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Dedicated to the memory of Professor Tapast Nakavama

1. Introduction

In the present paper by an algebraic system (algebra) A we shall mean
a system with a set F of operations f» : (x1,...,%s) €EAX -+ X A->filx, . . .,
x) € A. A polynomial p(xi, . . ., x,) is a function of variables xi, . . . , - which
is either one of the x;, or (recursively) a result of some operation fi(pi, ...,
pn) performed on other polynomials p;. An algebra A may satisfy a set R
of identities p(xi, ..., %) =¢q(%, ..., %), and then A shall be called an
(F, R)-algebra.

By a meromorphism between two algebras admitting the same operations,
we mean a many-many correspondence of elements which preserves all algebraic
combinations. If ¢ is a meromorphism of A onto B, under which the cor-
respondence of elements shall be written a - b(¢) or a¢b, then a9b; (i=1, .. .,n)
imply filai, ..., @) ¢filbs, ..., bs). We shall write 6%a to mean a@b,
and then ¢ becomes a meromorphism of B onto A. Let ¢ and ¢ be meromor-
phisms from A onto B and from B onto C respectively, and define a¢¢c to
mean a¢b and bjc for some b= B. Then ¢¢ becomes a meromorphism from
A onto C.

Now on a meromorphism of any algebra the following theorem similar to

the Homomorphism Theorem holds.

MEeroMORPHISM THEOREM. Let ¢ be a meromorphism of A onto B. If we
define the rvelation ¢* in A by

ay*a' means that for some finite number of elements ay, ay, . .., an< A and
b], oo ,bnEB,
aw=a, @' = an, ai-19b;, a;Pb; G=1,...,n),

then ¢* is a congruence relation on A, and similarly & is that on B. Further

their homomorphic images arve isomorphic: ¢*(A)=¢*(B).
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If, given b= B, {x ; x¢b} is necessarily a congruence class under ¢* in the
above theorem and, given a< A, {y ; a¢y} is necessarily that under @*, then
¢ is called a class-meromorphism. As is already known, a meromorphism ¢ is
a class-meromorphism if and only if a¢b, a’¢b and a’¢é’ imply avb’. When ¢
and ¢ are two meromorphisms of A onto B, we define ¢<¢ to mean that a¢d
implies a¢b. Then the above condition that ¢ be a class-meromorphism is writ-
ten ¢9¢=<¢.

In Shoda’s theory for abstract algebraic systems the following condition
on an algebra A is often assumed:

(a) Every meromorphism between two homomorphic images of A is a
class-meromorphism.

In the present paper we shall deal with meromorphisms of an algebra A
onto itself. We shall first show in § 2 that the above condition («) is equivalent
to the condition

(B) Every meromorphism of A onto itself is a class-meromorphism.

A meromorphism ¢ of A onto itself may be regarded as a relation between
elements of A. If ¢ is reflexive, i.e. a¢a holds for all a € A, we shall call ¢
a quasi-congruence. 'We shall show that a quasi-congruence on A is a class-
meromorphism if and only if it is a congruence relation. We shall inquire in
§ 2 mainly into the symmetricity and transitivity of quasi-congruences in abstract
algebras, and discuss the connections among the transitivity, symmetricity and
permutability of quasi-congruences.

In §3 and §4 we shall deal with quasi-congruences on some real algebraic
systems. Especially we shall discuss in § 3 the conditions that quasi-congruences
on a semigroup be symmetric and in $4 that quasi-congruences on a lattice
be transitive. The lattice of quasi-congruences on a lattice is not necessarily
distributive. We shall lastly give some sufficient conditions for that lattice to
be distributive.

2. Meromorphisms of an abstract algebra onto itself

Let ¢ and ¢ be homomorphisms of A and 6 a meromorphism between
¢(A) and ¢(A). If we define a®b to mean ¢(a)f¢(b), then it is easy to see
that ® is a meromorphism of A onto itself. Suppose that ©(a)8¢(d), ¢(a')0¢(d)
and ¢(a')6¢(d'). Then a®b, a’'8b and a’'Gd'; hence if O is a class-meromorphism
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we get abb' and ¢(a)0¢(d'), which shows that 8 is a class-meromorphism be-
tween ¢(A) and ¢(A). Thus we have

TueorEM 2.1. Every meromorphism between two homomorphic images of an

algebra A is a class-meromorphism if and only if every meromorphism of A onto

itself is a class-meromorphism.

Meromorphisms of A onto itself form a partially ordered semigroup M(A)
under the multiplication and the ordering defined in §1:

apgb means that a¢c and c¢bd for some ce A4 ;

¢<¢ means that a¢b implies ayb.

Further, it is rather evident that ¢<¢, and ¢<¢; imply PP =011

A meromorphism 6 of A onto itself is regarded as a relation in A, and it
becomes a congruence relation if it is reflexive, symmetric (symbolically §<6)
and transitive (6°<6). A quasi-congruence on A is a meromorphism of A onto
itself which is reflexive. The set Q(A) of quasi-congruences on A becomes a
subsemigroup of M(A) mentioned above and a complete lattice under the
ordering defined in M(A). In Q(A) a—b(A4.0,) means that af.b for all ..

Now let P be a set of ordered pairs (a, b) of elements of A, and define

the relation # in the following way:

ufv means that a polynomial p(xi, ..., Xm, ¥1, . . . , ¥n) €xists such that

u=play,...,am Ciy...,cn) and v=p0by, ..., bm, 1, ..., Cn)

for some (a;, b;) € P.

Then it is easily seen that § becomes a quasi-congruence, which is the least
of elements ¢ of Q(A) satisfying a¢b for every pair (a, b) € P. This 4 is
called the quasi-congruence generated by P and denoted by 4(P). It follows
that 0(P) = Vig berbla, b), where 6(a, b) is the quasi-congruence generated
by one pair (a, b).

We intend to discuss the symmetricity and transitivity of quasi-congruences.
We first show

TueoreM 2,2. Let {6.) be a set of quasi-congruences on an algebra A. Then

closed sublattice of Q(A).
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Proof. It is clear by the meaning that 4,0, = 4.0.. Let P be a set of
ordered pairs (a, b) of elements of 4 and put P={(d, a) ; (a, b) € P}. If
u—v(6(P)), then a polynomial p existssuch that » = p(as, . . ., @m, €1, . . . ,Cn),
v=pby, ..., bm €, ...,cs) and (a;, b;) €P. Then (b; a;) €P and hence
we infer v - #(8(P)), which shows (P) = 6(P). Now put 8, = 6(P,). Then
Vibs = 6(V,P,), where V,P. is the set-sum of P,. So we can deduce

Vaoa = o(VaPa) = o(VaPa) = 0( Vaﬁa) = Vao(ﬁd) = Vaﬁd,

completing the proof.

If quasi-congruences 6. are transitive, then 4.6, is also transitive but V.f.
is not necessarily transitive; hence the set (A) of congruences on A is meet-
closed in Q( A) but not always a sublattice of Q(A).

Now let S be a subalgebra of an algebra A and every quasi-congruence
on S be transitive. Suppose x, y, z€ S, 20y and yfz under a quasi-congruence
# on A. Since 6 can be regarded as a quasi-congruence 6, on S, provided the
range of elements is restricted in S, and 6, is transitive, we infer x6,z and x6z.

So we have

TuroreEM 2.3. Quasi-congruences on an algebra A are transitive if every triple
{%, v, z} is contained in a subalgebra S =S(x, y, z) on which quasi-congruences

are transitive.

And similarly,

THEOREM 2.4. Quasi-congruences on an algebra A arve symmetric if every pair
{x, ¥} is contained in a subalgebra S=S(x, y) on which quasi-congruences are

symmetric.

Two quasi-congruences ¢ and ¢ are called permutable if and only if ¢¢ =
¢¢. We see some connections among the transitivity, symmetricity and per-

mutability of quasi-congruences.

TuEOREM 2.5. If the join ¢ U of two quasi-congruences ¢ and ¢ is transitive,

then ¢ =¢p =9 U¢.

Proof. When ¢ and ¢ are quasi-congruences on A, a¢b implies a9byb;
hence we have ¢<¢¢, p=0¢p and ¢ U¢p=<¢y. So we can deduce from (¢ U ¢)?
SQUQ, 9p<(9UPIseU =9y
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THEOREM 2.6. [f quasi-congruences ¢, ¢ and O are symmetric, then ¢ and

¢ are permutable.

Proof. 1t is easily seen that ¢¢ = ¢¢. Hence the symmetricity implies ¢¢
=909 =49 =¢g.

Next we deal with congruence relations regarded as quasi-congruences.
Given a quasi-congruence §, it follows from the Meromorphism Theorem men-
tioned in § 1 that 6™ = V,,(88)” is a congruence, which is called generated by 0,
and if 6 is originally a congruence, 6* = 6.

THEOREM 2.7. A quasi-congruence is a class-mevomorphism if and only if it

s a congruence.

Proof. If 0 is a congruence on A, then 6= V,(80)"=60000=6000, whence 6§
is a class-meromorphism. Conversely if 060<0, then 9<000=<6 and 6°<600=0 ;
hence 0 is a congruence.

The set O(A) of congruences on A is not always a sublattice or a subsemi-
group of Q(A). We shall give below some conditions for @(A) to be so.

The product ¢¢ of two congruences ¢ and ¢ becomes a congruence if and

only if they are permutable; hence

TueoreM 2.8. Congruences on an algebra A form a subsemigroup of Q(A)

if and only if they arve permutable.

Let ¢ and ¢ be congruences on A and ¢ V¢ the congruence generated by
¢¢p. Then ¢U¢=¢p=<¢V¢. Hence we can infer from Theorem 2.5,

TueoreM 2.9. If quasi-congruences on an algebra A arve transitive, then con-
gruences on A form a sublattice of Q(A). If congruences on A form a sublattice
of Q(A), then they are permutable.

As shown above the transitivity or symmetricity of quasi-congruences
implies the permutability of congruences. Hence if quasi-congruences are
class-meromorphisms, then congruences are permutable. But the converse is

not true. On the other hand Malcev [2] has proved the following theorem.

Tueorem 2.10 (Malcev). If congruences on every (F, R)-algebra are per-
mutable, then there exists a polynomial plx, vy, z) such that p(x,y,y) =x and
p(x, %, y)=y.
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If such a polynomial p(x, y, z) exists, then a¢b, a'¢b and a'¢d’ imply a =
pla, a', a")ep(b, b, b') =b'. Hence

THEOREM 2.11. If congruences on every (F, R)-algebra are permutable, then

meromorphisms of every (F, R)-algebra onto itself arve class-meromorphisms.

3. Quasi-congruences on a semigroup

We intend to obtain the condition for a semigroup G that every quasi-
congruence on G be a congruence. We have succeeded to solve this problem

for a commutative semigroup.

TueoreMm 3.1. For a commutative semigrvoup G the following conditions ave
equivalent :
(1) every quasi-congruence on G is symmetric,

(2) G is a group in which every element has a finite order.

Proof. (1) (2). Let a be any element of G. If we define xfy to mean
either x=y or x=ya” with n=1,2, ..., then it is easy to see that 6 is a
quasi-congruence on G. Since a’fa and 6 is symmetric, we get afa’ and a =
a" (n=1,2,...). Pute=a" If n=1, then é=d*=a=¢, and if #=2, then
e’=a""0""=aad" '=a"=e Since exfix, we have xfex, that is either x = ex or
x=exa”, and then we can show ex=x by ¢ =¢; namely ¢ is an identity.
Similarly, given b€ G, we can find ¢ =" such that ¢x=x for all x G, and
then we have e/ = ¢e' = ¢'e=¢ and either b=¢ or 5" 'b=¢; so b has an inverse
and a finite order.

Now the implication (2) - (1) can be shown without the commutativity of

G. Namely

TueoreM 3.2. If G is a group in which every element has a finite order,

then every quasi-congruence § on G, regarded as a semigroup, is a congruence.

Proof. abb and bfc imply ab~'b6bb”'c, that is afic. Hence every quasi-
congruence on a group is transitive. Suppose that afb and the order of ¢ = ab™t
isn. If n=1, then a=056 and bba. If =2, then ¢c=ab '¢1 implies ¢ '=
¢"'9 1 and ba"'0 1; whence we get da. Thus 6 is a congruence.

As is already known, a congruence ¢ on a group G regarded as a semigroup
becomes that on G regarded as a group; namely preserves the operation f(x)

1

=x"". On the other hand every meromorphism between groups, preserving
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f(x) =x7!, is a class-meromorphism. Hence Theorem 3.1. shows that a quasi-
congruence on a group G regarded as a semigroup is not necessarily that on
G regarded as a group and further the permutability of quasi-congruences on

a semigroup does not imply the symmetricity of those.

4. Quasi-congruences on a lattice

In the present section we intend to discuss the properties of quasi-con-
gruences on a lattice with the operations U and N. A semilattice on which
quasi-congruences are symmetric is trivial. For every element of a semilattice
L, regarded as a commutative semigroup under the multiplication U, is idem-
potent, and so L can contain no element other than one element 1 if it forms
a group. This follows also from the fact that the relation =< becomes a quasi-

congruence in a semilattice or a lattice; hence

THEOREM 4.1. Some quasi-congruence on a lattice (semilattice) L is not sym-

metric, provided L contains two ov more elements.

Then we consider the transitivity of quasi-congruences on a lattice L.

Lemma 4.1. Let 6 be a quasi-congruence on a lattice L. If the implication

abbbc— abc holds for the cases a<b=c and a=b=c, then 6° = 0.

Proof. abbfc implies a Uaba Ub, a UbUbfaUbUc and afa UbUc, since a<
aUb=aUbUc. Similarly aUbUcfbU chc implies aUbUcfc. Then we have
aNlaUbUc)8(aUbUc)Ne, that is abe.

Now we call an element m of a lattice modular if x<y implies xU (m Ny)

=(xUm)Ny.

THEOREM 4.2. Let m be a modular element in a lattice L. If all intervals

containing m ave complemented, then quasi-congruences on L are transitive.

Proof. We shall show for a<b=c that afbfc implies afc. Let x be a
relative complement of dUm in the interval [aNm, cUm] and y that of

(bUx) Nm in LaNm, m]. Then we get

a=alU@Nm)=aU(xN (bUm))IbU (xN(cUm)) =bUx,
y=(aNm)Uyd((bUx)Nm)Uy=m

and
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a=alU(aNm)=aU(yN(BUDNm)) =aU(yN(BU)E
BUU(mN(cUx)=bUxUm)N{cUx) =«cUm)N(cUx);

accordingly cNafcN (cUm) N (cUx), that is afc.

Dually we can show that ¢ =b=c and afblc imply afc. Hence it follows
from Lemma 4.1 that 6 is transitive.

A Jattice with 0 in which all intervals [0, x] are complemented is called
section-complemented. For a lattice L without 0 we shall define L to be section-
complemented when every element of L is contained in a section-complemented
principal dual ideal. If a lattice L is section-complemented, then any triple
{x, v, z} is contained in a section-complemented dual ideal S = [a), in which

the condition in Theorem 4.2 holds; hence by Theorem 2.3 we infer

CorOLLARY 1. In a section-complemented lattice every quasi-congruence 1is

transitive.

Further, by Theorem 2.5 we can assert the following propositions in our

previous paper [1].

CoroLLARY 2. If all intervals of a lattice L containing a modular elemeni m

are complemented, then congruence relations on L are permutable.

CoroLLARY 3. On a section-complemented lattice congruence relations are

permutable.

Next we shall inquire into the structure of the lattice Q(L) of quasi-

congruences on a lattice L. It is well-known that congruence relations on a

/Oa

F16. 1
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lattice form a distributive lattice. However the lattice @(L) is not necessarily

modular. Indeed if we set in the lattice of Fig. 1
=260, b), ¢ =0(b, ¢) and ¢ =6(a, ¢),

then ¢<¢ and a - c((¢ U@) N¢) holds nevertheless a—c(¢ U (6 N¢)) does not
hold.

Lemma 4.2, If we define in a lattice L awb to mean a=<b, then v is a quasi-
congruence on L and a lower distributive element in Q(L): wN(@U¢) =(wN @)
UwNg) for all ¢, ¢ € Q(L).

Proof. Put p=wN(@¢U¢), Go=wN®, gy=wN¢ and 0= ¢, U¢,. It suffices
to show p<s. As is mentioned in §1, xpy implies that a lattice polynomial
p exists such that

X=p(@1,y o oo, @1y Sty o v oy Smy Uty « o oy Un),
y=play, ... a, ty, o tmy U1y ., UR)
and x<y, si¢ti, u;pv;. Then since s;¢s; Ut; and ujgu; Uv;, we get si@es; Ut; and
ujdou; Uvj. Hence if we put
z=pay, ...,a, $iUt, ... ,SmUltm, w1 Uvy, ..., uyUvy),
then we get x=y=z, xoz and x =xNyszNy =y, proving p=<o.

Dually we define aw'd to mean a=b. Then we can show

LemMa 4.3. If 6N (eNg) =(8N@)U(ONY) holds for the cases 0, ¢, y<w
and 0, ¢, p<ow' in Q(L), then Q(L) is distributive.

Proof. Let 0, ¢ and ¢ be any quasi-congruences on L and put p=0N (¢
Ug), s=(@Ne)U(@Ng¢). Then by Lemma 4.2 we get oNp=(wNG) N ((wN
¢©)U (wN¢)), and by the assumption wNp=(wNONE)U(wNHN¢)<o. Hence
xpy implies x N yoy, xNy(wNp)y and xNysy. Dually we can show that xpy
implies xoxNy. Then we have (xNy) Uxgy U (xNy), xoy and thus p=<o.

TuareoreMm 4.3. If all quasi-congruences on a lattice are transitive, then they
form a distvibutive lattice.

Proof. By Lemma 4.3, it is sufficient to prove § N (¢ U ¢) = (6 N¢) U (6N )
for 0, ¢, ¢<w. Putp=0N(¢U¢)ands=(N¢)U(6N¢). Since ¢ is transitive,
we can write 6 = (6N ¢)(0N¢) by Theorem 2.5. If xpy, then we have

X=P(a1, e o, Q1 Sty e o v, Smy Uty o o vy Un),
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y=pla, -..,a, b, .« bm V1o oo, Un)
with s;¢t;, ujgv;. If we put
Z‘-‘p(al,...,dl, iy o oo s bmy Uty « - & ,u,,),

then x¢z, z¢y and x<z<y, since ¢, ¢=w. Since xfy, x=xNz0yNz=2z and z=
xUzfyUz=y. Hence we have x(6 N @)z z(6 N¢g)y and x(6 N ¢)(H N ¢)y; namely
xgy. Thus 0N (¢ UP) =(6N@)U(GN).

CoroLLARY. The lattice of quasi-congruences on a section-complemented lattice

is distributive.

THEOREM 4.4. The lattice of quasi-congruences on a distributive lattice is

distributive.

Proof. Put p=0N(¢U¢) and o= (N ¢) U (8N¢) for quasi-congruences 4,

¢, ¢=w, and assume that xpy. Then we can write

x=pla, s, u)=pay, ...,aq, S, « . ., Sm Uty .« ., Uy),

y=pla, t, v)=pa, ...,a, bty ... ,bm Vi) « v ., Un)

with s;¢t;, ujgv;. We define two weights w,(p) and w»(p) of the polynomial
p by w(p)=m+n and w.(p) =1+ m+n.We shall prove xgy by induction on
w,(p) and w.(p). If wil p)=2, we can write either p =pNp, or p=p, Up. with
wi(P) = wi(p) +wil p2), wel p) =we(p) +we( ), wil p;) 20 and w.(p;1=1. We
may deal only with the case p = p, N ps.

Case 1. wi(p)<wilp), w!p)<w(p). Since xpy and

x=ZyNpla, s, W<y Npila, t, v) =y,

we get yNpila, s, wlpyNpila, t, v). Since wi(yNp) =wi p) <wlp), we get
yNpia, s, u)ayNpila, t, v) =y, by the hypothesis of induction, and similarely
yNpe(a, s, #)ay. Then

x=(yNpila, s, u)N(yNpla, s, u))ay.

Case 2. wi(p) =wi(p), w(p,) =0. If we put b=p:(a), then x=p(aq, s,
u)Nb, y=pila, t, v)Nb and hence x=pila, s, u) Ny, y=pa, t, v) Ny, We
can write either p, = psNpy or pr =psUp; in the same manner as above. If
p1=psNps, then by regarding ps and p.Nb as p, and p. we can reduce to either
Case 1 or the case p;=p; Up;. Hence we may assume that p, = ps U py.

Case 2.1. wi(ps) <wi(p), wilp) <w(p;). Since xpy and

https://doi.org/10.1017/50027763000026386 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026386

ON MEROMORPHISMS OF ALGEBRAIC SYSTEMS 569

x=(psla, s, u) NP Ux=<(psla, t, v) Ny Ux=y,

we get (psla, s, ) Ny) Uxp(ps(a, ¢, v) Ny) Ux and w,' (psNy* Ux) = w,' p3) <
wi(p). Hence we have xs(psla, t, v) Ny) Ux, xs( pala, t, v) Ny) Ux and xo( psla,
t, v)NY)UxU(psla, t, v)Ny)Ux=(pi(a, t, v) Ny)Ux =y by the distributivity.

Case 2.2. wi(ps) = wip)), w(p) =0. Then we can write, putting ps(a) =c,

x=(psla, s, wUc)Ny=(psla, s, ) Ny)U(cNy),
y={(psla, t, VU Ny=(pula, t, v’ Ny U(cNy)

and x= (psla, s, ) Ny)Ux, y= (psa, ¢, v) Ny)Ux, since cNy<x. We may

assume p; = ps N ps without loss of generality. Then since xpy and
2= (p.la, s, W) Ny)Ux=(psla, t, V) NP Ux=y,

we have (ps(a, s, u) Ny)Uxp(ps(a, t, vINy) Ux Since w,((psNyIUx) =
w:(ps) +2 and wy ps) <wal ps) <welpy) <wnl Y, wa((p;7y) Ux) <ws(p). Hence
we can infer (ps(a, s, #) Ny) Uxal( ps(a, ¢, ») Ny) U x =y, by the hypothesis of
induction, and (ps(a, s, #)Ny) Uxsy. Then

x=(ps(a, s, u) Npsla, s, u) Ny) Ux
= ((psla, s, W) Ny Ux) N ((psla, s, w) Ny)Uxagy,

completing the proof.

It seems the distributivity of Q(L) may be deduced from more weaker
conditions on L. For instance we guess that Q(L) may be distributive for a
modular lattice L. Further we intend to inquire into the structure of a lattice
L by the investigation of Q(L) but we have obtained no useful result on it.
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