an error term.
Hence

5 eF(")wn(P‘l’n) =y eF(")((P@,,)("If)'*'Rn)'

n
To estimate the remainder terms we observe that P is a bounded operator on C,(2)
and @, is bounded uniformly in m and ne T,,. We get
lw, (P®,,) — (PP,)(n%)| <[[PP,|l, exp —u™(n%) = cs exp —u"(n%),
with some c;> 0, for all 5. To estimate the contribution made by R,, we sum over
7 and find by the variational principle

Y™™ |R,|=cs T exp (RF(n) —u™(nx))<c, e™ = cop™,
n n

¢,>0. To estimate the terms involving (P®,)(nX) it is necessary to decompose &,
as follows. For k=1,...,m note that the functions WV¥,,(x)=
feo™ *(gx)—foo™ *(nk) are in the supremum norm bounded by
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cioexp —u*(e™ *(nx)) for some c;o=||f]l./(1—exp (—inf u)). Moreover, since
var, ¥, (x) < var.., f(x), x€ V(7), we see that ||¥,,]|. is for all n bounded by
10 €xp —u* (o™ ¥(n%)). Now put ®, ,=exp ¥, , and define inductively

®,,=P,_,,(exp¥,,—1)=exp Y V¥,,—-exp Y ¥,

1=k=i 1=k=i-1
i=2,...,m. Clearly ®, =Y, _,_,. ®., and as one easily verifies
”Iq)i,nlllu = ¢y €Xp _“i(o'm_i("?f)),
i=1,...,m, where ¢,,; depends on ¢,; and the supremum norm of f Note that
&, , =P, ; whenever ny=mn, k=1,...,m—i+1. We find
LeFPPD,)(nX) =L L " PPD,,)(n%) =L ¥ T e I (PD,,5)(n),
n in

i |8|=iwv
where the summation is over all (v, §) € T,,_; X T; such that v =ne€ T,,. To stress
that @, ,; is independent of v, we write ¢, 5 for ®, 5 and treat summation over v, 8
and i separately. For i, § fixed we get

T (Pg;s)(v8%) exp f ™ (v8%) | - lexp f(8%)]

= |(Lm_iP‘Pi,a)(8f)| cXp Rfi(af)

= Clzpm_iI”‘Pi,slllu exp Rf"(8%)

< ¢1201p™ 7 exp (Rf —u)'(8%),
¢;12> 0. Here we made use of the fact that the spectral radius of L™ P is bounded
by p™". For the summation over § and i we borrow a last time from the variational
principle and obtain

T e"V(PD,,5)(05%)

Y eFMy (PO,)

]

<cop™+Y epcp™ ' Y exp (Rf —u)'(8%)
i 5
= cop™ +Z C126np™ e e’

¢13> 0. Hence the remainder which includes the contribution made by the essential
spectrum of L can be estimated as

= (cot+mceyyc603)p™,

Y w,(L"Px,)

and dies off exponentially fast as m goes to infinity. Combined with the first half
of the proof, this amounts to

m
=meyp,

{m_ Z A"

IAl=p

with ¢, independent of m. Since p <1 the sum over m uniformly convergent in a
small neighbourhood of £, and ¥\ ({m =X jaj=p A™)/m converges therefore to an
analytic function Z(f). However, multiple eigenvalues of L= L, not necessarily
depend analytically on f although simple eigenvalues do, but it is well known that
the sum of multiple eigenvalues is analytic in . Hence the zeta function which now
can be written as

{(f)=e" mH (a=-A(N7,
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has the claimed meromorphic extension to {f € C,(2): P(Rf — u) <0} since the finite
product on the right hand side is a closed expression. O

Since the zeta function and the pressure are invariant under adding a cocycle to f,
we see using Proposition 1 that the statement of Theorem 4 holds also for two-sided
subshifts. Replacing f by f+1log z transforms the pressure of Rf to P(Rf)+log |z|
while the eigenvalues are scaled by a factor z.

COROLLARY 6. d(z, f) is a meromorphic function for |z|> e "™~ with single poles
at 1/X(f) (counting multiplicities), where A(f) are the eigenvalues of L,.

A Smale space is a compact metric space with a local product structure and a
suitable expansive homeomorphism. This abstract formulation, which generalizes
the more familiar Axiom A systems, was given by Ruelle in [11, Ch. 7]. For us the
most important fact is that a Smale space (), T) admits arbitrarily fine Markov
partitions. By Smale’s spectral decomposition theorem we can always reduce to the
case where T or some iterate T*, k= 1, is topologically mixing on compact subspaces
of O, see Bowen [2, Theorem 3.5]. Let (2, T) be topologically mixing. Hence there
exists a subshift of finite type (X, o) and a continuous map 7 :2- () such that
T =mo and where 7 is finite to one and one to one almost everywhere (with
respect to ergodic measures of full support). For details see [2]. The construction
of the partition is by no means unique. With a suitably chosen metric on X, say for
some ao> 0, the surjection 7 is Lipshitz continuous (cf. [11, p. 130]). A Holder
continuous function F: - C with Holder exponent B € (0, 1] lifts to some f = Frr e
Cys(Z), where the modulus of continuity is the constant 6 = Ba,, 0< 8 =< a,. With
Manning’s product formula [6] the results of this section immediately carry over
to Axiom A diffeomorphisms in general. For the following corollary compare also
{11, pp. 140-142]. Note that in doing the transition from the two-sided to the
one-sided problem we lost some regularity in Proposition 1.

CoroLLARY 7. Let (), T) be a topologically mixing Smale space and F: M > C a
complex Holder continuous function with Holder exponent B. Then the zeta function
d(z, F) defined as above is analytic and non-zero for |z| < e”"®" and has a meromor-
phic continuation to |z| < e P®F) ywhere ™7, y>0, is the rate with which T, T
contract in the stable and unstable directions on ().

S. Suspended flows

Let 8 be some positive number. In this section we consider the classical case where
the modulus of continuity is a constant u = 6-1. We start off with the two-sided
subshift X, a real and strictly positive r€ C,(Z) and define on

I ={(x,)eIxR:0=<t=r(x)},
the suspended flow ¢,: X, > X,, R, by setting ¢,(x, s) = (x, s +t) whenever 0=,
s+t=r(x) and extend it to ¢ € R by identifying (x, r(x)) with (ox, 0) where o is the
ordinary shift on =. The function r is often referred to as the ceiling or return

function of the suspension ¢,. We give X, the product topology and consider only
suspended flows with more than one closed orbit (weak mixing).
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The pressure of a real valued continuous function F on ¥, is defined by the
variational principle as

P*(F)=sup (h*(p)+p(F)),

where p runs over all ¢,-invariant probability measures on X,. A flow invariant
measure g is of the form u X A/u(r), where u is a shift invariant measure on X
and A is the Lebesgue measure on R. If we denote by h(u) the measure theoretic
entropy with respect to & and by h*(;2) the measure theoretic entropy of the time
one map ¢, with respect to g, then we have by a theorem of Abramov [1] the
identity h*(z) = h(p)/ u(r), If we put P%(F) for i (F)+h*(a) in the flow case and
P.(f)=p(f)+h(p) in the discrete case we get by Abramov’s formula P%(F)=
P,(f)/ u(r), where f(x)=]8(x) F(x, t) dt. With 8§ as the unique number which
satisfies P(f—48r) =0 it follows from the variational principle that P, (f—~&r)<4
for all shift invariant probability measures u on X, therefore

PYF)~8=PL(F—8)=P,(f~8r)/u(r)=6/u(r)
for all flow invariant measure g =u X A/ u(r), and
d=sup {PE(F)—60/u(r)}=sup P,(f—0)/u(r).

Let F now be complex and denote by £(0) the length of a closed orbit 0. The zeta
function is then defined by

d*(z, F)=H(1—expj

0

(0)

(F(gxo)—2) dt}_ ,

for xo,€ 0 and z a complex variable. The product is over all closed orbits and
converges to an analytic and non-zero function whenever Rz > P*(RF). If F is a
nice enough function such that f is in C4(Z), we have d*(z, F)={(f- zr). For
8 < P(Rf) the unique number which satisfies P(Rf — ér) = 8 we get by Theorem 4
that d*(z, F) has a meromorphic continuation to the complex halfplane Rz > § with
poles whenever L, ., has 1 as eigenvalue.

ProrosITION 8. d*(z, F) is analytic and non-zero for Rz> P*(RF) and has a
meromorphic extension to the halfplane {z € C: Rz> 8} with poles whenever L.,
has 1 as eigenvalue, where 8 =sup,, {(w(Rf—0)+ h(u))/u(r)} and the supremum
is over shift invariant probability measures on 3.

6. Axiom A flows _

We apply the result of §§3 and 4 to Axiom A flows. Let M be a Riemannian
manifold and let ®,: M > M, teR, be a smooth flow. A compact invariant subset
Ac M that contains no fixed points is called hyperbolic if the tangent bundle
restricted to A is a Whitney sum

TAM=E+ES+Eu,

of three D®, invariant sub-bundles, where E is the one dimensional bundle tangent
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to the flow and E,, E, are contracting and expanding respectively, i.e.
|D®,(v)||=Ce ™|v| forvekE,,t=0,
[D®_(v)|=Ce ™|lv]|] forveE,,t=0,

where C is a constant and vy > 0 is a contracting parameter of the flow. The hyperbolic
set A is called basic if periodic orbits are dense, ®, restricted to A is topologically
transitive and A=("),_, ®,U for an open neighbourhood U of A. We say A is
non-trivial if it contains more than one closed orbit.

For Hélder continuous F:A - C with Holder B8 € (0, 1] we define as in the last
section a zeta function Z(z) by integrating along closed orbits. By introducing
transverse Markovian sections H; on M and tracing them under the forward flow
®,, t>0, one derives a suspended flow ¢,: X, - X, which via 7: X, > A is semiconju-
gate to @,, that is w¢, = ®,7, t€R. The ceiling function r measures the ‘time’ it
takes for points of one section H; to flow up to the next. Moreover, if ®, is weak
mixing so is ¢,. A detailed account of the construction is given in Bowen [3] from
where we need the following Lemma 1.5.

LEMMA 9. There exists a constant ¢, so that for € > 0 there exists ¢’ >0, such that if
for & ¢ €A there exists a continuous s:R->R with s(0)=0 and d(D £ P, {)=¢',
[t|=L, L>0 then

d(g; ¢v{) = Co e_‘YL’
for some |v|=e.

We apply this result to our situation using that ®, is semiconjugate to the suspension
¢,. As a result we are able to determine the modulus of continuity of the ceiling
function of ¢,. The map = from the shift 2 to | J, H; is Hélder continuous. Let
x,yeX and £ €A such that mx=§ wy={ If x;=y, for |il=n, n=1, then
d(®£, D,h{)=¢', where we choose £ to be the size of the cross-sections H; which
can be made arbitrarily small, and ¢ satisfies —r "(x)<st=r"(x), with r™"=
ro"'+---+ro”". The function s is determined such that s(r*(x))=r*(y), k=
—n,...,n, and made continuous and monotone in between. Hence by Lemma 9
d(¢ ) =coe”™, L=min (r""(x), r"(x)), and since the ceiling function is Lipshitz
continuous as a function on the cross-sections H,, it follows that

varr(x)=sup {{r(x)—r(z)|: ze2, z;=x; V|i|=n}=c,d (£ ) sc, e ™,

amd consequently r has modulus of continuity 3yr. By the same argument one shows
that the lifted function f(x) = L’,(x) Fom(x, t) dt has modulus of continuity 3y8r. We
now use Proposition 1 to reduce the problem to one on one-sided shift spaces and
conclude by Theorem 4 that the zeta function of the suspended flow can be
meromorphically extended to complex z for which P(R(f—zr)—3yBr)=
P(RF)—Rz-3yB <0, where P(RF) is the pressure of RF for the flow ®, as defined
by the variational principle. Unfortunately 7 : X, > A does not necessarily preserve
the least period of a closed orbit. However, Bowen, who carried further Manning’s
construction of subshifts for diffeomorphisms, saved the situation by constructing

a similar collection of suspensions.

https://doi.org/10.1017/50143385700005587 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700005587

360 N. T. A. Haydn

PropPosITION 10. (Bowen-Manning.) There exist finitely many suspended flows
e X5 > X, i=0,...,k ¢\” = ¢, and projections m;,: X, A, such that 9" m;, =
77(.-)(1),, teR, and

Z(z)=Z«(2) [ Z(2)*",
i=1
where Z,(z) is the zeta function for the suspension ¢\” and where e(i)=+1,i=1,..., k.
Moreover, the suspensions ¢\ have topological entropy strictly less than h(®,) = h*(¢,).

THEOREM 11. Let @, be a C' Axiom A flow with non-trivial basic set A and contraction
parameter yand F : A— C a Holder continuous function with Hélder exponent B € (0, 1].
Then the zeta function Z(z) is non-zero and analytic for Rz> P(RF) and has a
meromorphic extension to the halfplane {z€ C: Rz> P(RF)—3yB8}.
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