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§1. Introductory.

When a given frequency distribution is to be graduated, it is
customary to express the constants of the fitted curve in terms of
the moments of the frequency distribution. The rth moment of the
distribution, in which the relative frequency of a measure x is <f>(x),
or, in the case of a continuous variable, the differential of frequency
is <j>{x)dx, is defined in the respective cases by

~Zxr<f> (x), or b y xr(f> (x)dx,

the summation or integration being taken over the whole range of
possible values of x. In the present paper we make use of another
kind of moment, the factorial moment, which has already been
considered by several writers,1 and which is specially suited to the
case when the frequencies of the distribution are given for discrete,
equidistant values of the variable. The (r + l)th factorial moment,
for the case where x, measured from some arbitrary origin, can
increase by increments h, 2h, 3h,.. . . , will be defined to be

2<£ (x) x (x - h) (x — 2h) (x — rh),

where the summation extends over all possible values of x; it will be
denoted by W(,.+1). By a suitable choice of scale the increments of x
may be taken as equal to unity in any given case.

I propose to deduce the Charlier series of Type B by means
of a factorial moment generating function, to find the relations
connecting factorial moments and the constants in the Type B series,
and to use factorial moments in a numerical example.

If F (t) is the frequency generating function of a distribution,
that is, if we have respectively

1 W. Palin Elderton, "Frequency Curves and Correlation" (2nd Ed., 1927), 20.
W. F. Sheppard, Proc. London Math. Soe. (2), 13 (1913), 81. J. F. Steffensen,
" Interpolation " (Baltimore, 1927), §6.
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100 J. T. CAMPBELL

then the generating function of ordinary moments is obtained by the
substitution t = e\ The generating function of factorial moments
(referred to afterwards as "factorial m.g. f.") is obtained by the
substitution t — 1 + a. Thus, from the first form of F (t) given above,
we derive

i?7 (1 + a) = £<£(*) (1 +<*)•-
= Sc/> (x) + Zz</> {x) . a + Sz (x — 1) <j> (x) . a2/2! + . .

where the coefficient of ar/r\ is m^; that is, we have the factorial
m.g.f. for <j> (x).

Evidently the factorial m. g. f. of the sum, or of a linear
combination, of two or more frequency functions is the same sum or
linear combination of the factorial m.g.f.'s of the several frequency
functions. Another result that will be required is this: if F (t) is
the factorial m.g.f. of cf>{x), then (t — l)r F (t) is the factorial m.g.f.
of ( —)'' Vr</> (x), where V f(x) =f(x) — f(x — I), a receding finite
difference. This follows at once from the fact that, since cj> (x) is the
coefficient of tx in F (t), the coefficient of t': in (t — I)1' F (t) is

( - ) ' j<£ (x) -r<j>(x-l) + r i T _ z l ) <£ {x - 2) - .. .. + ( _ ) - ^ (X - r)i.

The expression in brackets is recognised.from the calculus of finite
differences as the expansion of \ r cj>(x).

Supposing then that we have obtained the factorial m.g.f. of
some frequency distribution as a sum of terms such as arifi(a), and
that we know ifj (a) to be the factorial m.g.f. of a certain frequency
function <f> (x), we may infer from the above that the frequency
function in question is a sum of terms like ( —)'' V (j> (x).

In a later section it will be shewn that the factorial moments of
a given distribution can be obtained by a simple method of successive
summation.

§ 2. Derivation of the Charlier Series of Type B.
The dominant part of the Charlier Series of Type B is the well

known Poisson limit to the binomial distribution for probabilities of
small order; but both the Poisson function and the Charlier series
arise under more general conditions.

Let the variable x be the resultant of N fortuitous increments
Bx, where hx,, the j t h of these increments, may take any one of k
values, each with a certain probability. The assumptions are that
the elementary increments Sar; may take the values 0, 1/iV, 2/N, and
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so on; also that the probability of non-zero increments is of so small
an order in JV that, if Sm(;.r) is the factorial moment of order r of the
elementary distribution, then

Sm(j:i) = ZSxjPj is of order l/i\7,
8m(;-:2) = 2,8XJ(8XJ — 1/N)pj is of order 1/N2, etc.

For reasons of convenience that will appear later we write the
elementary factorial m. g. f., namely

Fj (a) = 1 + 8m0:i) a + Sm(;:2)a
2/2! + . . . .

as Fj (a) = exp [a 8m(j:1)] (1 + 62cr + &3a
3 -f ),

where b2 is of order 1/iV2, 63 is of order 1/N3, and so on.
By compound probability the factorial m. g. f. of a variable

which is a sum of independent variables is the product of the
factorial m. g. f.'s of the several variables. Hence the factorial
m. g. f. F (a) of x in the present case is

F (a) = exp [a 2 SmU:1)] a n (1 + b.2 a
2 + 63 a

3 + )

where a is the mean value of x. given by a =
Reserving consideration of the question of the order in A7 of

J52, B3,.. . . , we shall find what frequency function corresponds to the
factorial m. g. f. F (a), as given above. When N is large the
dominant term, it will appear, is the first term, e"a. If ip (x) is the
frequency function corresponding to this, we shall have

that is
e-aea(l+a)=

whence we have
tjj{x) = e~aaxlx\,

which is Poisson's frequency function referred to above. This is the
usual form in which it is given. We ought, however, to take
account here of the fact that x, being compounded of elements which
can assume the values 1/N, 2/JV,..... can also assume fractional
values, and so we adopt the more general form

tfj(x) = e-aax/F(x + 1), (x>0).

In order to obtain the more general frequency function which
results from taking all the terms of F (a), use is made of the result
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given at the end of § 1. This yields the more general frequency
function,

where iji (x) is the Poisson function found above.
It remains to investigate the order in N of the coefficients Br,

where
1 + B2 a

2 + B3 a
3 + . . . . = (1 + b2 a

2 + b3 a
3 + . . . . ) * •

Clearly Br will be composed of a sum of terms like bffii- .. . . bv where
h, k,.. .., q may take the integer values 2, 3, 4 , . . . ., and where the
sum of these indices h, k,. . . . is r. The order of each such term is
evidently 1/Nr. Also, if the number of parts in such a partition of r
is m, the number of m-part terms is NCm, which is of order Nm. This
order is greatest when m is greatest; in other words, the order of
BT is determined by the partition of the integer r which has most
parts. If r is even, equal to 2s, such a partition is made up of s 2's;
if r is odd, of the form 2s — 1, the partition is of (s — 2) 2's and a
single 3, that is, has s — 1 parts. It follows at once that the order
both, of B2s_1 and of B2s is 1/JV', so that the B's descend in order
regularly in pairs,1 B2 being of order 1/N, B3 and B4 of order 1/iV2,
and so on. This is why in fitting a curve of Type B it is advisable to
stop after an even coefficient.

§ 3 Relations between Coefficients and Factorial Moments in Type B.

For the purpose of fitting a series of Type B to a given frequency
distribution it is necessary to know the relations between the co-
efficients Br and the factorial moments as computed from the
distribution.

These are found by considering the factorial moment generating
function found above. If in this we expand the exponential, re-
membering that wi(r) is the coefficient of ar/r\, we derive the relations

= a,
'in..2) = a3 + 2! B.2,

m(3) = a3 + ^aB2+ 3! Bs,

Y\a2B" + ITa£s

1 Of. C. V. L. Charlier, Medd. f Lunds Astron. Obserr. (2), 51, 3.
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and generally

m(r) = a' + ( r ^ ~ a'-*B2 + ( - ^ a'-*Bt+ . . . . + ^ aBr.1+r! Br.

These expressions may be made formally complete by inserting
2| 31 r\

after the first term in each case B1,~^iaB1, ~a2Bu. . . . , '—r-,ar~1B1

1! 2! (r — 1)!
respectively, where B± is zero. The last of the relations may then be
written

If in this we take m^ja" and s\ Bs/a
s as the variables, then by t he

application of a reciprocal result in matrices having binomial co-
efficients for elements we may invert the relations, and so obtain

r\ /r\

V W
Since mm = a, the last two terms may be combined into (—)r~l (r—\)ar.

The expression for Br in terms of the moments can be represented
symbolically by

_ ([m] - ay
r 7\ '

where [TO]3 is to be understood as mw.

In the special case of the series of Type B represented by the
Poisson exponential, the factorial moment generating function is
simply eM, so that the successive factorial moments form a geometri-
cal progression in a, the mean of the distribution. The fact that the
second factorial moment is a2 provides a criterion of the suitability of
representing the distribution by the Poisson function.

§4. The Numerical Process of Fitting a Series of Type B.

Factorial moments can be calculated with rapidity and ease by a
method of continued summation, as may be seen in the following
example, in which a curve of Type B is fitted to data given in W.
Palin Elderton's Frequency Curves and Correlation, 2nd Edition, page
131. We shall take only one correction term, that involving B%.
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The scheme for the calculation of the factorial moments can be
arranged as follows:

X

0
1
2
3
4
5

(1)
/(*>
133

55
23

7
2
2

(2)

222
89
34
11
4
2

(3)

140
51
17
6
2

(4)

76
25

8
2

Column (2) is obtained from column (1) by continued summation,
beginning from the bot tom. The final total in (2) is evidently Zf(x).
Column (3) is obtained from (2) in the same way, but the process is
stopped one line below the final total in the previous column. This
sum is Hxf(x), t ha t is Nm^y Column (4) is obtained similarly from
(3), the process being stopped one line below the final total in (3).
The last total in (4) is I,x(x — l)f(x)/2\, t ha t is Nm(2)/2L The pro-
cedure is general, and so the factorial moments of higher orders could

be obtained in
example,

the form NmM/r\. We have then, in the present

m.() = 140/222 = 0-631.

mm= 76/222 x 2! = 0'685.

B2 = i (-685 - (-631)2) = 0-143.

The remaining arithmetical work in fitting the curve is given in
the following table :

X

0
1
2
3
4
5

(1)
4,(z)

0-5320
•3357
•1059

0223
•0035
•0004

(2)
Nftx)
118-1

745
23-5

4-9
0-8
o-i

(3)
NAifj(x)

118-1
— 43-6
— 51-0
- 18-6

— 41
- 0-7

(4)
NA^(x)

118-1
- 161-7

— 7-4
32-4
14-5
3-4

(5) !
B, x (4)

16-9

— 2 3 - 1

- 1 - 1 !

4-6
2-1 i
0 -5 I

(6)
(2) + (5)

1350
51-4
22-4

9-5
2-9
0-6

(7)
Data
133

55
23

7
2
9

The values of >fi(x) = e~aax/x\, where a = m(1), can be obtained
from tables. Columns (3) and (4) are obtained by considering the
elements in column (2) corresponding to negative integer values of x
to be zero. The Poisson function is indeed zero for such values.
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Column (6) gives the graduated figures as obtained by using one
correction term. A comparison with the original data, given in
column (7), shows good agreement between the theoretical and the
observed.

§ 5. The Distribution and Factorial Moments of m(1) in Samples.

In this section we shall investigate the distribution and the
factorial moment generating function of the first factorial moment
m^), as computed from samples of AT drawn from an infinite Poisson
universe.

The universe or population being typified by a frequency gener-
ating function e"*'"1*, the frequency generating function of samples of
N is, by compound probability,

This is the distribution of (x{ + x2 + • • • • + xN), or Nm^y Hence the
distribution of m^ is obtained by altering the scale of measurement
in (A) in the ratio N: 1, that is, we must replace t by t1/N. Hence the
distribution of m(1) is given by

e-" - i )

From this we learn at once that the relative frequency, or probability,
of a value x for m(1) is given by

e-Na(Na)**/(Nx)\.

Further, by substituting 1 + j8 for t in (B) we derive the factorial
moment generating function of m(1) in samples of N as

The first factorial moment of this sample distribution, which we may
denote m(i), is the coefficient of/3 in the expansion of this, and is seen
to be equal to a. Thus the expected or mean value of the mean in
samples of N is no different from the mean of the infinite Poisson
universe itself.

The second factorial moment of the sample distribution differs
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from that of the universe; for the coefficient of /32/2! in the generating
function is

= ae~NaJ~eNa(Na + 1) - e

= a (a - 1) + a/N.

For samples of 1, that is, single drawings, this gives the familiar
result m(2) = a1.

§ 6. Since I established the relations of § 3 between factorial
moments and the coefficients of a Type B series, my attention has
been drawn to a recent paper1 in which the same results are obtained.
Since the method of derivation is different, it has been thought worth
while to retain the section in question.

1 Hilda Pollaczek-Geiringer, ZS. f. Math. u. Mech., 8 (1928), 292-309, § 4.
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