SOME EXTENSIONS
OF THE HAUSDORFF;YOUNG AND PALEY THEOREMS
P.S. Bullen
(received August 16,1960)

1. Introduction. Orthonormal sequences, o.n.s., {¢ }
defined on [0, 1] and satisfying

1
(1) lle |l =(j 6 |” ax) < F, n=1,2, ... ,2<v<®
n'v n - n -
o

=max0§x§1]¢n[ _<_Fn, n=1, 2, ... , v =00,
have been studied in [3] and [1]. One of the objects of this paper
is to indicate that the methods used to study such o.n. s. can be
used for a much wider class, and that, although there seems to
be no super theorem to cover all cases, a knowledge of the
results and methods of proof in some fairly broad special cases
enables one to state and prove theorems for other classes of
o.n. s.

An o.n.s. satisfying (1) can be considered as follows.
Although {||¢_|,} is not a bounded sequence there is a function
of n, namely F.!, suchthat {[|¢_F;1]| } isbounded. In §4
we consider o.n.s. for which there is a function of x, say y(x),
such that {|| ¢n¢” v} is bounded.

In § 3, and §5 other types of o.n.s. are considered. As
has been mentioned many of the proofs are similar to those of
known results and so will not be given in any detail.

2. Notation. Let us define the following notation

1

o r _1:
e I =&, 1 17 1<r< o,
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= max ]c l, T =0,
n' n

r-2

' 2-v'
le Il = =, le Fa®7")7 = Jle_n

|~

1-2/r
2-v'

H

|

r

where v > 2, 1< v'< r<v <w and v,v' are conjugate indices
i 1
3 -+ — =1,
defined by 5 + ”»
r-2 1 1-2/r

1 1 ' 1
el = ¢ 1617 %7 ax® = Jlex 7|

where v > 2, 1< v <r<v<oo.

Also, given {cn} and {Fn} , define

vi(r-2)
(2) d (r) = ¢ F(va)r, 1<r<ow, 2<v<om®
n n n - - - -

Note that if r,s are related by

[ 2-v'
(3) SAE A A
b of S

2 - -
then ld (r)ls = ]c ls F S, and that d (v')=c F 1. Further
n n n n n n

if v=o (when v'=1) thenif r,s are related by (3) they are

conjugate indices. Finally thatif F_=1 for all n then dn =c..

As has been pointed out in [1] the sequence {d_} plays, for
o.n.s. satisfying (1), the role that {c_} plays for uniformly
bounded o.n.s., i.e. o.n.s. satisfying (1) with v =00, Fn =M
for all n.

The results it is intended to extend in this paper are listed
below. For further results and details of proofs the reader is
referred to [1], [2], [3] and [7].

THEOREM A (Mercer). If feL  then d (v')=o0 (1).

v n

THEOREM B (Hausdorff-Young). (i) If fe Lp’ vi<p<L2,
then the Fourier coefficients
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(4) c = f¢ dx

n n
satisfy the inequality

d < ||f

I el < el
where p,q are related by (3).

(ii) Given a sequence c¢,, c,, ... with ld,(a) ”P< o,
1 < p< 2, where q,p are related by (3), then there isanfe L

q
satisfying (4) for all n and such that

f d .
Il < e (@1l

For the next theorem only, we assume Fn ‘to be morotonic
increasing, i.e.

THEOREM C (Paley). (i) fe',Lp, V'< p< 2 with
Fourier coefficients ¢, given by (4) then

amll <a €,
ol < &l

where A depends on p, v only.

P,V

1
(i) If {dp} satisfies [dpflq <o, 2<q< v then thereis
an fe L, satisfying (4) for all n, where c_ is given by (2) with
r = q, and such that

el < &, el

THEOREM D (Integral analogue of C). (i) If [ld_| <,
v! < p< 2, then there is an f satisfying (4) for all n, where

c, is given by (2) with r =g, q,p being related as in (3), and

el < & lle .
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1 R
(ii) If ||f||q< ®w, 2<q<v, and if £ has Fourier

coefficients given by (4) then

1
d < A f
I, < a, Il
where p,q are related by (3).

Theorems C, D have so-called star_exfensions. If
d, =o (1) then{ d¥ } denotes {|d, |} arranged in a decreasing
order. Similarly f* will denote a non-increasing function
equimeasurable with f, (for further details see [7]). Then C,
D can be replaced by stronger theorems, theorems C¥*, D*.
The truth of theorem C¥* is only known when (5) is unimportant,
i.e. if Fp =M for all n, when it follows by applying theorem C
to a rearrangement of the o.n.s. {¢,}. (For further discussion
see [1].) :

THEOREM C¥*. (i) Under the hypothesis of theorem C (i)
we have

* t
d A £l -
I, @l <4 Dl

,V
1
(i1) If {d,} satisfies d =o (1) and [djlly <@, 2<q<v
then we can deduce theorem C (ii) with

%k 1
fll < A d .
Iell, < &, Barl

THEOREM D¥*. (i) Under the hypothésis of theorem D (i)
we have

P
f < A d .
I <A, Nl

%k 1!
(i) I |f ”q< ©, 2<q< v then we can deduce theorem
D (ii) and
la, @] 1€,
d (p < A f .
n "'lq = "q,v q
Theorem D¥ is deduced from theorem D by applying theorem
D to the o.n.s. {y,} obtained from o.n.s. {¢ } by a transforma-
tion of [0, 1] that transforms f into f'. (See [7], p-125.) If
{¢n} satisfies (5) so does {u.pn} ;
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The proofs of theorems B-D depend on the following theorem.
If E is a measure space with measure p, define
: 1

by T
f = { fl" du), 1<r<ow
Il , = ¢ I a <
=inf {M: |[f| < M except on a set A, p(A) =0}, r =co.

THEOREM E (Riesz-Thorin). Let E, and EZ "be two
measure spaces with measures py, pp, respectively. Let T
be a linear operation defined on E4 to E;. Suppose that

() lleHp 4 M lIfHu n
2 '61 1 az1

and

(6,) H’I‘fllu M Ilfllu N
2 {32 1 az

where (ai’ﬁi) and (02,62) belong to the square 0 < a< 1,
0<p<t. If

a=(1-t)a1.+ta2, (3=(1-t)(31+tﬁ2, 0<t<,
then
i-t_ .t
(7) el < M0 oM el
p‘z’.B p‘

R |

1!
The method of proving theorems B-D is as follows.
In all cases it can be shown that parts (i) and (ii) of the

theorems are equivalent. So we prove only B (ii), C (ii) and
D (ii), say. )

Then it is noted that (4), or some similar equation, defines
a linear operation between two measure spaces for which (7) is
just the inequality to be proved.

Thus theorem E shows that we can prove our theorems if

we can prove them in two special cases, corresponding to (64)
and (6,), provided only that the range of (7) is then wide enough.
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In the case of theorem B (ii) this "interpolation' is fairly
easy since the theorem is true for a closed interval of p. Con-
sidering the cases p=1, p=2 gives the two special cases
required and interpolation gives the result for 1 <p<2

This simple procedure breaks down for theorems C (ii) and
D (ii) since they are not true for a closed range of q. In this
case we have to prove the theorems for all integral q and then
interpolate between each pair of integers separately.

For further details the reader is referred to [3] and [7].
Extensions of theorem E can be used to avoid the lengthy
proofs of theorems C and D and for details of this reference
should be made to [5] and [7].

3. Relatively orthonormal sequences. The sequence of
functions {\_} is called a relatively o.n.s., r.o.n.s., with
respect to the weight function ¢, [2, p.276], if

1
A (2N (x)¢(x)dx = 0, n#m
n m
o
=1, n=m
We write f~Zc N\ if
nn
(8) c =/f)\ $dx
n n
The results of §2 can be extended to r.o.n. s. in various

ways.
With any r.o0.n. s. {Xn} we can associate an o.n.s. {¢ }
n

1
¢ (x) = (W0x)* r_(x),
n

1 1
provided only that ® is well defined. Then if g(x) = (U(x))* £(x),
g~2Z < ¢n, < being given by (8).

Suppose now that ¢n satisfies (1), i.e.

1
e ll, = W2 IL<F., =n=t,2 ..., 2¢v<m

—_ n — —

Then we can immediately, from theorems A-D, obtain theorems
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about the r.o0.n. s. {)‘n} . The following gives a typical selection
of results.

1
THEOREM 1. (i) If ¢*f€ L , then d_(v)=o(1).

1
(ii) If ¢Tfe LP, V' <p<2 andif p,q are related by (3)
then :

1
d < e .
1 | n(p)llq < | Hp
(iii) If 2 fe L, ¥ <P<2, andif (5) holds

1A
d (p)f < A e .
4,0l < A I
(iv) If HLpr”q<eo, 2<g<v andif p,q are related by

(3) then

%_ '
la @l <& v -

We could, however, suppose that (1) abplies directly to
the r.o.n. s. {)\n} i.e (9) is replaced by

(10) I~ <F, n=1, 2, ..., 2<v<oo.
n'v = n -z

The extension of theorems A-D in this case is not quite so

immediate.

However it is known, (see [3]), that the interval [0, 1] of
theorems A-D can be replaced by a general measure space E,
the measure of E being finite or infinite. (In the case that E
is of infinite measure extra care is necessary at certain points,
[3].) The results we want will follow from theorems A-D applied
to the measure space E =[0,1] with measure

b
(11) px) = | Wt
o
Then theorem 1 becomes
1
THEOREM 2. (i) If ¢ feL , then d (v')=o(1).
1

(ii) If \ppf eL , v' <p<2 andif p,q are related by (3),
then P A4

la el < 1Pl
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1

(iii) If ¢Ffe L, v <p<2 and if (5) holds
; . 1

' »
e el < &) llemel .
1

- 1
(iv) If "\quu <®, 2<g< v andif p,q are related as
in (3) then q : '

la, ol < 4, Iol]

That theorem 2 is the correct result is seen from the fact
that hypothesis (i) is f e Lv‘ w’ hypotheses(ii), (iii) are fe L,

’

j XN
1
hypothesis (iv) is ”f”q " < ®, where p is defined by (11).

4. Suppose now that {¢_}is an o.n.s. such that {|[¢_|,}
is not bounded but for which there exists a function Y(x) such
that

(12) []¢¢n||v51, n=1,2, ..., 2<v<oo.

Such o.n. s. were first considered by Rosskopf, [4]. Some
restrictions on Y(x) seem inevitable and we will assume that
Y € L. Further let us write Ax) = S

P(x)

THEOREM 3. If Xfe Lv' then cn=o(i).

The proof follows the lines of theorem A (see [1] and
[2, p.155]). From (4),

1
c =ﬁ¢dx=]f)(¢¢ dx.
n n o n

Given any f suchthat Xfe L 6 and given any ¢ >0 we can
write f = f1 + fz where

(1) Xfi is bounded and hence f1 € I_.2 since e LZ,
.. €
(ii) HXfZHV' < > -
Therefore
i 1
[cn]: l X f,¢_dx| + | A £,X4¢_dx|.
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By the Riesz-Fischer theorem the first integral is less than 52-

for all n large enough, and an application of Holders inequality

£
shows that the second integral cannot exceed 3" This completes
the proof of theorem 3.

If we now restrict y further by

(13) ¢eL, and Xe L,

we can extend theorems B, C, D to this class of o.n.s.

2
1

THEOREM 4. (i) ¥ XP £ L, v' $PS2, thenthe
Fourier coefficients, given by (4), satisfy the inequality

2y

P
< X £l _.
el < IXP el
where p,q are related by (3).

() 1 o | <=, 1<Pp<2, then there is an f satisfying
(4) for all n and such that
2
';;' -1
X fll < llc |,
X2l < el
where q,p are related by (3).

The proof follows the lines indicated in 8. 1Itis sufficient
to note how we can relate this theorem to theorem E.

We remark that (4) can be written
1

(&6 WX ax,

(o}

C
n

that 2

- =1 O 2. 1 2
P el = | 1EPXEPax = | (sPA e
P
o o
and that, following condition (13), we can define

*x 2
X(x) = f X7 (t) dt.

(o]
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Then we see that {¢ } is obtained by a linear transformation
n

from L < acting on Yf ¢ L % Thus theorem E can be applied

? »

to prove this theorem.

Since (12) does not depend on the order of the o.n.s. ¢

we can extend theorem C* to cover such o.n. s.

2
=

THEOREM 5. (i) I X?  feL, v'<p<2, with Fourier
coefficients given by (4) then

e

n'p —

2
=-1

' P
<a 1Kl

where A depends on p, v only.

(i) I c_=o(1) and []c;':][('1 < ®, 2< q< v then there is
an f satisfying (4) for all n and such that
2
1

q *
Xq f < A c |,
el <A leli

1

where A depends on q,v 6n1y.

2

Because of the remarks following theorem 4 the proof of
this follows exactly the lines indicated in §2.

When a generalization of theorem D is attempted a further
restriction of § is needed, analogous to (5),

(14) if 0<x<y<1 then [X(x)|< [X(y)]-

THEOREM 6. (i) I |c ”p< ©, V'< p< 2 then there
n =
exists a function f{ satisfying (4) for all n and such that

(1-2)%, - 1)

I i <a el

where A v depends on p,v only.

2.2
(1-5)5-1) |
(1) ¥ X E f”q < ®, 2<g< v and if Fourier

coefficients of f are given by (4) then
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(4= 5% )
Ie,l, < 4,1 .,

where Aq depends on q, Vv only.

R4

Following previous remarks it will suffice to indicate how
(14) is needed to put through the proof of this theorem.

Let
£ = f0, 27 <x< 271
=0, elsewhere,
and f (x) NZC(J)¢ (x), then c =Z_°° c(J).
h] n n n j=0 n
Let
-j+1 2-v' 1
] 1 _2
n. = . lflq X v xv>q dx
J P
then the crucial lemma [3] is the inequality
1 1 2-v'
. 5 5 -(-k)
N () (k) 2 2 2v!
b2 <
r=1|cr ‘n I - Bq,v nj N
where j>k and B depends on q, v only.

]

Following the proof in [3] one can easily prove the inequality
but with the r.h. s. multiplied by the factor

max ., [Xix)| / max [X(=) |
2l x<c2itt / 27 ¥ x<27FH

and it is to replace this that (14) is needed.

For alternative proofs of this theorem reference should be
made to [7, p.125].

The attempt to prove a star extension of theorem 6 is
prevented by (14). The method of proof, suggested after
theorem D*, would transform X into 0 that would not neces-
sarily satisfy (14). This is just the difficulty that (5) causes
when attempting to prove theorem C¥*. We conjecture the follow
ing star extension of theorem 6. As in [1], it can be shown to
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‘hold if the function g(x), defined below, takes only the values
0, 1, -1._ Also the weaker theorem, with p,q replaced by
p+e, q-¢ respectively, can easily be proved.

THEOREM 6*. (i) If ”Cn”p< ®, v' < p< 2 then there

is an f satisfying (4) for all n and such that if

2. .2
(1-;)(;—1)

(15) g =X f

Then %
< A c
"8 ”p = “p,v ” n”p

(ii) If ”g‘r”q< ©, 2<g<v, andif Cn are defined by (4),

with f defined by (15) with p replaced by q, then
C < A * '.
eyl < &, el

5. The above results could be used to state and prove
theorems for o.n. s. satisfying various combinations of the above
conditions; e.g. both (1) and (12), ”d,:cbn” < Fn. Although as
has been mentioned earlier such theorems are not implied by
those already proved.

Further o.n. s. can be considered by simple changes of
-yp!

2 -
variable. Thus putting y v for x in (1) enables us to state

% L\
theorems for o.n. s. {)\n} satisfying( I)\nl v yv dy>v < F .
- n
1

In particular the second inequality of theorem D would then read,

1
lldn(p)llq < Aq v(f 1] d}>q_
’ 1

Also we have so far been assuming the {¢,} to be real
valued but by changing (4) to
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we can easily extend the results to complex valued o.n. s.

6. Some examples of 0.n. s. to illustrate these theorems
can be given.

Let Pn be the Legendre polynomials [6]. Then
1

6 (x) = (2n+ 1)°P (%)
n n

isano.n.s. on[-1,1]. We can either consider {¢_} to be an
o.n. s. satisfying (1) because 1

l¢nl < (2n+ 1)2,

or satisfying (12), ‘because

S

4 - 9% (0] < 1.
n

However this o.n. s. is a particular case of Jacobi poly-

nomials

T (Q:ﬁ)
n

(x), ar.o.n.s. on[-1,1] with respect to

(1 - x)a(i + x)B [6]. Two particular cases are of interest,
W A G = T &
n n
e = T ¥,

It is known [6] that '
a+ =

A | < Kn 4
2

»

and hence {Xn} is a r.o.n. s. satisfying (10) with Fn =Kn

v = and weight function Y(x) =(1 - x)a. Then thgorem 2 be-

comes for {xn} : 1
a )
(i) If (4 - x) f(x) e L. then c, = o(n ),

a

(i) ¥ (1 - xPLx) e L, 1<p<2 then

(a+-1-)(2-p')i 2_’2 1 _1.
~ p' 2 p' P P a  |p
z]cnl n <K _1|£l (1 - x) dx|*,
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a

(i) I (1 - 0P £(x) € L, 1<P<2 then

3
(a+3)(p-2) 1
£ cxPp ° < aP | P - 0 ax,
n =7p
-1
a 2

-— {4 ==

(iv) I (1 - 931 + %) qfeLq, 2< q<w, then

1

(e+5)2-q) _ 1 -2

Slc [*n <a%%%¥7 % [ 101+ 1Y ax
n - q
-1
1 a

where ¢ = f(x) A\ (x){(1 - x) dx.

n 4 n

If for example f(x)=(1 - x)_l'L then the conditions of the

1+ .
above results are satisfied if p < == , which implies the con-

1+
vergence of the series in (ii) and (iii) if p < —-l-)—a. In fact it is
2p-a-3/2
known [6] that c,~n poa-3/ which shows the series converge

under the same condition.

Considering now the r.o.n.s. {p_} it is known that [6]
2a+1

-5 % w ] <k

e

I(i - XZ)Q/Z (1 - xz) p.n(x)l < K.

Then we can coasider this as a r.o.n:s. satisfying
2a+1

2. 4
(12) with Y(x) = =(1 - x ) , v =0, and weight function

W

(1 - xz)a.

In this way we combine results in 84 with theorem 2 to get
required theorems. Or we can take itto be a r.o.n.s. satis-
fying a combination of (9) and (12) with the function
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1

2
(1 - xz)al/2 being the L,bz of (9) and the rest i—(i - x ), the

N

function required in §4. Then combining the results in 84 with

theorem 2 gives the desired theorems. As both m=thods give

same results let us consider the first. Then theorem 2 becomes
a 1

(i) If (1 - xz)2 4f(x)e L then ¢ =o0(1).
P n

-
2 4 2p
(i) If 1 - x) (x)EL, 1< p<2 then
1 2-p 1
= — /[t p(5+3) - =
1 1
(Elc lp)P< K P ( 1P -5y 204 de>P.
n =
-1
a 1 1
22717 2p
(iii) If (1 - x) pf(x) € Lp, 1< p< 2, then
1 p(3 +-)
* -2
Tc PoP < AP ’f]p(i.- 2) 2 de'
n - P
-1
e 1 1 1 -2
2 2
(iv) If (1 - x ) 4 q(i + x) qf(x) € L , then
q
a3 +—)
2 -
Zlc Iq<AqK.q / ]fiq(i-xz) 2 4 2(1-{-:{)q de
where
/f(x)pn(x)(i - xz)adx. .

Again the function f(x)=(1 - x) H ocan be con51dered as illustra-
tion for these results.
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