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1. Introduction. Orthonormal sequences, o.n. s . , {<t>n} 
defined on [0,1] and satisfying 

(1) 11+ II =( |<j> T dx) < F , n = l , 2, . . . , 2 < v < o o 
n v I n — n — 

Jo 
= max ^ Â \$ \ < F > n = 1, 2, . . . , v =oo, 

0 £ x < 1 ' n — n 
have been studied in [3] and [ l ] . One of the objects of this paper 
is to indicate that the methods used to study such o. n. s. can be 
used for a much wider c lass , and that, although there seems to 
be no super theorem to cover all cases , a knowledge of the 
resul ts and methods of proof in some fairly broad special cases 
enables one to state and prove theorems for other c lasses of 
o. n. s. 

An o. n. s. satisfying (1) can be considered as follows. 
Although {||<t>n||v} is not a bounded sequence there is a function 
of n, namely F~ , such that {|j è F~*|| } is bounded. In §4 
we consider o.n. s. for which there is a function of x, say ^(x)» 
such that {||<(> 4*11 } is bounded. 

In § 3, and §5 other types of o.n. s. a re considered. As 
has been mentioned many of the proofs a re similar to those of 
known resul ts and so will not be given in any detail. 

2. Notation. Let us define the following notation 

lc || =.<=* |c | V , ! < , < « . 
n r 1 n — 
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= m a x J c J, r = oo, 
n n 

r - 2 J_ 1 - 2 / r 

| c H' = ( S | c | r n 2 - V ' ) r = | |c n 2 - v ' || 
1 n r I n n r 

1 1 
defined by ~ + ~ = 1, 

w h e r e v > 2, 1 < v1 < r < v < o o . 

A l s o , given {c } and { F } , define 
n n 

v ' ( r - 2 ) 

(2) d (r) = c F ( 2 ~ V , l < r < o o , 2 < v < oo. 
n n n — _ — — 

Note tha t if r , s a r e r e l a t e d by 

v1 2 - v1 

(3) - + - = 1 
r s 

t hen 1 d ( r ) | S = 1 c | S F "" S , and tha t d (v1) = c F~ . F u r t h e r 
n n n n n n 

if v = oo (when v1 = 1) t hen if r , s a r e r e l a t e d by (3) they a r e 
conjuga te i n d i c e s . F i n a l l y t ha t if F n = 1 for a l l n then d = c . 

A s h a s b e e n po in ted out in [ l ] the s equence {cLn} p l a y s , for 
o. n . s. sa t i s fy ing (1), the ro l e tha t {c } p l a y s for u n i f o r m l y 
bounded o. n. s. , i . e. o. n. s. sa t i s fy ing (1) with v = oo, F = M 
for a l l n. 

The r e s u l t s i t i s i n t ended to ex tend in t h i s p a p e r a r e l i s t e d 
be low . F o r f u r t h e r r e s u l t s and d e t a i l s of p r o o f s the r e a d e r i s 
r e f e r r e d to [ l ] , [2] , [3] and [7] . 

T H E O R E M A ( M e r c e r ) . If f € L t hen d ( v f ) = o (1). 
vf n 

T H E O R E M B (Hausdor f f -Young) , (i) If f € L. , v » < p < 2 , 
t h e n t h e F o u r i e r coef f i c ien t s 
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(4) c 
n 

satisfy the inequality 

id ( P ) i | < ||f|l 
n q - p 

where p, q are related by (3). 

(ii) Given a sequence c , c~, . . . with |j d (q) || < oo, 
1 < p < 2, where q, p a re related by (3), then there is an f € L 
satisfying (4) for all n and such that 

" V •*„<«» "p 

For the next theorem only, we assume F n to be monotonie 
increasing, i . e . 

F < F^ < F„ . . . 
1 - 2 - 3 

THEOREM C (Paley). (i) If f e'.L , v ' < p < 2 with 
Four ie r coefficients c given by (4) then 

|| d (p)L < A ||f|| 
n p — p,v p 

where A depends on p, v only. 
p,v 

(ii) If {djj- satisfies |j dn |L < oo, 2 < q < v then there is 
an f € L. satisfying (4) for all n, where c is given by (2) with 
r = q, and such that 

I M I < A Q l|d if. 
q — q,v n q 

THEOREM D (Integral analogue of C). (i) If || dn || < oo, 
v1 < p < 2, then there is an f satisfying (4) for all n, where 
c n is given by (2) with r = q, q, p being related as in (3), and 

l l < < A ||d || p — p,v n p 
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(ii) If || f |j < oo, 2 < q < v , and if f has Four ie r 
q -

coefficients given by (4) then 

II d (P)H < A ||f||' 
n 4 ~" <1>V 4 

where p, q a re related by (3). 

Theorems C, D have so-called s tar extensions. If 
d^ = o (1) then { d^ } denotes {[d^]} arranged in a decreasing 
order . Similarly f* will denote a non-increasing function 
equimeasurable with f, (for further details see [7]). Then C, 
D can be replaced by stronger theorems , theorems C*, D*. 
The truth of theorem C* is only known when (5) is unimportant, 
i . e . if F n = M ' for all n, when it follows by applying theorem C 
to a rear rangement of the o. n. s. {<t>n} « (For further discussion 
see [1]. ) 

THEOREM C*. (i) Under the hypothesis of theorem C (i) 
we have 

" d n ( P ) l C < A » v BfD» n p - p,v p 

(ii) If {dn} satisfies 0 ^ = 0 ( 1 ) and | | d £ | L < o o , 2 < q < v 
then we can deduce theorem C (ii) with 

Of H < A | | d * | | ' . 
q q,v n"q 

THEOREM D*. (i) Under the hypothesis of theorem D (i) 
we have 

||f*|f < A ||d || . 
P ~* p,v " n "p 

(ii) If (J f H < oo, 2 < q < v then we can deduce theorem 
D (ii) and 

|| d (p)|| < A ||f*||\ 
n 'q ~ q,v q 

Theorem D^ is deduced from theorem D by applying theorem 
D to the o. n. s. {^n} obtained from o. n. s. {<(>} by a t ransforma­
tion of [0, 1] that t r ans forms f into f*. (See [7], p. 125. ) If 
{c|> } satisfies (5) so does {\\i } . 
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The proofs of theorems B-D depend on the following theorem. 
If E is a measure space with measure u, define 

||f|| = ( / | f | r d ,x ) r , l < r < « 
T* JE 

= inf {M: |f | £ M except on a set A, f±(A) =0}, r = oo. 

THEOREM E (Riesz-Thorin). Let E 1 and E 2 be two 
measure spaces with measures JJL ,̂ u^ respectively. Let T 
be a l inear operation defined on E^ to E2» Suppose that 

< V II «II j < M! II'II i 

**h **\ 
and 

<'2> II « l , < M 2 m ± 

w h e r e (<*,$) and (&-,$-) be long to the s q u a r e 0 < a< 1, 
1 1 2 2 — — 

0 < p < 1. If 

or = ( l - t)a + tar,, P = (1 - t ) p . + tp . 0 < t < 1, 
1 2 1 2 

then 

(7) ||Tffl i < M 1 ; t M t
2 | | f | | ' 4 . 

The method of proving theorems B-D is as follows. 

In all cases it can be shown that par t s (i) and (ii) of the 
theorems a re equivalent. So we prove only B (ii), C (ii) and 
D (ii), say. 

Then it is noted that (4), or some s imilar equation, defines 
a l inear operation between two measure spaces for which (7) is 
just the inequality to be proved. 

Thus theorem E shows that we can prove our theorems if 
we can prove them in two special cases , corresponding to (6^) 
and {62), provided only that the range of (7) is then wide enough. 
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In the case of theorem B (ii) this "interpolation" is fairly-
easy since the theorem is t rue for a closed interval of p. Con­
sidering the cas^s p = 1, p = 2 gives the two special cases 
required and interpolation gives the resul t for 1 <C p £ 2. 

This simple procedure b reaks down for theorems C (ii) and 
D (ii) since they a re not t rue for a closed range of q. In this 
case we have to prove the theorems for all integral q and then 
interpolate between each pair of integers separately. 

For further details the reader is re fer red to [3] and [7]. 
Extensions of theorem E can be used to avoid the lengthy 
proofs of theorems C and D and for details of this reference 
should be made to [5] and [7]. 

*̂ Relatively orthonormal sequences. The sequence of 
functions {Xn} is called a relatively o. n. s. , r. o. n. s. , with 
respect to the weight function \\t, [2, p. 276], if 

fl 
X (x) X (x)ij;(x)dx = 0» n ^ m n m 

o 
= 1, n = m. 

We write f ^ S c X if 
n n 

(8) c = / f X 4>dx 
n J n 

The resu l t s of § 2 can be extended to r. o. n. s. in var ious 
ways. 

With any r. o. n. s. {X } we can associa te an o. n. s. {<f> } 
n n 

l 

cf> (x) = M x ) ) T X (x ) , 
n n 

i l 
provided only that \\i is well defined. Then if g(x) = (4^(x)) f(x), 
g ~ S c <}> , c being given by (8). 

n n n 

Suppose now that <f> satisfies (1), i . e . 
n 

H + J l = H*T X J l < F ' n = l , 2, . . . . 2 < v < c o . 
1 

T 
'n"v " n "v— n" 

Then we can immediately, from theorems A-D, obtain theorems 
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about the r . o . n . s. {X n } • The following g ives a typ ica l s e l ec t ion 
of r e s u l t s . 

T H E O R E M 1, (i) If q r f € i ^ f | then d J v ' ) = o ( l ) . 
l l v* n% 

(ii) If ^ f * L, , v1 £ p < 2 and if p , q a r e r e l a t e d by (3) 
t h e n 

l 

Hda(p)||q< ll+Tf|lp. 
1 

(iii) If + T f ^ L , vf < p < 2 , and if (5) ho lds 

\\d<p)t<A\\^f\\ 
n p — p ,v p 

i 
(iv) If ||ijj f || < oo, 2 < C q < v and if p , q a r e r e l a t e d by 

(3) then 

||d (p) || < A l ^ f l f . 
n — q,v q 

We could , h o w e v e r , suppose tha t (1) a p p l i e s d i r e c t l y to 
the r . o . n . s. {\ } i. e (9) i s r e p l a c e d by 

(10) || X || < F , n = l , 2 , . . . , 2 < v < » . 
n v — n — — 

The ex t ens ion of t h e o r e m s A - D in t h i s c a s e i s not quite so 
i m m e d i a t e . 

H o w e v e r i t i s known, ( see [3]), t ha t the i n t e r v a l [0, l ] of 
t h e o r e m s A - D can be r e p l a c e d by a g e n e r a l m e a s u r e space E , 
the m e a s u r e of E be ing finite o r inf ini te . (In the c a s e tha t E 
i s of infini te m e a s u r e e x t r a c a r e i s n e c e s s a r y a t c e r t a i n po in t s , 
[3] . ) The r e s u l t s we want wi l l follow f rom t h e o r e m s A - D appl ied 
to the m e a s u r e space E = [0, l ] with m e a s u r e 

(11) |i(x) = I +(t)dt. 

Then t h e o r e m Î b e c o m e s 

vl 

T H E O R E M 2. (i) If + f € L , then d ( v ' ) = o ( l ) . 

(ii) If i\> f € JL , v! < p <: 2 and if p , q a r e r e l a t e d by (3), 
t hen P .1^ 

IM n (P) l l q <l l+ p f | l p . 
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(iii) If i|iPf € L , vT < p < 2 and if (5) holds 
P ~ 

i 
»dn(p)"UAx>v^Pft n p — p,v p 

Q f 

(iv) If j| 4> f|| < °°, 2 < q < v and if p , q a r e related as 
in (3) then q 

!Un(P)|| < A . D + q £ | | ' . 
n q — q,v q 

That theorem 2 is the cor rec t result is seen from the fact 
that hypothesis (i) is f 6 L , , hypotheses (ii), (iii) a re f € JL 

hypothesis (iv) i s ||f|j < oo, where \± is defined by (11)-

4. Suppose now that {^n) * s a n o. n. s. such that { ||<t>n||v} 
is not bounded but for which there exists a function ^(x) such 
that 

(12) f|i|i(b II < 1, n = 1, 2, . . . , 2 < v < oo. 
n y — — — 

Such o-n. s. were f i rs t considered by Rosskopf, [4]. Some 
res t r ic t ions on 4*(x) seem inevitable and we will a s sume that 
ib € L.->. Fu r the r let us wri te X(x) = —r—r . c +(x) 

THEOREM 3. If X f c L , then c =o( l ) . 
v' n 

The proof follows the lines of theorem A (see [ l ] and 
[2, p. 155]). F r o m (4), 

f f1 

c = fd> dx = / fXdiè dx. n J n Jo 
Given any f such that Xf € JL and given any e > 0 we can 
write f = f + f where 

1 2 
(i) X f is bounded and hence f € L. since \\> 6 L , 

(ii) I I X f 2 i v , < | . 

Therefore 

, C n' - .' f i + a
d x ' + I I f2X*l'+n

d x l -
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By the R i e s z - F i s c h e r t h e o r e m the f i r s t i n t e g r a l i s l e s s than — 

for a l l n l a r g e enough, and an app l ica t ion of H o l d e r s inequality-

shows that the second i n t e g r a l cannot e x c e e d — . Th i s c o m p l e t e s 

the proof of t h e o r e m 3. 

If we now r e s t r i c t ^ f u r t h e r by 

{13) «4J € la and X € L 

we can ex tend t h e o r e m s B , C, D to th i s c l a s s of o. n . s. 

T H E O R E M 4. (i) If % P f 6 L, , v1 < p < 2, then the 

Fourier coefficients, given by (4), satisfy the inequality 

l | c | | < l | X P f|| . . 
n q p 

where p, q are related by (3). 

(ii) If || c || < po, 1 < p< 2, then there is an f satisfying 
n p - ~ 

(4) for all n and such that 

|X* «II, < l |cjp , 

where q, p are related by (3). 

The proof follows the lines indicated in §2. It is sufficient 
to note how we can relate this theorem to theorem E. 

We remark that (4) can be written 

c = / (fvW(4> 4-)X?dx, 
11 Jo 

that 

Htf'SlIp- Mf|pX2-pdx= P l f ^ d x 

and that, following condition (13), we can define 

fX 2 X(x) = X (t)dt. 
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T h e n we see tha t {c } i s ob ta ined by a l i n e a r t r a n s f o r m a t i o n 
n 

f r o m L ac t ing on \\tf c L . T h u s t h e o r e m E can be app l i ed 
P>X p,X 

to p r o v e t h i s t h e o r e m . 

Since (12) does not depend on the o r d e r of the o. n. s. 4> 
we can ex tend t h e o r e m C to c o v e r such o. n. s. 

T H E O R E M S , (i) If X P f c L^ f v ! < p < 2, wi th F o u r i e r 
coe f f i c i en t s g iven by (4) then 

| ]c* | | < A | | X P f|| . " n " p — p , v " Mp 

w h e r e A depends on p , v only. 
p , v 

(ii) If c = o ( l ) and Ile* II1 < «>, 2 < q < v then t h e r e i s 
n n " q — 

a n f sa t i s fy ing (4) for a l l n and such tha t 

w h e r e A depends on q,v only. 
q,v 

B e c a u s e of the r e m a r k s following t h e o r e m 4 the proof of 
t h i s fo l lows exac t l y the l i n e s i nd i ca t ed in §2. 

When a g e n e r a l i z a t i o n of t h e o r e m D i s a t t e m p t e d a f u r t h e r 
r e s t r i c t i o n of vji i s n e e d e d , ana logous t o (5) , 

(14) if 0 < x < y < l then |%(x) | < pC(y) \. 

T H E O R E M 6. (i) If || c || < «o, v! < p < 2 t h e n t h e r e 
n p ~ 

e x i s t s a function f sa t i s fy ing (4) for a l l n and such tha t 

a--){-, - i ) , 
IX p v 'II < A lie L 

p ~" p ,v n p 
w h e r e A depends on p , v only. 

p , v 
2 2 

( l - £ ) ( ^ - l ) 
(ii) If | | X q f|| <oo, 2 < q < v and if F o u r i e r 

coe f f i c i en t s of f a r e given by (4) t h e n 
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2 2 
( 1 - - ) ( £

f - 1 ) 

I le II < A [J q V f|| , 
n"q — q,v "q 

where A depends on q, v only. 
q,v 

Following previous remarks it will suffice to indicate how 
(14) is needed to put through the proof of this theorem. 

Let 

f. (x) = f(x), 2~j < x < 2 ~ j + 1 

3 
= 0, elsewhere, 

and f . ( x ) - S c ( j ) ^ (x), then c =2.°° c ( j ) . 
J n n n j=0 n 

Let 
2 - v* i \ 

|f|qV% V' x V q " 2 d x 

then the crucial lemma [3] is the inequality 

- ( j - k ) -
N | (j) (k). 2 2 w ' 2V 

S C C < B Tl. T]. 2 
r = l r n — q,v 'j 'k 

where j > k and B depends on q, v only. 
q,v 

Following the proof in [3] one can easily prove the inequality 
but with the r. h. s. multiplied by the factor 

m a x . j , - j + i . I X ( x , , / m a V k - - k + i | X ( x ) l 

2 J < x < 2 J / 2 < x < 2 
and it is to replace this that (14) is needed. 

For alternative proofs of this theorem reference should be 
made to [7, p. 125]. 

The attempt to prove a s tar extension of theorem 6 is 
prevented by (14). The method of proof, suggested after 
theorem D*, would t ransform 9C into 0 that would not neces­
sari ly satisfy (14). This is just the difficulty that (5) causes 
when attempting to prove theorem C*. We conjecture the follow 
ing s tar extension of theorem 6. As in [ l ] , it can be shown to 
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hold if the function g(x), defined below, takes only the values 
0, 1, - 1 . Also the weaker theorem, with p, q replaced by 
p + e , q - e respectively, can easily be proved. 

THEOREM 6*. (i) If II c II < oo, v1 < p < 2 then there 
n p -

is an f satisfying (4) for all n and such that if 
2 2 

(1 - - ) ( - - 1) 
(15) g = X P V f 

Then t 

"s I U A B V I I C A 
p — p,v n p 

(ii) If || g || < oo, 2 < q < v , and if c a re defined by (4), 

with f defined by (15) with p replaced by q, then 

Ile IL < A l | g Y . n q — q,v q 

5. The above resul ts could be used to state and prove 
theorems for o. n. s. satisfying var ious combinations of the above 
conditions; e .g . both (1) and (12), ||̂ <t> || <_ F . Although as 
has been mentioned ea r l i e r such theorems a re not implied by 
those already proved. 

Fu r the r o.n. s. can be considered by simple changes of 

2 - v1 

variable . Thus putting y for x in (1) enables us to state 
J, 

theorems for o.n. s. {\ } satisfying! / | \ | y dy 1 < F . 
n V l n 7 ~ n 

In par t icu la r the second inequality of theorem D would then read, 

lV»>lqs*,.JU1"
|f|,d!)'-

Also we have so far been assuming the {4>n} to be real 
valued but by changing (4) to 

Ii 
c 
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we can easily extend the resul ts to complex valued o. n. s. 

6. Some examples of o.n. s. to i l lustrate these theorems 
can be given. 

Let P be the Le gendre polynomials [6]-. Then 

i 
<j> (x) = (2n + I ) 2 P (x) 

n n 
is an o.n. s. on [ -1,1] . We can ei ther consider {<(> } to be an 
o.n. s. satisfying (1) because 

I <*> | < ( 2 n + l ) 2 , n — 

or satisfying (12), because 
1 

|(1 - x 2 ) % (x)| < 1. 
n ~~ 

However this o.n. s. is a par t icular case of Jacobi poly­

nomials TT ' (x), a r. o. n. s. on [-1, 1] with respect to n « a 6 
(1 - x) (1 + x) [6]. Two par t icular cases a re of interest , 

(D x (x) = r r ( a ' o ) ( x ) 
n n 

( i i ) n (x) = T T ( o ' a ) { x ) . 
n n 

It is known [6] that 
1 

a +1 
| x J < K n ± 

r , Q + 2 
and hence {X } is a r. o. n. s. satisfying (10) with F = Kn , 

n n 
v = oo and weight function i|j(x) = (1 - x) . Then theorem 2 be ­
comes for {X } : 

n 1 
(i) If (1 - x)af(x) € L then c = o(n ), 

n 
a 

(ii) If (1 » x)Pf(x) € L , 1 < p < 2 then 

,.<«>-'té_T7/\., «_.p 
s c rn r < K ^ifrd-xrdxP-, 
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(iii) If (1 - x)Pf(x) « L , 1 < p < 2 then 
P "" 

{a+h(p-Z) A 
S c * P n 2 < AP / | f | P ( l - x ) a d x , 

~ P J-l 
* I - 2 -

(iv) If (1 - x)q(l + x) q f € L , 2 < q< », then 
q ~ 

= |c |qn 2 < A q K q " 2 / ( l - x ) a ( l + x ) q - 2 | f ! q d x 
_ q 7-1 

a 
where c = / f(x) X (x) (1 « x) dx. 

n M 

If for example f(x) = (1 - x) then the conditions of the 

1 + a 
above results are satisfied if JJL < , which implies the con-

P 1 +•<* 
vergence of the series in (ii) and (iii) if JJL < . In fact it is 

known [6] that c -^ n which shows the series converge 

under the same condition. 

Considering now the r. o. n. s. {|in} it is known that [6] 

2a+ 1 

|(1 - x2) 4 ji (x)| < K 
n ~ 

i .e. ^ 

| ( l - x 2 ) t t / 2 ( l - x 2 ) 4 » i (x)| < K. 
n — 

Then we can consider this as a r. o. n; s. satisfying 

2a + 1 

1 2 4 
(12) with ^(x) = ^ (^ • x ) , v =oo, and weight function 

(1 - x2)*. 

In this way we combine results in §4 with theorem 2 to get 

required theorems. Or we can take it to be a r. o. n. s. satis­

fying a combination of (9) and (12) with the function 

1 3 6 
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2 a/2 2 1 2 4 
(1 » x ) being the v|; of (9) and the rest —(1 - x ) , the 

function required in §4. Then combining the results in §4 with 
theorem 2 gives the desired theorems. As both methods give 
same results let us consider the first. Then theorem 2 becomes 

£ A 
(i) If ( 1 - x 2 ) 2 4 f(x) € L then c =o(l). 

P i i 

£ A JL 
2 2 + 4~2p 

(ii) If (1 - x ) ^ f(x) € L, , 1 < p < 2 then 
P "" "~ 

£ i J_ 
(iii) If (1 - x2)2 4 2 p f(x) € L , 1 < p< 2, then 

P "" 
ta 1 1 

„ P ( T + T ) - T 
, ,p 2 2 4 2 
| i | ( 1 - x ) dx-

a l l j 2 

(iv) If (1 - x ) * q (1 + x) q f(x) 6 L , then 
q 

/

/£ i \ A 
| f | q ( l - x 2 ) q 2 + 4 "2( l + x ) q - 2 d x 

1 
where 

c = / f{x)u (x)(l - x 2 ) adx. 
n y-i 

Again the function f(x) = (1 - x) can be considered as illustra­
tion for these re suits. 
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