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INEQUALITIES AND INVERSE THEOREMS 
IN RESTRICTED RATIONAL APPROXIMATION 

THEORY 

PETER BORWEIN 

0. Introduction. The following lemma, part a) due to S. N. Bernstein and 
part b) due to A. A. Markov, is fundamental to the proofs of many inverse 
theorems in polynomial approximation theory. 

LEMMA 1. [2, p. 62 and p. 67] Let Hn denote the real polynomials of degree at 
most n. Let p £ ITW, then 

a) \P'W\£[(x-aHb-x)fsmi''-i] Und 

b) \P'(x)\£^-\\p\\la,bl. 

From the lemma one can deduce, for example: 

THEOREM 1. / / there is a sequence of polynomials pn £ Un und a ô > 0 so that 
\\f ~~ Pn\\[aM = A/nk+8 then f is k times continuously differentiate on (a, b). 

We shall refer to inequalities, such as those of Lemma 1 that bound the 
derivative r' of a rational function of degree n in terms of its supremum norm 
lkl|[«,&] and n, as Bernstein-type inequalities. 

Bernstein-type inequalities do not exist for arbitrary rational functions and 
neither do inverse theorems of the above type. Consider r(x) = — e2/(x2 + e2), 
then ||r(*)||[-i.i] ^ 1 but r'(e) = l/(2e). [1, p. 83]. 

We shall show that for various restricted classes of rational functions, 
Bernstein-type inequalities hold. In Section 1 we shall develop Bernstein-type 
inequalities for the following three classes of rational functions: a) rational 
functions whose denominators are monotone on an interval, b) rational func­
tions whose denominators have positive coefficients and c) rational functions 
whose denominators have roots bounded away from the interval of approxi­
mation. 

In Section 2, we derive the corresponding inverse theorems. We obtain, for 
example: 

THEOREM 2. / / there is a sequence of rational functions pn/qn with pn, qn G n n 

and qn monotone non-decreasing on [a, b] and a 5 > 0, so that \\f — pn/ç.n\\[a,b] = 
A/n2k+ô then f is k times continuously differentiate on (a, b]. 
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We adopt the following notation. Let Rn denote the real rational functions 
Pn/Çn where pn, qn G Un- Let Rn

+ denote those rational functions pn/qn G Rn 

where qn has non-negative coefficients. Let Rn^[a,b] denote those rational 
functions pn/qn G Rn where qn is non-decreasing on [a, b]. 

1. Bernstein-type inequalities. 

INEQUALITY 1. Let r = p/q G Rj[a, b]. Then, if 0 < e < b — a, 

An2 

a) lk'||[a+«,&] ^ — lkl|[a,&] and 

u \ l l ^ ^ l l <r \™nA 0w(m+l)/2)i W M M 
Oj \\r ||[a+e,&] i p 4 \-~m~ \\r\\[atb]' 

Proof, a) Let 0 < e < b — a, let f be a point where | / ( f ) | = ||r/||[a+e,&], 
a + e ^ f ^ &, and let £ be a point where 

\p(t)\ = \\p\\ia.n, a£t£Ç. 

Then 

^ 3(f) 2(f) ^ 

From Lemma 1 b) and the monotonicity of q it follows that 

\£M< 2n\\PWu..n 2n\p(t)\ 
l?(f)| = _ ( f - a ) | ? ( f ) | a--ffl)|2(f)| 

_ 2 « ! _ M ) l < 2 n ! | r ( 0 | 
( f - a ) |g(*)| = e | r W I 

and that 

j 2 ^ f ) l | , ( r ) | < 2 « . 2 M ^ i K ) | 
l<z(f)| ' ( f ) l = « |<z(f ) | l l n l 

O 2 

^-f-|Kf)l-
Thus, 

IMIla+Ml = k'(f)l è 4«*e-»||r||[a.w. 

b) Note that r(k) G Rn2ic and that r{k) has a monotone denominator if r does. 
Let 0 < e < b — a and let 7* = ek/rn. Then by a) 

. 202fc-2 
1 u ^ 11 <: 4 n z 11 JK-v 11 

or 
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Thus , by iteration, 

| r ( M ) | | [ n + . .« ( f l «wVe-1)! \n\i„,b] 

2m 
t/,mA{m(m+l)/2h n 

= [m 4 J - ^ - | |r | | [ f l f& ] . 

The next inequality is a strengthened version of the last inequality that 
applies to the more restricted class of rational functions Rn

+. 

INEQUALITY 2. Let r = p/q e Rn
+- If 0 ^ a < a < f3 < b then 

n3/2e(b-P)/a 

a) | k' | |[a,fl ^ 77 ~T77 -777172 I V\ Va M + ~ I V\ \[a,b] and n 
a [(a-a)(b-f3)]1 

b) Ik^H^,,, £C»*»"||r||[Bl« 

where C depends only on a, a, 0, 6 and w. 

Proof. Suppose 0 < x < y then, since q has non-negative coefficients, 

2(*) = J2m=o \am\xm and 

^ m=0 J 

re n—m 

= Z ) "=m |aTO|xm g g(x) . 
w=o y 

Also, if x > 0 then 

(2) xg'(x) = x^^o m\am\xm-1 S nq(x). 

Let f be a point where |r '(f)| = ||r'||[a,,3]. Then by (2) 

(3) | | r | | [ t t i f l = | 2 ( f ) | + | f f ( r ) | |r(f)| 

Set y = b — (3 then, by Lemma 1 a), (4) J ^ U l l * > l l [ « . r+7 MI 

«(f)I " [(r-a)(f + 7 /»- r ) ] 1 / 2 l<z(?)l 
^ ll^ll[a,r+7M1 

(f «>M: i«(f)i 
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From (1) and (4) 

M fr'fr)I < n"2 _ WPlha^M U + y/nV 
K) |<z(f) | = l(*-a)(b- t3)]1/2]q(ï + y/n)\\ f / 

3/2 

Part a) now follows from (3) and (5). 
Part b) is deduced from part a) by a similar iteration to that used in the 

proof of Inequality 1 b). 

We now consider rational functions with restricted poles. Let D(x, 8) be the 
closed disc in C with (real) center at x and radius 8. 

INEQUALITY 3. Let r = p/q Ç Rn and suppose that q has no roots inD(x, e + ô) 
where 8 ^ e/(k + 1) for some integer k. Then 

\\rf\\[x^,x+b] S 2n8-ie*n/k\\r\\[x_e_8,x+t+8]. 

We need the following lemma in the proof of Inequality 3. 

LEMMA 2. Suppose q £ Un and suppose q has no roots in D(x, (k + l)e) for 
some integer k. Then supremumz>weD(X)e) \q(z)\/\q(w)\ ^ e2n/k. 

Proof. Let s0 and w0 be points in D(x, e) where 

\q(z0)\ = max26Z)(,i0 \q(z)\ and \q(w0)\ = min2GD(x>e) \q(z)\. 

Suppose q(z) = aY[m=i (x + am)- Then 

lg(gp)| = TT \zo + am\ = yr 
\q(w0)\ \Wo + 

&m\ m=l 

1 l 2 ° ~ W0 

Wo + am 

Since z0, Wo 6 £>(x, c) and am ? JD(X, (k + l)e), 

lî(wo)| m=i \ kef 

Proof of Inequality 3. Let f be a point where |r'(f)| = ||/-'||u._5>X+S]. Now 

By Lemma 1 a) 

\PliDl <n\\P]k=Lî±ÈL 
l<Z(f)| ^ ^ | g ( f ) | 

<*, , M / |<z(*)|\ 
5 \*,«*Z><J\a) 12 W | / 

Since 5 ^ e/(& + 1) and f £ [x — <5, x + <$], an application of Lemma 2 to the 
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above inequality yields 

\P'(£)\ < w i i , . | i „*»/* 

Similarly, by Lemma 1 a) and Lemma 2, 

\aLM \r(,)\ < ?»llgll[f-«.wi !,(>-)I 
IsttOI ' lfj| = s |s(r)| Inr j | 

£fe*"'|r(r)|. 
Thus 

I|r'||[,_«,,+« ^ 2wô-1e2w/*||r||[*_e_M+€+a]. 

Inequality 4 is an analogue to the following lemma due to S. N. Bernstein. 
Let Ep(x, e), p ^ 1, be the closed ellipse with foci x — €, x + e and semi-axes 
^ ( P + P - I ) , | 6 ( p - P - 1 ) . 

LEMMA 3. [1, p. 42] 7/£ Ç Unthen \\p(z)\\Ep(x<e) g P
n | | ^ | | [ M , x + e ] . 

INEQUALITY 4. Le2 r = £>/g G Rn and suppose that q has no roots in 
D(x, (k + l)e). Then, if 8 ^ e, 

IK*)IU(:r.onsp(*.*> ^ Plk||[.-M+*] -*2n/*. 

Proof. 

H^llu-a.x+ai ^ \\r\\[x-ô,x+ô]\\q\\[x-5,x+ô] 

^ lkllu-8,x+«]||g|Uu,o. 

Thus, by Lemma 3, 

\\p\\Ep(x,ô) S pn\\r\\[x-6,x+B]\\q\\D(x,t)' 

By Lemma 2, since g has no roots in D(x, (k + l)e), 

mmzeDix>e)\q(z)\e2n/k ^ \\q\\D(x,e). 

Thus, 

IklUu.onjjpU.p) ^ Plkllu-ô,x+ô] -e2n/k. 

2. Inverse theorems. If a function / i s & times continuously differentiate on 
[a, b] then there is a sequence of polynomials pn £ nw so that | | / — pn\\[a,b] = 
A/nk for each n. [1, p. 66]. Thus, in light of Theorem 1, l/nk is, in some senses, 
the right speed of polynomial approximation for Ck[a, b]. The following inverse 
theorems show that for Ck[a, b] restricted rational approximation cannot be 
dramatically more efficient. Note that we only deduce t h a t / is k times differ-
entiable on the half open interval (a, b]. 
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T H E O R E M 3. Suppose there is a sequence rn £ Rj[a, b] such that 

E » - l H / - ^ l l [ a . W « 2 * - 1 < 0 0 > 

thenf e Ck(a,b]. 

Proof. We may assume tha t | | / — rw||[a>&] is monotone non-increasing. Con­
sider the expansion: 

(1) / ( * ) = n(x) + E : = o (r2«+'(«) - r2n(x)) 

and observe tha t 

||r2»+i - r2»||[fli&] S | | / - r2n+i\\[aM + | | / - r2n\\[a>b] 

^ 2 | | / - r 2 » | | [ a > 6 ] . 

Formal differentiation of the right side of (1) yields 

(2) rik)(x)+ Ë (r£\i(x)-r$(x)) 

where, by Inequali ty 1 b) , for fixed e there is a C independent of n such tha t 

||r2
(5+i - rfn\\[a+tM S C[2n+2]2k\\r2n+i - r2»||[ f l>6]. 

Thus , 

oo oo 

£ \\r&i-r$\\la+t.t]£ £ C[2" + 2 ] 2 *2 | | / - , 2 »! | l a , 6 ] 
A;=0 n=0 

oo 

^ 2 C 4 2 i i : [2T\\f ~ r2n\\[aM 
n=0 

which converges because | | / — ^ | | [ a & ] is monotone and 

Eï.ill/-^-ll[<..«»(!*-1) 

converges. Thus , (2) converges uniformly on [a + e, b] a n d / £ Ck[a + e, b}. 

Theorem 2, stated in the introduction, is an immediate corollary to the 
above result. The next theorem is deduced from Inequali ty 2 in the same wray 
tha t Theorem 3 is deduced from Inequali ty 1. 

T H E O R E M 4. Suppose 0 ^ a and suppose there is a sequence rn £ Rn
+ such 

that 

I ^ L i | | / - rn\\[aMn*k-1 < co, 

thenf e Ck(a,b). 

The following is an example of the type of inverse theorem at ta inable from 
Inequali ty 3. 

T H E O R E M 5. Let c > 0 and suppose there is a sequence rn = pn/qn £ Rn so 
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that no root (complex or real) of qn lies within distance c/n of [a, b]. If 

Z ? - i l l / - ^ l | [ « . « » 2 < « ) , 

thenf £ Cl(a,b). 

Proof. rn satisfies the conditions of Inequality 3 with e = c/(n + 1) and 
5 = c/(n + l)2 . Thus, for each n, 

||rn'||[a+€|6_e] ^ 2n(n + l)2c-V||rw | | [a i&]. 

The result now follows analogously to Theorem 4. 
It is interesting to note the close relationship between Theorem 4 and 

Theorem 5. 

Remark. If p £ Un has non-negative coefficients then p has no roots in the 
region {z\ |argz| < ir/n}. 

Proof. Suppose p(z) = X!w=o amzm, an > 0, am ^ 0, and let f be any point 
where 0 < arg f < ir/n. Then, for each m ^ n, 0 < arg fm < 7r and hence, 
^2m=o amÇm lies in the region \z\ im s > 0}. In particular, 

fi=o amr * 0. 
Since £ can have no positive real roots, we are finished. 

The final result of this section is of a different character. It shows that under 
sufficiently strong restrictions on the behaviour of qn, exponential rates of 
approximation guarantee analyticity. 

THEOREM 6. Suppose c > 0 and suppose there is a sequence rn = pn/qn £ Rn 

so that no root (real or complex) of qn lies within distance c of [a, b]. If 
\\f ~~ rn\\[a,b] S p~n for some p > 1, then f is the restriction to [a, b] of some 
function F analytic in a region containing [a, b]. 

Proof. Choose K > 1 so that p-1/2ei/K = j3 < 1. Let 5 = c/2(K + 1) and let 
e = 25. Then applying Inequality 4 to rn — rn_x G Rin yields 

\\rn - rn-i\\D(Xt2d)nEpl/i(x,ô) S\\rn- rn-i\\[x-b>x+b} • p
n^e

An/K 

for each x G [a + <5, b — 5]. Set 

T = \Jze[a+ô,t>-6]{D(x,2ô)n EPI/A(X,Ô)\. 

Then, since \\rn — rn_i||[a>6] ^ 2p - (w_1), it follows that 

\rn(z) - rn_x(2)| g 2p • p~np^Vn/K ^ 2p • f3n 

for each z £ T. Hence, rn converges uniformly on T, the interior of T contains 
[a, b] and the result follows. 

The next example shows that no speed of approximation from Rn
+ or Rj 
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guarantees analyticity and hence there is no analogue of Theorem 6 for these 
classes. 

Example 1. Consider 

/(*) = £ — 
n i 

T h e n / is not analytic in any neighbourhood of 1. However, for suitably small 
an, the speed of approximation from Rn

+ on [0, 2] can be made as rapid as 
desired. 

Also, in contrast to polynomial approximation, no speed of approximation 
from Rn

+ or Rn^ guarantees differentiability at the endpoints of the interval of 
approximation. 

Example 2. [1, p. 91] For suitably chosen ôk \ 0 and <t>k \ 0 the function 

f(x) = ^ ------
k=0 X ~\- 0k 

fails to be differentiable at 0 while the speed of approximation from Rn
+ can 

be arbitrarily fast. 

It is natural to enquire about the exactness of the constants in the preceding 
inequalities and theorems. For instance: is the 2, in n2k~l, the "correct" 
constant in Theorem 3? Should it be 1 as in the comparable theorem for 
polynomial approximation or perhaps some intermediated value? 
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