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Abstract. Our view of the properties of extragalactic radio jets and the impact they have on the
host galaxy has expanded in the recent years. This has been possible thanks to the data from new
or upgraded radio telescopes. This review briefly summarises the current status of the field and
describes some of the exciting recent results and the surprises they have brought. In particular,
the physical properties of radio jets as function of their radio power will be discussed together
with the advance made in understanding the life-cycle of radio sources. The evolutionary stage
(e.g. newly born, dying, restarted) of the radio AGN can be derived from their morphology
and properties of the radio spectra. The possibilities offered by the new generation of low-
frequency radio telescopes make it possible to derive (at least to first order) the time-scale spent
in each phase. The presence of a cycle of activity ensures a recurrent impact of the radio jets
on their surrounding inter-stellar and inter-galactic medium and, therefore, their relevance for
AGN feedback. The last part is dedicated to the recent results showing the effect of jets on the
surrounding galactic medium. The predictions made by numerical simulations on the impact
of a radio jet (and in particular a newly born jet) on a clumpy medium describe well what is
seen by the observations. The high resolution studies of jet-driven outflows of cold gas (H I and
molecular) has provided new important addition both in term of quantifying the impact of the
outflows and their relevance for feedback as well as for providing an unexpected view of the
physical conditions of the gas under these extreme conditions.
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1. Introduction

Radio jets are one spectacular manifestation of nuclear activity in galaxies. They are
launched by a super massive black hole (SBMH) and collimated very close to it thanks
to the combined effects of black hole spin and magnetic field (see Blandford et al. 2019,
for a review and Fig. 1 for an example). This short review will discuss some of the latest
results on their energetics, life-cycle and impact on the surrounding medium.

Extragalactic radio jets span over a huge range of sizes (from pc to Mpc) and show
a variety of structures and physical properties (see Sec. 2). They are also known to
be recurrent during the life of a massive galaxy (see Sec. 3). All these properties have
implications for the impact the jets have on the surrounding medium.

Especially on cluster scale, they have been identified as responsible for preventing gas
from cooling, therefore representing one of the clearest case of feedback in action driven by
Active Galactic Nuclei (AGN) (see e.g. review by McNamara & Nulsen 2012). However,
their impact can also be visible on galaxy scales (see Sec. 4) and can be considered
complementary to the effects of radiation and AGN-driven winds.

New results improving our understanding of radio jets and of their impact, have been
made possible thanks to the upgrade of a number of radio telescopes, like JVLA, GMRT,
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Figure 1. Very Long Baseline Array (VLBA) 43 GHz, 23-epoch average radio image of the
jet and counterjet in M87 based on data from 2007 and 2008. Image taken from Walker et al.
(2018); c© 2018 The American Astronomical Society.

WSRT-Apertif, eVLBI and the coming in operation of new radio telescopes, like the Low
Frequency Array (LOFAR; van Haarlem et al. 2013), the Murchison Widefield Array
(MWA; Tingay et al. 2013) and ALMA. More radio telescopes are starting their oper-
ation, e.g. MeerKAT (Jonas & MeerKAT Team 2016), and ASKAP (Johnston et al.
2007) or are planned for the coming years, i.e. SKA and SKA-VLBI (Paragi et al. 2015),
the latter particularly relevant for the connection to many countries in Africa. Thus,
these are extremely interesting times for the study of radio jets. Especially relevant are
the increased sensitivity and increased field-of-view that some of these telescopes have
brought. Also important are the new possibilities offered by the low frequencies surveys,
now reaching spatial resolutions comparable to what has been achieved so far only at GHz
wavelengths. This is making possible the study of jets in this previously unexplored win-
dow. Particularly interesting are the results obtained by the LOFAR Two Meter Survey
(LoTSS): an overview can be found in a special issue of A&A (February 2019) and in
Shimwell et al. (2019).

It is worth noting that the occurrence of radio emission and of radio jets is a strong
function of the mass of the host galaxy and of the radio power of the source, see Sabater
et al. (2019) and refs therein. Thus, in massive galaxies (M∗ >∼ 1011 M�) the presence of
a radio AGN with radio power < 1023 W Hz−1can reach above 80%, while the fraction
remains at most 30% for radio sources above 1024 W Hz−1 (Sabater et al. 2019).

2. Jets as function of the radio power

Figure 2 shows examples of radio jets observed in sources of different radio power.
The figure illustrates the first-order dependence of the morphology of the radio jet on
this parameter. In the most powerful sources (P1.4 GHz

>∼ 1024 W Hz−1), typically hosted
by early-type galaxies, the jets can reach many hundred of kpc to above Mpc in size,
something that does not happen among the low power radio sources. The lower power
sources (with power P1.4 GHz

<∼ 1024 W Hz−1), are often referred to as radio-quiet (see
Kellermann et al. 1989, and discussion below).
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Figure 2. Examples of morphology of radio jets observed in sources with different radio
power. On the left two examples of radio-quiet sources. NGC 1266 with radio power P1.4 GHz =
9.3 × 1020 W Hz−1(Alatalo et al. 2011), and the so-called “Tea cup” source with radio power
P1.4 GHz = 5 × 1023 W Hz−1(Harrison et al. 2015) representing radio-quiet sources. On the right,
two examples of radio loud sources. The giant FRI radio galaxy 3C 31 as observed by LOFAR
at 150 MHz, from Heesen et al. (2018) and the FRII radio galaxy 3C 219 from Clarke et al.
(1992) and Bridle Picture gallery; c© NRAO/AUI 1999.

Following the seminal work of Fanaroff & Riley (1974), the radio-loud group of sources
has been historically separated into two morphological classes, the so-called Fanaroff-
Riley I and II (FRI and FRII). The separation is considered to be a function of radio
power, with FRII becoming prominent for power above P1.4 GHz ∼ 1025.5 W Hz−1.
However, a sharp separation in term of radio power has been recently questioned by Mingo
et al. (2019), as result of the automatic classification performed on a large sample of radio
galaxies produced by the LOFAR surveys. The Fanaroff-Riley division dependents on the
properties of the jets and is, therefore, connected to the properties of the central engine
(e.g. accretion rate, BH spin etc.) and to the environment into which the jet is expanding.
Differences in the physical parameters of jets have been suggested and observed for
FRI and FRII, e.g. differences in the composition (i.e. fraction of thermal component),
speed of the jet and spectral properties. In particular, the spectral properties represent a
powerful tool to trace the ageing of the relativistic electrons and test for its acceleration.

For FRI, a detailed description of the observed properties can be found in Laing &
Bridle (2012, 2014); Laing (2015) and refs therein. In general, the jets in these sources
widen rapidly. They decelerate from relativistic to sub-relativistic speeds on scales of
1-10 kpc (Laing & Bridle 2012). The deceleration and the turbulence in the flow result
in strong entrainment of external thermal medium. This helps balancing the pressure
between the jet and the external medium, preventing the jet to be under-pressured, as
otherwise suggested by X-ray observations (Morganti et al. 1987; Worrall & Birkinshaw
2000). Thus, jets in FRI sources can contain a large fraction of non-radiating, thermal
medium.

The situation is different in FRII. Hot spots are observed at the end of the jets indicat-
ing high Mach number jets and overpressure with respect to the medium. The spectral
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properties confirm this (Harwood et al. 2016). In these jets, no strong entrainment is
expected (Croston et al. 2018).

Although according to the work of Sabater et al. (2019) and refs therein, the stellar
mass of the host galaxy (M∗) appears to have a stronger connection to the radio emission
than the mass of the central BH (MBH), the link between the radio emission and the
central engine is suggested by the properties of the optical emission lines of the host
galaxy. In radio-loud galaxies the strength of these lines correlates, to first order, with
the power of the radio source, i.e. the host of FRI radio galaxies show only weak emission
lines while FRII tend to show strong emission lines (see Tadhunter 2016, for a review on
the optical properties of radio galaxies). The exception to this trend is represented by a
group of FRII showing only weak emission lines, i.e. weak-line radio galaxies (WLRG).
The nature of this group is still unclear (Tadhunter 2016).

Despite the fact that most of the attention is given to extended sources, the great
majority of radio sources are actually small (< 20 kpc) and appear unresolved in most of
the surveys. Interestingly, in the past years more attention has been given to these small
sources. Indeed, even a new class in the Fanaroff-Riley classification has been introduced
(not without controversies): the FR0 group (Sadler et al. 2014; Baldi et al. 2015). The
nature of these radio sources and the role they play is still a matter of discussion (Baldi
et al. 2019). However, their relevance is that they release their energy on galaxy-scale.

The so-called radio-quiet sources (following Kellerman et al. 1989, these are sources
with a relatively low radio-to-optical flux density ratios, R< 10, and low radio pow-
ers, below 1024 W Hz−1), represent a mix bag of objects, that includes Seyfert galaxies,
quasars and low luminosity AGN (LLAGN). The definition of radio-quiet can be mis-
leading and it should be kept in mind that these sources are not radio-silent and in many
cases they show radio jets (see also discussion in Padovani 2017).

Although as the radio power decreases it is more difficult to separate radio emission
from AGN and starformation, a large number of radio-quiet sources have jets and should
be treated as proper radio AGN (see examples in samples studied by Gallimore et al.
1999; Morganti et al. 1999; Jarvis et al. 2019). Despite the diversity observed in their
host galaxy, all radio sources classified as radio-quiet have a number of properties in
common. For example, they are typically of small sizes (up to at most a few tens of kpc),
they have more complex morphologies and they are dominated by entrainment (due to
the low velocity of their jets), therefore their jets can have a large fraction of thermal
component.

Interestingly, the most recent work on a sample of radio-quiet, obscured quasars by
Jarvis et al. (2019) has shown that the majority of the targets exhibit extended radio
structures on 1 to 25 kpc scales. These radio features are associated with morphologically
and kinematically distinct components in the ionised gas. This is also confirmed by
detailed studies of single, radio-quiet objects e.g. Seyfert galaxies like NGC 1068, IC 5063,
Mrk 6 (see Garćıa-Burillo et al. 2014; Morganti et al. 2015; Kharb et al. 2014, and
refs therein) and LLAGN (Alatalo et al. 2011; Combes et al. 2013; Riffel et al. 2014;
Rodŕıguez-Ardila et al. 2017; Fabbiano et al. 2018; Maksym et al. 2019; Murthy et al.
2019; Husemann et al. 2019a). Thus, the radio jets observed in these objects, despite their
low power, can have an impact on the surrounding gas, disturb the kinematics and, in
some cases, influence the physical properties (e.g. ionisation via shocks). This is further
discussed in Sec 4.

Regardless the morphology and classification of the radio jets, one of the parameters
that is key for quantifying their impact on the surrounding interstellar medium (ISM) is
the jet power. This gives the actual energetics available to the jet, combining radiative
and non-radiative components, i.e. taking into account the thermal component. Because
of this, measuring the jet power is not trivial. Although other methods have also been
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proposed, see e.g. Willott et al. (1999), the studies of the X-ray cavities have provided
a powerful way to estimate the jet power. By measuring the work needed to inflate the
cavities, the power required from the radio plasma can be derived and then related to the
radio luminosity (see Cavagnolo et al. 2010; McNamara & Nulsen 2012, for a review). The
relation derived in Cavagnolo et al. (2010), Pjet ≈ 5.8 × 1043(Pradio/1040)0.70 erg s−1, is
often used for this purpose. However, it is important to keep in mind the limitations of this
approach, see discussion in Croston et al. (2018); Shabala & Godfrey (2013). In low power
jets, the jet power is more uncertain because of the large fraction of thermal component
coming from the entrainment. Because of this, the power of these jets can be larger than
expected from their radio luminosity, see Bicknell et al. (1998) and Mukherjee et al.
(2018a) for a recent example. Thus, given that these jets release their energy on galactic
scales, they can play a relevant role in affecting the medium of their host galaxy and a
better understanding of their jet power is important (see below).

3. Life-cycle of radio jets

The recurrence of the active phase of the super massive BH (SMBH) is a key ingredi-
ent in cosmological simulations of galaxy evolution, because it ensures that the energy
released by the SMBH impacts the host galaxy multiple times as needed in the feedback
cycle (see e.g. Ciotti et al. 2010; Novak et al. 2011; Gaspari et al. 2017). For radio AGN,
we know that the period of activity is followed by a remnant phase when the nuclear
activity switches off or drastically decreases. We also know that this cycle can repeat.
The availability of deep (and high spatial resolution) surveys at low frequencies is a major
steps forward for quantifying the time-scale of their cycle of activity (see also Morganti
2017a, for an overview). This is because the emission at low frequencies remains, for the
longest time, unaffected by energy losses, thereby acting as a “fossil record”.

In radio AGN, we can identify newly started jets by the combination of small size and
peaked radio spectra. Because of these properties, these young sources are usually called
Compact Steep Spectrum (CSS) and GigaHertz Spectrum (GPS), see O’Dea (1998);
Orienti (2016) for overviews of their properties. Their ages are typically < 106 yrs, and
they have not emerged yet from the galactic medium (i.e. their size is <∼ 10 kpc). Most
of these sources (albeit not all, see Kunert-Bajraszewska et al. 2010, for exceptions) are
believed to expand and break out from the galactic ISM, and grow to evolved radiogalax-
ies. Most of the life of a radio galaxy is spent in this phase (lasting roughly few ×107 up
to a few ×108 yrs). Modelling of this active phase, in particular for FRII radio galaxies,
have been presented in a number of studies, starting with the seminal work of Scheuer
(1974), to more recent studies, e.g. Kaiser & Best (2007); Hardcastle (2018) and refs
therein. After this active phase, the jet can switch off. In the dying phase, known as
remnant phase, the radio emission quickly fades away due to radiative and adiabatic
losses, see e.g. Parma et al. (2007); Brienza et al. (2017) and refs therein. Interestingly,
radio AGN can also have a restart phase. The best examples of this are the so-called
“double-double” radio galaxies. An example can be seen in Fig. 3 (left) and more details
can be found in Schoenmakers et al. (2000); Konar et al. (2012); Mahatma et al. (2019)
and refs therein. In these sources two sets of lobes are observed, resulting from two well
separate phases of activity. The remnant phase in these objects has a duration compara-
ble or shorter than their active phase, ranging from a few Myr to a few tens of Myr (e.g.
Konar et al. 2012). Other type of restarted radio galaxies are known, for example those
showing a bright inner, newly born radio source embedded in a low surface brightness
emission, reminiscent of a remnant structure, see Fig. 3 (right) for an example. In these
sources, the time scales of the active and remnant phases can only be derived from a
detailed analysis of the radio spectrum (see e.g. Brienza et al. 2018).
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Figure 3. Examples of restarted radio galaxies. Left: double-double radio galaxy from the
study of Mahatma et al. (2019). The image shows the emission at 1.4 GHz from the in greyscale,
overlaid with the 144 MHz LOFAR contours from the LoTSS DR1 in orange. Right: Contours
of the diffuse radio emission around B2 0258+35 over-laid on a DSS2 image. Figure taken from
Shulevski et al. (2012). The inset at the bottom right shows the young, restarted source (image
taken from Giroletti et al. 2005). A full discussion of the properties of this radiogalaxy can be
found in Brienza et al. (2018).

Thanks to the low frequency radio data which are coming on-line (and in particular
the data from the LOFAR surveys), we are getting a better view of the life cycle of radio
galaxies. Brienza et al. (2017) and Hardcastle (2018) have suggested that remnant sources
fade rapidly, thus most of the observed remnant radio galaxies are relatively young, with
total ages between 5× 107 and 108 yr. The majority of the remnant sources would be
observed soon after the switch-off of the radio source and they are expected to evolve
quickly due to dynamic expansion. The restarted phase can also follow shortly after, in
a similar way as found for the group of double-double radio galaxies (Jurlin et al. 2020).
It is interesting to note that these findings are consistent with what derived from the
study of X-ray cavities in radio galaxies in clusters and groups, see e.g. Randall et al.
(2011); Vantyghem et al. (2014). A full overview of the life cycle can only be obtained
by including these findings in the context of modelling the evolution with respect to the
luminosity function of radio galaxies (e.g. Shabala et al. 2020).

4. Jets and their impact

Radio jets are recognised to play a role in feedback by preventing the cooling of hot
(X-ray) gas surrounding central galaxies in clusters. Extensive work has been done on
this, see e.g. McNamara & Nulsen (2012). This role has been identified as jet-mode feed-
back and associated to radio sources characterised by radiatively-inefficient accretion, i.e.
FRI. However, radio jets can also drive massive gas outflows on galactic scales, an other
signature of AGN feedback. We will focus here on this role of the radio jets. An overview
of the relevance of outflows for feedback and galaxies evolution can also be found in a
number of reviews, e.g. King & Pounds (2015); Morganti (2017b); Harrison et al. (2018)
and refs therein.

Radio jets have been known a long time to be able to drive gas outflows (see e.g. Axon
et al. 1998; Capetti et al. 1999). Most of these studies focused on ionised gas (warm and
hot). In the last years, however, the study of outflows has expanded also to the cold
component of the gas: H I and molecular (see Morganti et al. 2005a; Feruglio et al. 2010,
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as examples of earlier studies). The finding of cold gas associated with AGN-drive outflows
has been quite surprising. The origin of this gas associated with fast outflows is still a mat-
ter of debate. The most likely explanation is that the component of cold gas is due to fast
cooling after the gas is shocked by the interaction with the jet. Interestingly, in most cases
studied so far, the cold phase of the gas appears to carry the larger mass of the outflow,
i.e. higher compared to what associated to the warm ionised component of the outflow.

In addition to this, the improvement of the numerical simulations describing the impact
of jets on the surrounding medium has further helped in the intepretation of the results
from the observations. The new generation of numerical simulations assume more realistic
conditions for the gas the jet expands into. They are finding that radio jets couple
strongly to the clumpy ISM of the host galaxy, see Wagner et al. (2012); Mukherjee et al.
(2016); Cielo et al. (2018); Mukherjee et al. (2018a,b) for the details. According to these
numerical simulations, a clumpy ISM, instead of a smooth one (as was assumed so far
in the simulations) is key in making the impact of the jet much larger than previously
found: because of the clumpiness of the gaseous medium, the progress of the jet can be
temporarily halted when hitting a dense gas cloud. Thus, the jet is meandering through
the ISM to find the path of minimum resistance and, doing so, creating a cocoon of
shocked gas driving an outflow in all directions (Wagner et al. 2012; Mukherjee et al. 2016,
2018a). The jet power, the distribution of the surrounding medium and the orientation
at which the jet enters the medium are all important parameters which determine the
final impact of the jet-ISM interaction (Mukherjee et al. 2018a).

4.1. Impact traced by the ionised gas

As mentioned, the capability of radio jets to drive outflows is known since long time
thanks to the studies of the optical emission lines of the warm ionised gas and of X-ray
emission tracing the presence of gas heated by shocks. Evidence of jet-ISM interaction and
jet-driven outflows have been found in a variety of objects. For example, Seyfert galaxies
often show morphological association between the ionised gas and the radio emission.
Furthermore, kinematical disturbance - traced by broad (often blueshifted) components
of the emission lines - have been observed from the gas co-spatial with the radio (see e.g.
Capetti et al. 1999; Axon et al. 1998; Morganti et al. 2007). All these signatures supports
and highlight the role of the jets as responsible for the interaction. Interestingly, also low-
luminosity AGN show gas outflows attributed to radio jets as show in, e.g. Riffel et al.
(2014); Rodŕıguez-Ardila et al. (2017); May et al. (2018) and refs therein.

In radio galaxies the presence of kinematically disturbed gas at the location of the radio
emission is a relatively common features. Figure 4 (left) shows the example of Coma A
and the spatial coincidence between the distribution of the ionised gas and the radio
emission, strongly suggestive of a role of the radio plasma in shaping the distribution of
the gas (Tadhunter et al. 2000). The radio can also play a role in the ionisation of the
gas but assessing this requires a detailed analysis of the line ratios and the comparison
with shocks models. Particularly interesting is the result that young radio galaxies, i.e.
sources hosting a newly formed jet, show these kinematically disturbance more often and
of larger amplitude compared to large radio sources (Holt et al. 2008, 2009). The effect of
jets in high-z radio galaxies has been also studied in detail by e.g. Nesvadba et al. (2008).

While outflows of ionised gas are very common in radio sources, the mass outflow rate
associated with them is typically not high ( <∼ 1M� yr−1), regardless whether they are
driven by jets or by radiation/winds. Thus, the actual impact of these outflows for galaxy
evolution is still an open question.

Signatures of shocked-heated gas resulting from the interaction between the radio
plasma and the ISM are also seen by X-ray observations. The case of NGC 3801
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Figure 4. Left: Overlay of the Hα+continuum image for Coma A (grey-scale) with the 6-cm
radio map of van Breugel et al. (1985) (contours). Figure taken from Tadhunter et al. (2000).
The coincidence between the radio emission from the lobes and the ionised gas is clearly seen
suggesting that the distribution of the gas is shaped by the interaction with the radio plasma.
Right Chandra image with 1.4 GHz radio contours overlaid to illustrate the relationship between
the X-ray shells and radio morphology in NGC 3801, figure taken from Croston et al. (2007).

(Fig. 4, right) nicely illustrates this process by showing shells of enhanced X-ray emission
at the edge of the radio lobes (Croston et al. 2007). It is interesting to note that this
object is a low-power radio galaxy. Croston et al. (2007) estimate an expansion speed
of the shells of 850 km s−1, corresponding to a Mach number of 4 and this allows to
measure directly the contribution of shock heating of the jet to the total energetic input
to the ISM. Similar conclusion about the relevance of shocks heating of the gas were
derived for Centaurus A (Croston et al. 2008). In this object, a shell of X-ray emitting
gas is observed, tracing the effect of the southern radio lobe expanding with a velocity
of ∼2600 kms−1, roughly Mach 8 relative to the ambient medium.

Signatures in the form of X-ray emitting gas heated by shocks from jet-ISM interaction
have been reported also for the radio galaxy 3C 305, (Hardcastle et al. 2012). The authors
find that the X-ray emission is consistent with being shock-heated material and can be
described by standard collisionally ionised models. Albeit with a number of assumptions,
in this source the X-ray-emitting gas could dominate the other phases of the gas outflow
(Morganti et al. 2005b) in terms of its energy content. This may be the case in more
objects, but the lack of deep enough X-ray data prevent to draw strong conclusions.

4.2. Jet-driven outflows of cold gas: HI component

A number of cases have been found where a component of H I (identify by blueshifted
wings seen in H I absorption) is associated with jet-driven outflows, see e.g. Morganti et al.
(2003, 2005a); Aditya & Kanekar (2018); Morganti & Oosterloo (2018) and refs therein.

In a shallow H I survey of about 250 sources, at least 15% of H I detections show
blueshifted components of H I absorption (Geréb et al. 2015; Maccagni et al. 2017).
Interestingly, the large majority of these outflows are observed in young (or restarted)
radio galaxies (see also Aditya & Kanekar 2018). The H I outflows can extend up to
a few hundred pc to kpc in radius and are characterised by velocities between a few
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Figure 5. Left: radio continuum image of the young radio galaxy 4C 12.50. Right: in orange
is shown the distribution of the outflowing H I (about 1000 km s−1 blueshifted compared to the
systemic velocity). The spatial coincidence between the radio lobe and the gas, with a bright H I

cloud at the location of the hot spot and more diffuse gas wrapping around the lobe, suggests
that the outflow could be driven by the radio jet. Adapted from Morganti et al. (2013).

hundred and ∼1300 km s−1, masses raging from a few ×106 to 107 M� and mass outflow
rates up to 20−50 M� yr−1. Their kinetic energies can be derived and compared to
the Eddington (or bolometric) luminosities resulting in Ėkin/Ledd ∼ 10−4 (few ×10−3

bolometric luminosity).
In a few cases, the H I outflow has been located and spatially resolved using high

resolution observations and VLBI. The best examples are 3C 293 (Mahony et al. 2016)
and 4C 12.50 (Morganti et al. 2013). Other examples can be found in Schulz et al. (2018).
Figure 5 shows the case of 4C 12.50, where the interaction jet-ISM is caught in the act.
The outflowing H I gas (shown in orange in Fig. 5 right) is distributed around the head of
the jet and on the side of the lobes, very suggestive of an on-going interaction. From the
VLBI observations it is also interesting to see that outflowing gas is present very close
to the AGN (∼40 pc, Schulz et al. 2018). Furthermore, these studies also suggest that
the structure of the outflow changes with time, with an increasing amount of diffuse gas
- with respect to gas in clumps - as the radio source grows (Schulz et al. in prep).

4.3. Jet-driven outflows of cold gas: molecular component

The study of molecular gas in radio galaxies in a variety of environments is rapidly
expanding, in particular thanks to the capabilities of ALMA (see e.g. Ruffa et al. 2019;
Russell et al. 2019).

The sensitivity of ALMA has also made possible to derive the best evidence of fast and
massive outflows driven by radio jets. One of the objects where the effects of the radio
jet on the molecular gas has been studied in details is the Seyfert 2 galaxy IC 5063. This
object is also one of the clearest examples of low-power jet (this source would be classified
as radio-quiet) disturbing the kinematics of all the phases of the gas (see Tadhunter et al.
2014; Morganti et al. 2015, for an overview).

The ALMA observations have confirmed the presence of molecular gas with disturbed
kinematics across the entire region co-spatial with the radio emission (Morganti et al.
2015). The observations of a number of CO transitions have shown that in the immediate
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Figure 6. Cartoon of the jet-ISM interaction in the case of 3C 273 as proposed by Husemann
et al. (2019b). The sketch illustrates the dependence of the impact from the geometry of the
jet-disk system.This has been suggested to occur also in other objects (see text) and is predicted
by the numerical simulations of Mukherjee et al. (2018b).

vicinity of the radio jet, a fast outflow, with velocities up to 800 km s−1, is occurring.
In addition to this, the interaction is also affecting the physical conditions of the gas
(Dasyra et al. 2016; Oosterloo et al. 2017). The gas involved in the outflow has high
excitation temperatures (in the range 30−55 K) and, based on the relative brightness of
the 12CO lines and of 13CO(2-1) vs 12CO(2-1), the outflow must be optically thin (see
Oosterloo et al. 2017, for details). The mass of the molecular outflow is estimated to be
at least 1.2 × 106 M� and the mass outflow rate is ∼12M� yr−1. Although not extremely
high, it is much higher than the one derived for the warm ionised gas. Interestingly, the
kinematics of the gas can be well reproduced by the hydrodynamic simulations described
above, which model the effect of the radio jets on the multiphase, clumpy interstellar
medium. The detail of the simulation and the results of the comparison are described in
Mukherjee et al. (2018a).

In addition to IC 5063, in a steadily growing number of radio galaxies (both radio-
quiet and radio-loud) the interaction of the jets with dense clumps producing molecular
outflows has been observed. This is thanks not only to the depth but also to the high
spatial resolution provided by ALMA. Some examples can be found in e.g. NGC 1068
(Garćıa-Burillo et al. 2014), HE 1353-1917 (Husemann et al. 2019a), NGC 613 (Audibert
et al. 2019), 4C12.50 (Fotopoulou et al. 2019), PKS1549-69 (Oosterloo et al. 2019), 3C 273
(Husemann et al. 2019b). The actual impact of the jet-ISM interaction will depend on
the distribution of the gas and the orientation of the jet compared to it. Interestingly,
this dependence is seen both in low and high radio power jets. This is seen very clearly
in IC 5063 but it is supported by other cases as extensively discussed in (Mukherjee
et al. 2018b). Other examples are e.g. the low-power AGN HE 1353-1917 (Husemann
et al. 2019a) and the high-power jet in 3C 273 (Husemann et al. 2019b). The cartoon
shown in Fig. 6 illustrates the scenario proposed by the authors for this object but also
representing what predicted by the numerical simulations: the radio jets is creating a
pressurised expanding hot gas cocoon which is impacting on the inclined gas disk.

The presence of radio jets does not preclude other forms of AGN activity (like radiation
and winds) impacting the ISM. In some cases, it may even be difficult to disentangle the
effect of these different phenomena. The case of PKS 1549-69, an object hosting an
obscured quasars and a young radio source, is particularly interesting. The ALMA high
resolution observations show the presence of three gas structures, which can be seen in
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Figure 7. The complex view of the central few hundred pc of PKS 1549-69 (z = 0.150), see
Oosterloo et al. (2019) for details. ALMA CO(1-0) and CO(3-2) detected in emission with spatial
resolution ranging from 0.05 arcsec (∼100 pc) to 0.2 arcsec.

Fig. 7, tracing the accretion and the outflowing of molecular gas. Kiloparsec-scale tails
are observed, resulting from an on-going merger and providing gas which accretes onto
the centre of PKS 1549-79. At the same time, a circum-nuclear disc has formed in the
inner few hundred parsec, and a very broad (> 2300 km s−1) component associated with
fast outflowing gas is detected in CO(1-0) at the position of the AGN. As expected, the
outflow is massive (up to 600 M� yr−1) but, despite the fact that PKS 1549-79 should
represent an ideal case of feedback in action, it is limited to the inner 200 pc. Both
the jet and the wind/radiation can drive the outflow (and perhaps they both do!). Only
circumstantial evidence suggest the jet may play a prominent role, as the jet appears to be
affect by strong interaction with the ISM, possibly providing the driving mechanism for
the massive outflow. These results illustrates that the impact on the surrounding medium
of the energy released by the AGN is not always as expected from the feedback scenario.

5. Conclusions

In summary, radio jets show a variety of structures, physical conditions (velocity, com-
position etc.) and energetics. The importance of radio jets goes beyond the radio-loud
objects and the (much more common) radio-quiet sources should also be considered.
Their radio emission shows often jet-like structures and the power of these jets can have
a relevant impact on the host galaxy. They can interact with the ISM of the host galaxy
for a longer period and, integrated over time, they can dump large amounts of energy in
the ISM.

Radio jets are also a recurrent phenomenon. From their properties (e.g. morphology
and radio spectra) we can identify young, dying and restarted radio sources. The recur-
rence of the radio AGN ensures that they impact the host galaxy multiple times as
needed in the feedback cycle. Low frequency radio surveys are now helping to derive
more reliable time-scales of their life-cycle.

Jets can drive (massive) multi-phase outflows. Based on new numerical simulations,
the predictions are that jets couple well with clumpy ISM and that they can produce
cocoons of shocked gas expanding across the surrounding gas. These effects are already
observed in a growing number of objects. Young (or restarted) jets are those showing the
most clear signs of affecting the surrounding medium. This is also consistent with the
predictions from the simulations.
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Thanks to the increasing sensitivity and the capabilities offered by the new radio
telescopes, our understanding of both the physical properties as well as the impact of
radio jets, is continuously expanding. These progresses, combined with the study of AGN
at other wavelengths, will hopefully help building a more complete picture of the interplay
between AGN and host galaxy, a problem that still has many open questions.
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