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Abstract

The historical design of the call-by-value theory of control relies on the reification of evaluation

contexts as regular functions and on the use of ordinary term application for jumping to a

continuation. To the contrary, the λCtp control calculus, developed by the authors, distinguishes

between jumps and terms. This alternative calculus, which derives from Parigot’s λμ-calculus,

works by direct structural substitution of evaluation contexts. We review and revisit the legacy

theories of control and argue that λCtp provides an observationally equivalent but smoother

theory. In an additional note contributed by Matthias Felleisen, we review the story of the

birth of control calculi during the mid- to late-eighties at Indiana University.

1 Introduction

The λC-calculus (Felleisen et al., 1987) was introduced to reason about Scheme

programs. It came with an operational semantics and a reduction theory but this

initial theory was not pure in the sense that one of the rules was applicable only

at the top of a program. To address this issue, Felleisen and Hieb introduced the

λC revised reduction theory (Felleisen & Hieb, 1992) that was exclusively made of

contextually valid equations. Both reduction theories, together with the operational

semantics, suffer a few weaknesses:

– None of the reduction theories directly expresses the operational semantics:

reduction and operational semantics coincide only at the observational level.

– To simulate the operational semantics, the reduction semantics have to

accommodate the following reduction rule:

CE : E[CM] → C (λk.M (λx.A (k E[x])))

However, it turns out that both reduction semantics are not confluent when

extended with this rule.
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– The revised theory has a complex notion of answers: An evaluation may

simply yield a value, or produce an answer of the shape C (λk. V ) (with V

possibly containing k) or produce an answer of the shape C (λk. k V ) (again

with V possibly containing k). In the latter case, when V does not contain k,

one would expect an additional reduction that eliminates the superfluous C
application:

Celim : C (λk. kM) → M k not free in M

However, it turns out that the addition of this rule to the revised λC reduction

semantics breaks confluence. Regarding these observations, Felleisen and Hieb

write: “We leave unsolved the problem of finding an extended theory that

includes CE or Celim and still satisfies the classical properties of reduction

theories.”

– λC is not as expressive as one might expect. For instance, Scheme’s call/cc

operational semantics

E[call/cc (λk.M)] �→ E[M[λx.AE[x]/k]]

cannot be simulated. Indeed, if we use λx.C (λk. k (x k)) as standard encoding

of call/cc, one gets

E[call/cc (λk.M)] �→→ (λx.AE[x]) (M[λx.AE[x]/k])

which does not converge to E[M[λx.AE[x]/k]].

– The revised theory contains an expansion rule (Ctop) that can be applied

infinitely, thus breaking normalization even in a simply typed setting.

The calculus λCtp provides a solution to the above problems, and thus can be

seen as a replacement of λC. The calculus λCtp is a call-by-value reformulation of

Parigot’s λμ (Parigot, 1992), where μ is renamed into C. It also contains a special

constant called tp, which denotes the top-level continuation, making explicit the

abortive capabilities of λC. The essential design differences between λC and λCtp are

the following:

– λCtp has specific variables for contexts while λC does not;

– λC reifies contexts as functions and moves them around using the standard sub-

stitution of λ-calculus while λCtp uses a specific notion of structural substitution

of contexts;

– λCtp syntax forces calls to continuations to be abortive while λC uses a specific

reduction rule for this purpose;

– λC does not have a special constant for the top-level continuation.

The calculus λCtp comes with a simple operational semantics expressive enough to

simulate the semantics of call/cc, as described above. It is also expressive enough

to simulate the operational semantics of λC, while the converse is false.

The calculus λCtp comes with a confluent reduction semantics that, to the contrary

of λC, can simulate its own operational semantics. It remains confluent when extended

with a rule equivalent to CE and it is strongly normalizing in the simply typed setting.

https://doi.org/10.1017/S0956796807006612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006612


Control reduction theories 375

Since λCtp reduction semantics simulates λCtp operational semantics, which itself can

simulate λC operational semantics, which itself cannot be simulated by λC reduction

semantics, it follows that the reduction theories of λC and λCtp do not simulate each

other, as already observed in (Ong & Stewart, 1997). However, since λC operational

semantics and reduction semantics are equivalent with respect to the observational

behavior of a program, the same holds for the reduction semantics of λC and λCtp. In

short, λC program reduces to an answer if and only if the corresponding λCtp program

reduces to an answer.

The reduction theory of λCtp can be formulated either on terms or on jumps. If one

formulates it on terms, it shares with the λC revised reduction theory the complexity

of the notion of answer. However, if we formulate it on jumps (and we execute

jumps of the form tpM), the evaluation produces results of the unique shape tpV .

A similar approach can be done in λC: By considering evaluation in an abortive

context, all three forms of answers collapse to a single one.

The paper is organized as follows. Section 2 introduces λC, reviews its main

properties, and individuates its shortcomings. Section 3 introduces λCtp and shows

how it solves λC’s defects. These two sections discuss also the relationship between

the different notions of operational and reduction semantics for the two calculi.

Section 4 summarizes the agreement on the observational behaviors of λC and λCtp

(Figure 8) and the discrepancies regarding the operational semantics (Figure 9). We

conclude in Section 5 together with a historical note by Matthias Felleisen.

2 The Indiana theory of control

We start with the syntax of λC and its operational semantics. We present the

computational reduction semantics given in Felleisen et al. (1987) (this is referred to

as the initial theory). This theory has two weaknesses:

– it contains one rule, called a computational rule, which is applicable only at

the top of a program;

– the rules are not complete with respect to the operational semantics.

Next, we give the revised reduction semantics from (Felleisen & Hieb, 1992).

This theory characterizes the computational rule in terms of two compatible rules

(i.e., applicable in any context). Thus, solving one problem with the original theory

at the expenses of complicating the correspondence with the operational semantics,

we discuss how this relationship could be simplified by reducing a program in a

particular context, which intuitively captures the execution of a program at the top-

level prompt. This execution can be carried out in a restricted theory; we investigate

its properties. As discussed in Plotkin (1975), the relationship between the reduction

theory and an evaluator should be mediated by a standardization theorem. For

the initial, the revised and the restricted theories we define a notion of standard

reduction and of weak-head reduction (i.e., a notion of standard reduction that stops

at values).
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Fig. 1. Syntax of λC.

2.1 Syntax and operational semantics

Figure 1 introduces the syntax of a call-by-value calculus extended with the unary

operators Abort and C. Variables and λ-abstractions are called values.

The operational semantics of such a language can be described most concisely

using the following operational rules, which rewrite complete programs:

βv : E[(λx.M)V ] �→λC E[M [V/x]]

AbortTE
: E[AbortM] �→λC M

CAbort
TE

: E[CM] �→λC M (λx.AbortE[x])

The reflexive–transitive closure of �→λC is denoted by �→→λC . In each of the rules, the

entire program is split into an evaluation context E and a current redex to rewrite.

The evaluation context E is a term with exactly one hole, written as �, in it. It

represents what to do after the execution of the redex and is referred to as the

continuation. The first rule expresses what to do when a function is applied to a

value: the argument is substituted for each free occurrence of the bound variable

in the function’s body. According to the second operational rule, the application of

Abort to a term M aborts the current continuation (i.e., E) and returns M to the

top level. For example, one has

1 +AbortM + 3 �→λC M

where in this case the abandoned context is 1+ � + 3. According to the last rule, the

application of C to a term M abandons the current evaluation context and applies

M to a procedural abstraction of that context. Note the presence of the abort

operation in the abstracted context, which is (λx.AbortE[x]) and not (λx. E[x]).

This distinguishes continuations from regular functions. A function returns to the

caller once completed, whereas the invocation of a continuation causes the context

of the application to be discarded.

We will use the λC-term C (λc. 1+ c 2+ (1+ 1)) + 3 as our running example.

Example 2.1 (Evaluation of C (λc. 1+ c 2 + (1+ 1)) + 3)

The term C (λc. 1+ c 2+ (1+ 1)) + 3 is split into the evaluation context � + 3 and

the redex C (λc. 1+ c 2+ (1+ 1)). The current evaluation context �+3 is abandoned

and the argument of C is applied to a procedural abstraction of that context:

C (λc. 1+ c 2+ (1+ 1)) + 3 �→λC (λc. 1+ c 2 + (1+ 1)) (λx.Abort (x+ 3))

Continuing with the evaluation:

(λc. 1+ c 2+ (1+ 1)) (λx.Abort (x+ 3)) �→λC 1 + (λx.Abort (x + 3)) 2+ (1+ 1)
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Fig. 2. Reduction and computation rules of call-by-value λC
(Felleisen–Friedman–Kohlbecker–Duba).

The invocation of the continuation abandons the calling context 1+ � + (1 + 1):

1 + (λx.Abort (x + 3)) 2+ (1+ 1) �→λC 1+Abort (2+ 3) + (1+ 1)) �→→λC 5

C is at least as expressive as Abort; it can be used to define an operator A
equivalent to Abort:

AM Δ
= C (λk.M), where k does not occur free in M (Abbrev. 1)

To capture the proviso we often use , which refers to an anonymous variable, and

write AM as C (λ .M). If we replace CAbort
TE

by

CTE
: E[CM] �→λC M (λx.AE[x]),

then AbortTE
, where Abort has been replaced by A, becomes derivable:

E[AM] �→λC (λ .M) (λx.AE[x]) �→λC M.

Hence, we have the following result:

Proposition 2.2

For M with no occurrences of Abort,

M �→→λC V with rules βv , AbortTE
and CAbort

TE
iff M �→→λC V

′ with rules βv and CTE
,

where V ′ is V where each Abort has been replaced by A.

We will therefore focus on C in the remainder of the paper, and, unless stated

otherwise, use A and CTE
instead of Abort, AbortTE

, and CAbort
TE

.

2.2 Felleisen–Friedman–Kohlbecker–Duba reduction semantics

The initial reduction semantics of λC in Felleisen et al. (1987) is characterized by a

combination of congruent reduction rules (written →c) applicable at any place of an

expression and of a so-called computational rule (written �CT
) applicable only at the

top level of a computation. The rules are shown on Figure 2.

The local reduction rules are intuitively related to the operational rules as follows.

Instead of capturing the entire evaluation context surrounding an invocation of

C in one step, the rules CL and CR allow one to lift the control operation step

by step until it reaches the top level. At that point, rule CT applies the abort

continuation. The C-reduction →→c is defined as the reflexive–transitive closure of
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→c. The C-computation �c is defined as the union of →→c and �CT
. Its reflexive–

transitive closure is written �∗c . Its reflexive–symmetric–transitive closure is written
�
=c. The C-computation �c is proved to satisfy the diamond property.

Example 2.3 (Reduction of C (λc. 1+ c 2 + (1+ 1)) + 3)

C (λc. 1+ c 2 + (1+ 1)) + 3 →c CL

C (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3)))) →c βv
C (λc′. 1 + ((λx.A (c′ (x+ 3))) 2) + (1+ 1)) →c βv
C (λc′. 1+A (c′( 2 + 3)) + (1 + 1)) →→
C (λc′.A (c′ (2+ 3))) �CT

(λc′.A (c′ (2+ 3))) (λx.A x) →→c

A (A 5) �CT

(λ .A 5) (λx.A x) →c βv
A 5 �CT

(λ . 5) (λx.A x) →c βv
5

2.2.1 Weak-head reduction

Apart from the �CT
rule, the other rules can be applied in any order, including

under a λ-abstraction and a C-abstraction. However, to use the reduction theory to

reason about evaluation, it is important to define a notion of reduction that mimics

the evaluator. To that end, one defines the notion of weak-head reduction. The C-

computation has a natural notion of weak-head reduction (called standard reduction

function in (Felleisen et al., 1987), following Plotkin’s terminology (Plotkin, 1975)).

We say that M weakly head reduces to N for →c, written M
wh→c N, iff M has the

form E[P ], where P is a βv , CL, or CR redex that reduces to Q, and N is E[Q]

(i.e., reduction occurs in an evaluation context position). The notation
wh→→c stands

for the reflexive–transitive closure of
wh→c. We say that M weakly head reduces to N

for �c, written M
wh
�c N, iff M

wh→c N or M �CT
N. The notation

wh

�∗c stands for the

reflexive–transitive closure of
wh
�c.

Example 2.4 (Weak-head reduction of C (λc. 1+ c 2 + (1+ 1)) + 3)

We writeAx for the abort continuation λx.A x. We divide the reductions in different

groups separated by a blank line. Each group will collapse into a single step shortly.

C (λc. 1+ c 2+ (1+ 1)) + 3
wh→c

C (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3)))) �CT

(λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3))))Ax
wh→c

(λc. 1 + c 2 + (1+ 1)) (λx.A (Ax (x+ 3)))
wh→c

1 + (λx.A (Ax (x+ 3))) 2 + (1+ 1)
wh→c
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1 +A (Ax (2+ 3)) + (1+ 1)
wh→c

1 + C (λq. (λ .Ax (2+ 3)) (λz.A (q (z + (1+ 1)))))
wh→c

C (λr. (λq. (λ .Ax (2+ 3)) (λz.A (q (z + (1+ 1))))) (λw.A (r (1+w)))) �CT

(λr. (λq. (λ .Ax (2+ 3)) (λz.A (q (z + (1+ 1))))) (λw.A (r (1+w))))Ax
wh→c

(λq. (λ .Ax (2+ 3)) (λz.A (q (z + (1+ 1))))) (λw.A (Ax (1+w)))
wh→c

(λ .Ax (2+ 3)) (λz.A ((λw.A (Ax (1+w))) (z + (1+ 1))))
wh→c

(λx.A x) (2 + 3)
wh→c

(λx.A x) 5
wh→c

A 5 �CT

(λ . 5) (λx.A x)
wh→c

5

The following proposition extends the unique context lemma in Felleisen and

Friedman (1986) to terms with free variables:

Proposition 2.5 (Unique context lemma for
wh

�∗c)

Let M be a term in λC. Exactly one of the following cases occurs:

– M is a value V (we also say that M is an answer).

– M has a unique decomposition under the form E[P ], where P is a βv , CL, or

CR redex.

– M has the form CN, which is a �CT
redex.

– M has a unique decomposition under the form E[xV ] in which case M is said

to have its weak-head reduction stopped.

Especially, a weak-head redex, if it exists, is unique.

Observe now that if M weakly head reduces to N by CL or CR , then it is necessarily

weakly head reducible further by a sequence (possibly empty) of CL or CR , ended

by �CT
and by as many βv as the number of CL or CR . We write �CT

E∗
for such a

combination of rules (which generalizes �CT
):

CTE∗ : E[CM] �CT
E∗

ME∗

where E∗ is defined as

�∗ = λx.A x

E[V �]∗ = λx.A (E∗ (V x))

E[�N]∗ = λx.A (E∗ (xN))
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Example 2.6 (Alternative weak-head reduction of C(λc. 1+ c 2+ (1+ 1)) + 3)

C (λc. 1+ c 2+ (1+ 1)) + 3 �CT
E∗

(λc. 1 + c 2+ (1+ 1)) (λx.A ((λx.A x) (x+ 3)))
wh→c

1 + (λx.A ((λx.A x) (x+ 3))) 2 + (1+ 1)
wh→c

1 + A ((λx.A x) (2 + 3)) + (1+ 1) �CT
E∗

(λ . (λx.A x) (2 + 3)) (λz.A ((λw.A ((λx.A x) (1+w))) (z + (1+ 1))))
wh→c

(λx.A x) (2 + 3)
wh→c

(λx.A x) 5
wh→c

A 5 �CT
E∗

(λ . 5) (λx.A x)
wh→c

5

Comparing it with the reduction in Example 2.4, one has that the first CTE∗ step

corresponds to one lifting step, one �CT
step and one βv step. The second CTE∗

corresponds to two lifting steps, one �CT
step and two βv steps. The last CTE∗

corresponds to one �CT
step.

Moreover, if M is of the form λk.N, then E[C (λk.N)] weakly head reduces further

to N[E∗/k]. This leads to the following variant of �CT
E∗
:

C′TE∗
: E[C (λk.N)] �C′T

E∗
N[E∗/k]

Let C−L , C−R , and C−T be the restrictions of CL, CR , and CT that apply only when

the body of C is not an abstraction. Writing
wh
� CT

E∗ βv
for the union of �CT

E∗
and

weak-head βv , and
wh
� C′T

E∗
C−TC−LC−Rβv for the union of �C′T

E∗
and weak-head reduction

of C−T , C−L , C−R , and βv redexes, we get the following equivalence:

Proposition 2.7 (Alternative characterization of w.-h. red. in initial theory)

M
wh

�∗c V iff M
wh

�∗CT
E∗ βv

V iff M
wh

�∗C′T
E∗
C−TC−LC−Rβv V . Moreover, the Unique Context

Lemma still holds by replacing items 2 and 3 in its statement by the rules composing
wh

�∗CT
E∗ βv

or by the rules composing
wh

�∗C′T
E∗
C−TC−LC−Rβv .

2.2.2 Operational semantics vs. weak-head reduction

The formulation of weak-head reduction in terms of CTE∗ and βv allows one to

compare it to the operational semantics: βv steps match but CTE∗ steps do not.

Indeed, the weak-head reduction reduces E[CM] to ME∗ while the operational

semantics reduces it to (M (λx.AE[x])). Consider our example term, the operational

semantics binds continuation variable c to λx.A (x+ 3), whereas the weak-head

reduction binds c to

(λx.A ((λx.A x) (x+ 3))).

In general, the problem is that the operational semantics lifts the context at once

whereas the reduction theory lifts the control operation step by step. Unfortunately,
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each lifting introduces a new λ-abstraction to represent its partial continuation. The

applications of these partial continuations, like the application

(λx.A x) (x+ 3)

above, cannot be simplified because the argument is not a value. The relation

between λx.AE[x] and E∗ has been investigated in Felleisen et al. (1987). This

relation, written ≈p in Felleisen et al. (1987), turns out to be expressible from βv and

the following two additional rules:

βΩ : (λx.AE[x])M → AE[M]

Cidem : C (λc.CM) → C (λc.M (λx.A x))

Both rules are observationally sound (especially, the rule Cidem will be discussed in

Section 2.3). This leads to the following reformulation of Theorem 4.7 in Felleisen

et al. (1987) (we need Proposition 2.2 as the original result is stated for �→λC with

Abort, i.e., with the operational rules CAbort
TE

and AbortTE
):

Theorem 2.8 (Simulation of oper. sem. by weak-head red. for initial theory)

M �→→λC V iff M
wh

�∗c V
′ for some V ′ such that V ′→→βΩCidemβvV .

Especially, if V is C-free, M �→→λC V iff M
wh

�∗c V .

Example 2.9 (A λC-term and its evaluation and weak-head reduction)

Weak-head reduction of our example term is able to reach the value produced by

the operational semantics. Consider instead the term C (λk. k (λx. k)) z. According to

the operational semantics, one has

C (λk. k (λx. k)) z �→→λC λf.A (f z)

By weak-head reduction for �c, one has

C (λk. k (λx. k)) z
wh→c CL

C (λc. (λk. k (λx. k)) (λf.A (c (f z)))) �CT

(λc. (λk. k (λx. k)) (λf.A (c (f z)))) (λx.A x)
wh

�∗c
λf.A ((λx.A x) (f z))

To obtain the value of the evaluator, one proceeds with the additional rules:

λf.A ((λx.A x) (f z)) → βΩ

λf.A (A (f z)) → Cidem

λf.A ((λ . f z) (λx.A x)) → βv
λf.A (f z)

Note that
wh→→c (i.e., without �c) does not reduce the above term to a value.

2.2.3 Weak-head standardization

Theorem 3.10 in Felleisen et al. (1986) gives a general standardization result for �∗c .

We give below its restriction to the case of reduction to a value.
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Fig. 3. Reduction rules of call-by-value λC (Felleisen and Hieb).

Theorem 2.10 (Weak-head standardization for �∗c)

M �∗c V iff M
wh

�∗c V
′, where V ′→→cV .

Proof

From the general standardization theorem in Felleisen et al. (1986) and the as-

sumption that a standard reduction leading to a value strictly extends weak-head

reduction. Note that, in general, for this latter assumption to be true, some redesign

of the notion of standardization is required. See the remark below. �

Remark 2.11

There is a small flaw in the definition of standard reduction used in Felleisen

et al. (1986). This flaw actually already occurs in Plotkin’s definition of standard

reduction (Plotkin, 1975) on which Felleisen et al. (1986) rely. Plotkin’s notion of

standard reduction is not deterministic and it does not satisfy the property that a

standard reduction necessarily extends weak-head reduction. Assume for instance

that M
wh→c M

′ and N
wh→c N

′. Then, the two following distinct reduction paths are

standard with respect to Plotkin-style definition of standardization:

(λy.M)N →c (λy.M)N ′ →c (λy.M ′)N ′

(λy.M)N →c (λy.M ′)N →c (λy.M ′)N ′

The first derivation is standard because it reduces first a weak-head redex and the

second is standard by congruence of standardization with respect to application.

Only the first one extends weak-head reduction. A solution to the problem is

to restrict congruence with respect to application to congruence with respect to

evaluation contexts.

2.3 Felleisen and Hieb’s reduction semantics

The revised λC theory in Felleisen & Hieb (1992) characterizes the uses of CT that

are valid in any evaluation context. These uses are captured by two new rules

called Cidem and Ctop. This leads to the new context-compatible reduction system →
presented in Figure 3. We write →→ for its reflexive–transitive closure and= for its

reflexive–symmetric–transitive closure.

If, after some uses of the rules CL and CR , another control operator is reached,

Cidem applies the abort continuation. At any point it is possible to use Ctop to start

applying M to part of the captured context and then continue lifting the outer C to

accumulate more of the context. As for the operational rules, the right-hand sides of
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the reduction rules contain the abort operation. Indeed, the main use of rule Ctop is

to surround each invocation of a continuation with the abort operation. Ctop turns

what looks like a regular function call into a continuation’s invocation. For example,

in the term C (λc. 1+ c 2 + 3) continuation c is invoked using the normal syntax

for function application. However, after Ctop, the application of the continuation is

surrounded by the abort operation:

C (λc. 1 + c 2 + 3)→ C (λk. (λc. 1+ c 2 + 3) (λx.A (k x)))→→C (λk. 1+A (k 2) + 3)

Example 2.12 (Reduction of C (λc. 1+ c 2+ (1+ 1)) + 3 )

C (λc. 1+ c 2 + (1+ 1)) + 3 → CL

C (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3)))) → βv
C (λc′. 1 + ((λx.A (c′ (x+ 3))) 2) + (1+ 1)) → βv
C (λc′. 1+A (c′( 2 + 3)) + (1 + 1)) →→
C (λc′.A (c′ (2+ 3))) → Cidem

C (λc′. (λ . c′ (2+ 3)) (λx.A x)) →→
C (λc′. c′ 5)

Notice that there is no reduction rule that allows one to reduce the above term

to 5, as it happens according to the operational semantics and the original theory.

Applications of rule Ctop do not help:

C (λc′. c′ 5) →→ C (λc.A (c 5))

Remark 2.13

The problem with rule Ctop is that even in the simply typed case, it makes the

reduction system not strongly normalizable:

C y → C (λc. y (λx.A (c x)))→ C (λc′. (λc. y (λx.A (c x))) (λx.A (c′ x)))→ · · ·

Theorem 2.14

The λC-calculus is confluent.

Proof

This is proved in Theorem 3.14 of Felleisen & Hieb (1992) by first showing the

confluence of the following reduction system (called λC′ ):

βv : (λx.M)V → M [V/x]

C′L : (C (λk.M))N → C (λc.M [(λf.A (c (f N)))/k])

C′R : V (C (λk.M)) → C (λc.M [λx.A (c (V x))/k])

C′idem : C (λc.C (λk.M)) → C (λc.M [(λx.A x)/k])

C′top : C (λk.M) → C (λc.M [(λx.A (c x))/k])

Ctop : CM → C (λc.M (λx.A (c x)))

λC′ has the same reflexive–transitive closure of λC; therefore, confluence of λC fol-

lows. �
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Remark 2.15

Even though the reduction rules can be applied in any context, they do have a

strategy embedded in them. For example, one cannot reduce the following term

(A 2) (A 5)

to both A 2 and A 5, thus contradicting the confluence result. The above term

reduces to A 2 but cannot reduce to A 5. According to the CR rule, the argument

A 5 can be lifted only after the function part is reduced to a value. This reflects a left-

to-right evaluation strategy. Reduction rules that enforce a right-to-left evaluation

order are as follows:

M (CN) → C (λc.N (λx.A (c (M x))))

(CM)V → C (λc.M (λf.A (c (f V ))))

2.3.1 Relating the initial and revised theories: Felleisen and Hieb’s approach

The removal of CT makes the operational semantics less closely connected to the

revised theory than it was to the initial one. To reconnect both theories, Felleisen

and Hieb give a notion of evaluation that is defined by composing
wh→c (from the

initial theory) and a notion of weak-head reduction under C-abstraction that we

write
C-wh→ . We review Felleisen and Hieb’s results and make explicit the notion of

weak-head reduction underlying evaluation.

We say that M C-weakly head reduces to N, written M
C-wh→ N, in the following

cases:

– M has the form C (λk. E[P ]), where P is a βv , CL, or CR redex that reduces to

Q, and N is C (λk. E[Q]); and

– M has the form C (λk.CP ), which is a Cidem redex and N is C (λk. P λx.A x).

Note that the C-weak-head reduction never applies Ctop, but it does reduce the

top-level Cidem redex. Moreover, it reduces under a C-abstraction. We write
C-wh→→ for

the reflexive–transitive closure of
C-wh→ . Then, we say that M iteratively weakly head

reduce in two stages to N, written M
2-wh→→ N, when

– either M
wh→→c N

– or, for some P , M
wh→→c CP →Ctop

C (λk. P λx.A (k x))
C-wh→→ N,

where
wh→→c is as in Section 2.2.1. Notice that

2-wh→→ is not transitive: it only composes

on the left with
wh→→c and on the right with

C-wh→→ . It is generally not reflexive either.

Example 2.16 (2-wh-reduction of C (λc. 1+ c 2 + (1+ 1)) + 3)

We write Ak
x and Ax for the continuations λx.A (k x) and λx.A x, respectively.

First, one lifts the control operator to the top level:

C (λc. 1+ c 2 + (1+ 1)) + 3
wh→c

C (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3))))
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Ctop is applied next:

C (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3))))→Ctop

C (λk. (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3))))Ak
x)

From this point on Ctop is disallowed. One continues with the application of either

βv , CL, or CR under a C-abstraction:

C (λk. (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3))))Ak
x)
C-wh→→

C (λk.C (λr. (λq. (λ .Ak
x (2+ 3)) (λz.A (q (z + (1+ 1))))) (λw.A (r (1+w)))))

At this point, Cidem is applied to obtain:

C (λk. (λr. (λq. (λ .Ak
x (2+ 3)) (λz.A (q (z + (1+ 1))))) (λw.A (r (1+w))))Ax)

The weak-head reduction under a C-abstraction leads to

C (λk.A (k 5))

One last Cidem application leads to the answer:

C (λk.A (k 5))
C-wh→

C (λk. (λ . k 5) (λx.A x))
C-wh→

C (λk. k 5)

Comparing this reduction with the one in Example 2.4, notice how the first �CT

corresponds to a Ctop step, whereas the other two occurrences correspond to Cidem

steps.

As pointed out earlier, the iterative weak-head reduction in two stages, which is

made of reduction steps of the revised theory, does not produce the value that the

evaluator would produce. The problem is that there is no way to get rid of the

outermost C. To that end, Felleisen and Hieb introduce the following notion: M is

said to evaluate to a value V iff

– M
2-wh→→ V ; or

– M
2-wh→→ C (λk. k (Vk[λx.A (k x)/k])) and V ≡ Vk[λx.A x/k]; or

– M
2-wh→→ C (λk. Vk[λx.A (k x)/k]) and V ≡ Vk[λx.A x/k].

Example 2.17

We would say that our running example evaluates to 5. We also say that C (λk. k)

evaluates to λx.A x since

C (λk. k)→Ctop
C (λk. (λk. k) (λx.A (k x)))

C-wh→ C (λk. λx.A (k x))

and λx.A (k x) ≡ k [λx.A (k x)/k] and λx.A x ≡ k [λx.A x/k].

The theorem below rephrases Theorem 3.9 in Felleisen & Hieb (1992). Note that

the mapping of the reduction sequences is one-to-one: the unique Ctop step maps to

a CT step and all Cidem steps map to CT steps too.

Theorem 2.18 (Corresp. between initial and revised weak-head reduction)

M
wh

�∗c V iff M evaluates to V .
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2.3.2 Connecting to the operational semantics

Combining Theorem 2.18 with Theorem 2.8, we get the following simulation of the

operational semantics:

Corollary 2.19 (Simulation of oper. sem. by w.-h. red. for the revised theory)
M �→→λC V iff one of the following cases occurs:

– M
2-wh→→ V ′ where V ′→→βΩCidemβvV

– M
2-wh→→ C (λk. k Vk[λx.A (k x)/k]) where Vk[λx.A x/k]→→βΩCidemβvV

– M
2-wh→→ C (λk. Vk[λx.A (k x)/k]) where Vk[λx.A x/k]→→βΩCidemβvV .

Example 2.20
– Consider the term C (λk. k (λz. k)), one has

C (λk. k (λz. k)) �→→λC (λz. λx. A x)

Whereas with respect to the reduction semantics:

C (λk. k (λz. k))
2-wh→→ C (λk. k (λz. λx.A (k x))) ≡ C (λk. k ((λz. k)[λx.A (k x)/k]))

and

(λz. λx. A x) ≡ (λz. k)[λx.A x/k]

– Consider the term C (λk. k (λx. k)) z of Example 2.9, one has

C (λk. k (λx. k)) z
wh→c

C (λc. (λk. k (λx. k)) (λf.A (c (f z)))) →Ctop

C (λc. (λc. (λk. k (λx. k)) (λf.A (c (f z)))) (λx.A (c x)))
C-wh→→

C (λc. c (λf.A ((λx.A (c x)) (f z))))

Where

λf.A ((λx.A (c x)) (f z)) ≡ λf.A (c (f z))[λx.A (c x)/c]

and

λf.A (c (f z))[λx.A x/c] ≡ λf.A ((λx.A x) (f z))→→βΩCidemβvλf.A (f z)

That answers are not only values is the return consequence of the removal of the

computational rule CT .

Intermezzo 2.21
To simplify the correspondence between the reduction and operational semantics, in

Felleisen and Hieb (1992) two additional rules were proposed:

Celim : C (λk. kM) → M k not free in M

CE : E[CM] → C (λk.M (λx.A (k E[x])))

Rule Celim allows one to reduce our example term C (λc. 1+ c 2+ (1+ 1)) + 3 to the

final value 5. The addition of the rule however breaks the confluence of λC:

C (λk. k (x y)) ��

����

x y

C (λk. (λx.A (k x)) (x y))

The two diverging computations cannot be brought together.
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Using CE , one can naturally express that any part of the evaluation context

outside an application of C can be captured and reified as a partial continuation.

However, it destroys the confluence of λC since one cannot complete the following

diagram:

C (λk. k) x y �� ��

����

C (λq. λz.A (q (z x y)))

C (λq. (λz.A ((λw.A(q (w y))) (z x))))

Notice that CE is derivable in the revised λC theory extended with βΩ.

2.3.3 Weak-head reduction

Weak-head reduction in two stages is not an interesting notion of reduction. It is

neither transitive nor reflexive due to the insertion of a Ctop step even in cases it

is not needed to reach a value (consider, e.g., the evaluation of C(λk.V ), which is

already in “evaluated” form). The following unique context lemma for Felleisen and

Hieb’s reduction shows when exactly Ctop is needed.

Proposition 2.22 (Unique context lemma for →λC )

Let M be a term in λC. Exactly one of the following cases occurs:

– M has the form V or C (λk. k V ) or C (λk. V ), in which case we say that M is

an answer.

– M has a unique decomposition under the form E[P ] or C (λk. E[P ]), where P

is a βv , CL, or CR redex.

– M has the form C (λk.CP ), which is a Cidem redex.

– M has a unique decomposition under the form C (λk. E[k V ]) with E nonempty

in which case only a Ctop applies. No other Ctop step is further needed to reach

an answer.

– M has a unique decomposition under the form E[xV ] or C (λk. E[xV ]) (with

x 	= k) or C (E[xV ]) or C x in which case M is said to have its weak-head

reduction stopped.

On the basis of the Unique Context Lemma, we can define a canonical notion

of weak-head reduction on terms for the revised reduction theory: M
wh→λC N iff

M is characterized by one of clauses 2, 3, and 4 of the lemma and N is the result

of contracting the mentioned redex of M. Then, we get an obviously reflexive

and transitive notion of weak-head reduction by defining
wh→→λC as the reflexive–

transitive closure of
wh→λC . However, this last notion of weak-head reduction, despite

its canonicity, mimics less adequately than 2-weak-head reduction the weak-head

reduction of the initial theory.

2.3.4 Weak-head reduction in an abortive context

We showed in the last sections that the notion of weak-head reduction that underlies

Felleisen and Hieb’s notion of evaluation missed basic properties of reflexivity and
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transitivity to provide a satisfactory notion of weak-head reduction for the revised

theory of λC. We provided an alternative definition but this latter one relates less

directly to the initial reduction semantics. Moreover, both notions come with a

complex notion of answer.

To remedy these weaknesses, we restate the previous results on terms explicitly

evaluated in an abortive context, i.e., on expressions of the form AM. Note that in

this case, the weak-head reduction is restricted to a
C-wh→→ path and it does not require

Ctop.

Example 2.23 (Weak-head reduction in an abortive context)

We will reduce our running term as follows:

A (C (λc. 1+ c 2 + (1+ 1)) + 3)
C-wh→

A (C (λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3)))))
C-wh→ Cidem

A ((λc′. (λc. 1 + c 2 + (1+ 1)) (λx.A (c′ (x+ 3))))Ax)
C-wh→→

A 5

We then get a tighter connection with the initial theory of control (CT steps

map one-to-one to Cidem steps) and hence, thanks to Theorem 2.8, a tighter

correspondence with the operational semantics.

Theorem 2.24 (Corresp. betw. initial and revised w.-h. red. in abortive context)

M
wh

�∗c N iff AM
C-wh→→ AN.

Corollary 2.25 (Simulation of oper. sem. by w.-h. red. in abortive context)

M �→→λC V iff AM
C-wh→→ AV ′ where V ′→→βΩCidemβvV .

Especially, if V is C-free, M �→→λC V iff AM
C-wh→→ AV .

Remark 2.26

To emphasize the role of reasoning in an abortive context, we show that if M→→A

for A an answer, then AM→→AV for some value V :

AC (λk. k V ) → Cidem

A ((λk. k V ) (λx.A x)) → βv
A ((λx.A x)V [λx.A x/k]) → βv
A (AV [λx.A x/k]) → Cidem

A ((λ . V [λx.A x/k]) (λx.A x)) → βv
A (V [λx.A x/k])

AC (λk. V ) → Cidem

A ((λk. V )(λx.A x)) → βv
A (V [λx.A x/k])

We restate the unique context lemma.
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Proposition 2.27 (Unique context lemma for →λC in abortive context)

Let M be a term in λC. Exactly one of the following cases occurs:

– AM has the form AV .

– AM has a unique decomposition under the form AE[P ], where P is a βv ,

CL, or CR redex.

– AM has the form A (CN), which is a Cidem redex.

– AM has the form AE[xV ] in which case M is said to have its weak-head

reduction in abortive context stopped.

As in Section 2.2.1, one can observe that if AM C-weakly head reduces to AN

by CL or CR , then AN necessarily C-weakly head reduces further by a sequence

(possibly empty) of CL or CR , ended by Cidem and by as many βv as the number

of CL or CR . We write →A-CT
E∗

for such a combination of rules (which generalizes

Cidem):

A-CTE∗ : AE[CM] →A-CT
E∗
A (ME∗)

where E∗ is defined as in Section 2.2.1. If moreover M is of the form λk.N, then

A (ME∗) reduces further to AN[E∗/k]. This leads to the following variant of

→A-CT
E∗

:

A-C′TE∗
: AE[C (λk.N)] →A-C′T

E∗
AN[E∗/k]

Let C−L and C−R be as in Section 2.2.1 and C−idem be the restriction of Cidem that

applies only when the body of the innermost C is not an abstraction. Writing
C-wh→ A-CT

E∗ βv
for the union of weak-head A-CTE∗ and βv , and

C-wh→ A-C′T
E∗
C−idemC−LC−Rβv

for the union of weak-head A-C′TE∗
, C−idem, C−L , C−R and βv , we get the following

equivalence:

Proposition 2.28 (Alternative characterization of C-w.-h. red. in revised theory)

AM
C-wh→→ AV iff AM

C-wh→→ A-CT
E∗ βv

AV iff AM
C-wh→→ A-C′T

E∗
C−idemC−LC−Rβv AV .

Moreover, the Unique Context Lemma still holds by replacing items 2 and 3

in its statement by the rules composing
C-wh→→ A-CT

E∗ βv
or by the rules composing

C-wh→→ A-C′T
E∗
C−idemC−LC−Rβv .

2.3.5 The λC-calculus without the Ctop rule: The λC� -calculus

As observed previously, if one reduces terms of the form AM then rule Ctop is not

needed, its effect is subsumed by the Cidem rule. We let λC� stand for the reduction

theory without rule Ctop.

Theorem 2.29

The λC� -calculus is confluent.

Proof

As pointed out in the proof of confluence for λC (Theorem 2.14), Felleisen and Heib

prove confluence of an equivalent reduction system, the λC′ calculus. In addition,

https://doi.org/10.1017/S0956796807006612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006612


390 Z. M. Ariola and H. Herbelin

they also state the confluence of λC′ without the Ctop and C′
top

rules. However, we

cannot rely on this result to show confluence of λC� , since the two reduction systems

are not equivalent. To simulate a CL reduction in λC′ , one actually needs the Ctop

rule. Consider the λC� reduction:

(C x) y → C (λc. x λf.A (c (f y)))

The simulation in λC′ is

(C x) y → Ctop

(C (λc. x λz.A (c z))) y → C′L
C (λc. x λz.A ((λx.A (c (x y))) z)) → βv
C (λc. x λz.A (A (c (z y)))) → C′idem

C (λc. x λz.A (c (z y)))

We therefore give a direct proof of confluence using van Oostrom’s method of

decreasing diagrams (see the Appendix).

As pointed out in the Appendix, to deal with the duplication caused by the βv
reduction, one works with the notion of parallel reduction, There is an interference

betweena βv reduction and a CR redex, which as shown below is benign:

(λk. kC (λq. q x))V

CR

��

βv �� V C (λq. q x)

CR

���
�
�

(λk.C (λc. (λq. q x) (λx.A (c (k x)))))V
βv

����� C (λc. (λq. q x) (λx.A (c (V x))))

The lifting rules do not interfere with themselves:

C (λk. kC (λq. q x)) y

CR
��

CL �� C (λc. (λk. kC (λq. q x)) (λf.A (c (f y))))

CR
���
�
�

C (λk.C (λc. (λq. q x) (λx.A (c (k x))))) y
CL

������������ M

where the common term M is

C (λc. (λk.C (λc. (λq. q x) (λx.A (c (k x))))) (λf.A (c (f y))))

However, the lifting rules interfere with a Cidem reduction:

C (λc.CM)N
Cidem

��

CL

��

C (λc.M λx.A x)N

CL
���
�
�

M2

βv

���
�
�

C (λq. (λc.CM) (λf.A (q (f N))))
βv

����� M1
�������� M3

where M1 is

C (λq.CM [(λf.A (q (f N)))/c])
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M2 is

C (λq. (λc.M λx.A x) (λf.A (q (f N))))

and M3 is

C (λq.M [(λf.A (q (f N)))/c] (λx.A x))

To solve the problem, we take the CL,CR > βv .

Cidem interferes with itself (we write Ax for the abort continuation λx.A x):

C (λk.C (λq.CM)) ��

��

C (λk. C(λq.MAx))

���
�
�

C (λk. (λq.MAx)Ax)

βv

���
�
�

C (λk. (λq.CM)Ax)
βv

����� C (λk.CM [Ax/q]) ����� C (λk. (M [Ax/q])Ax)

To make the above diagram decreasing, we take Cidem > βv . �

2.3.6 Weak-head standardization in an abortive context

The aim of this section is to prove a weak-head standardization theorem for the

revised notion of control in an abortive context. In Felleisen and Hieb (1992) such a

notion of standardization is defined but it is nondeterministic and hence not directly

applicable for our purpose. However, we still rely on Felleisen and Hieb’s results to

deduce that Ctop is not needed for weak-head standardization when reasoning in an

abortive context. A deterministic weak-head standardization theorem comes next.

Based on Felleisen and Hieb (1992), we say that M FH-weakly head reduces

to M ′ (what we call FH-weak-head reduction is called standard reduction relation

in Felleisen and Hieb, 1992), written M
FH-wh→ M ′, if there exists an evaluation

context Ed such that M≡Ed[N] and M ′ ≡Ed[N ′] for N and N ′ a redex and its

contractum, respectively. The evaluation context Ed is defined as follows:

Ed ::= E | C (λk. E)

Note that the decomposition of an evaluation context and a redex is not unique. In

fact, the term AC (λk.CN) contains four standard redexes:

Ed ≡ � and a Ctop redex

Ed ≡ � and a Cidem redex

Ed ≡ A� and a Ctop redex

Ed ≡ A� and a Cidem redex

Any reduction path can be factorized through a FH-weak-head reduction:

Theorem 2.30 (FH-weak-head standardization)

AM→→λCAV iff AM
FH-wh→→ λC AV ′ for some V ′ such that V ′→→λCV .
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Proof

We rely on the standardization theorem (Theorem 3.16) in Felleisen and Hieb (1992),

which itself directly relies on the scalability of Plotkin’s own proof of standardization

for call-by-value λ-calculus (Plotkin, 1975). Felleisen and Hieb’s standardization

theorem states that M→→λCN iff M
s→→ N, where M

s→→ N is defined by the following

clauses:

– M
s→→M

– M
FH-wh→→ N and N

s→→ P implies M
s→→ P

– M
s→→ N and M ′ s→→ N ′ implies MM ′ s→→ NM ′ s→→ NN ′

– M
s→→ N implies λx.M

s→→ λx.N and CM
s→→ CN

From Felleisen and Hieb’s standardization theorem we obtain AM
s→→ AV ,

which by definition of
s→→ amounts to AM

FH-wh→→ λC AN
s→→ AV ′

s→→ AV with

N
FH-wh→→ V ′. None of the FH-weak-head reductions in N

FH-wh→→ V ′ happens in a

context of the form C(λk.E), since otherwise, one would not obtain a value at the

end. Then,AN
FH-wh→→ AV ′ is another valid FH-weak-head reduction and the result

follows. �

Proposition 2.31

If AM→→λCAV then AM→→λC�
AV ′ with V ′ =λC V .

Proof

From the FH-weak-head standardization of λC (Theorem 2.30), AM
FH-wh→→ λC AV ′′

and V ′′→→λCV . Next, we prove the following diagram:

AM

λC� �� ���
�

�
�

� Ctop

FH-wh �� M ′

λC�
�����
�
�

AM ′′

(2)

If Ed is empty, one has

AM Ctop

FH-wh �� C (λk. (λ .M)(λx.A (k x)))

βv

���
�
�

AM

Since the top-level term is of the form AM, if Ed is nonempty it must be of the
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form AE. If E is empty:

A (CM)

Cidem

��

�
�
�

�

	



�
�


�

�

�
�

�

Ctop

FH-wh �� A (C (λk.M (λx.A (k x))))

Cidem

���
�
�

A ((λk.M (λx.A (k x)))(λx.A x))

βv

���
�
�

A (M (λx.A ((λx.A x) x)))

βv

���
�
�

A (M (λx.A (A x)))

Cidem,βv
�����
�
�

A (M (λx.A x))

Otherwise, let the top-level term be of the form AE[E ′[CM]] where E ′ is either

�N or V N. If E ′ is �N we have

(CM)N

CL

��

�
�

�



�


�

�
�

�
�

�
�

�
�

�

Ctop

FH-wh �� C (λk.M (λx.A (k x)))N

CL

���
�
�

C (λr. (λk.M (λx.A (k x))) (λz.A (r (z N))))

βv

���
�
�

C (λr.M (λx.A ((λz.A (r (z N))) x)))

βv

���
�
�

C (λr.M (λx.A (A (r (xN)))))

Cidem,βv

���
�
�

C (λr.M (λx.A (r (xN))))

A similar diagram can be constructed if E ′ is V �.

From Diagram 2 one concludes AM =λC�
AV ′′. The result then follows from

confluence of λC� and the fact that values are stable with respect to λC� reduc-

tions. �

Note that Diagram 2 does not hold if the Ctop reduction is not standard. For

example, with respect to the following reduction:

A (Ω (CM))→A (Ω (C (λk.M λx.A (k x))))

where Ω stands for a nonterminating computation, one cannot find a common term

N such that A (Ω (CM))→→λC�
N and A (Ω (C (λk.M λx.A (k x))))→→λC�

N.
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Theorem 2.32 (Weak-head standardization for →→λC in an abortive context)

AM→→λCAV iff AM
C-wh→→ AV ′, where V ′ =λC V .

Proof

From Proposition 2.31,AM→→λC�
AV ′′ and V ′′ =λC V . We follow the proof technique

in Huet and Lévy (1991). Let B be the reduction AM→→λC�
AV ′′. First one shows

that the reduction B contracts the descendant of the weak-head redex, say U1,

occurring in AM. Then one constructs the projection of the reduction B with

respect to the U1-reduction, i.e., one closes the diagram below

AM �� ��

C-wh
��

AV ′′

�����
�
�

AM1
�� ����� AV ′′1

We denote the reduction AM1→→AV ′′1 as B/U1. Since the reduction B/U1 also leads

to an answer, one can proceed by performing the projection (B/U1)/U2, where U2 is

the weak-head redex contracted by the reduction B/U1. As before, also (B/U1)/U2

leads to an answer. To guarantee the termination of such a process, one has to show

that at each step the weight associated to each reduction decreases.

We explain the weight associated to a reduction through an example. To the

following reduction:

A ((λx. (x z) + (x z)) (λx. 2 + 2)) →
A ((λx. (x z) + (x z)) (λx. 4)) →
A ((λx. 4) z + (λx. 4) z) →
A (4 + (λx. 4) z) →
A (4 + 4) →
A 8

we associate the measure 〈1, 1, 1, 1, 1〉. The projection of the above reduction with

respect to the weak-head redex (i.e., the outermost βv redex) is

A (((λx. 2 + 2) z) + ((λx. 2 + 2) z)) →→
A (((λx. 4) z) + ((λx. 4) z)) ≡
A (((λx. 4) z) + ((λx. 4) z)) →
A (4 + (λx. 4) z) →
A (4+ 4) →
A 8

The weight associated to the above reduction is 〈1, 1, 1, 0, 2〉. In other words, the

tuple represents the number of times each redex of the original sequence has

been duplicated. Using the lexicographic order on tuples, we have 〈1, 1, 1, 1, 1〉 >
〈1, 1, 1, 0, 2〉. Notice how we count the steps from the answer up to the original term,

otherwise, due to duplication of redexes the weight will not decrease. Other than

the usual duplication caused by the βv rule, a duplication in the horizontal line

can be caused by the interference between CL and Cidem, and Cidem and itself, as

shown in the proof of confluence of λC� (Theorem 2.29). This however can be taken
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care of by working with A-C′TE∗
, C−idem, C−L , C−R and βv , as in Proposition 2.28. The

projection of B with respect to a C−idem, C−L or C−R redex is easy because none of them

interfere with Cidem. The projection of B with respect to a A-C′TE∗
redex is defined

as follows. If B does not start with a weak-head redex, this first redex is projected

and the rest of B is recursively projected with respect to the A-C′TE∗
redex. If B

starts with a weak-head redex then the A-C′TE∗
reduction necessarily starts with the

same weak-head redex (see Proposition 2.27). This redex is removed in B and the

projection process continues with the rest of B and the rest of A-C′TE∗
, i.e. A-C′TE∗

with its weak-head redex omitted. If this weak-head redex is CL or CR , omitting it

in A-C′TE∗
still leaves us with a (shorter) A-C′TE∗

redex. If this weak-head redex is

Cidem then the A-C′TE∗
redex collapses into a sequence of βv redexes and each of

them is recursively removed from B. �

2.4 The impact of continuations as regular functions

In addition to losing strong normalization (see Remark 2.13), treating continuations

as regular functions means that continuations follow the call-by-value discipline:

their arguments must be reduced to values before the actual invocation is performed.

Consider the following λC evaluation:

C (λc. c (2+ 1)) �→→λC (λc. c (2+ 1)) (λx.A x) �→→λC (λx.A x) (2 + 1)

The next evaluation step is to apply the reified continuation (λx.A x) to the argument

2+ 1. However, 2+ 1 must be simplified to a value first which is wasteful. Indeed,

this behavior has a well-known space leak that is demonstrated by the following

example:

loop 0 = 0

loop n = C (λc. c (loop (n − 1)))

When the recursive call to loop (n-1) returns, the continuation c is invoked, which

abandons the entire current stack. So the recursive call to loop takes place on top

of a stack that will never be used. If the recursive call increases the size of the stack

before looping, as is the case here, the result is that the stack grows proportional to

the depth of recursion, as shown below:

loop 3

�→→λC (λx.A x) (loop 2)

�→→λC (λx.A ((λx.A x) x)) (loop 1)

�→→λC (λx.A ((λx.A ((λx.A x) x)) x)) (loop 0)

Requiring that the argument of a continuation be a value forces one to evaluate

the argument in some continuation and then erase this continuation, instead of

the equivalent but more efficient choice of first erasing the continuation and

then evaluating the argument Ganz et al. (1999). One could imagine treating a

continuation invocation differently from a regular function call, allowing one to

perform the invocation even though the argument is not a value. This would avoid

the space leak alluded to above:

loop 3 �→→ (λx.A x) (loop (3− 1)) �→→ A (loop (3− 1))
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Notice how the continuation is invoked instead of reducing the argument. We

address these issues, together with the lack of strong normalization, in the context

of the λCtp-calculus introduced in the next section.

Intermezzo 2.33

Matthias Felleisen and his colleagues studied and designed other control operators.

In a historical note starting on page 414, Matthias reviews the story of their discovery.

In here, we briefly explain call/cc and F; their operational rules are as follows:

E[call/ccM] �→ E[M (λx.AE[x])]

E[FM] �→ M (λx. E[x])

The rules show that call/cc differs from C in that call/cc duplicates the evaluation

context. If the captured continuation is not invoked, control goes back to the context

surrounding the call/cc. For example, with E being the context � + 1, one has

call/cc (λc. 4) + 1 �→ E[(λc. 4)(λx.AE[x])] �→ E[4] �→ 5

Whereas if call/cc is replaced with C one has

C (λc. 4) + 1 �→→ 4

F differs from C in that the invocation of the continuation does not abort the

calling context. In fact, the body of captured continuation contains E[x] instead of

AE[x] :

F (λc. 1+ c 2 + (1 + 1)) + 3 �→
(λc. 1+ c 2 + (1+ 1)) (λx. x+ 3) �→→
1 + 5+ (1+ 1) �→→
8

3 An alternative theory of control: The λCtp-Calculus

The λCtp-calculus was presented in a previous work (Ariola & Herbelin, 2003; Ariola

et al., 2004). It is basically a call-by-value version of Parigot’s λμ-calculus (Parigot,

1992), where μ is renamed into C. It also contains a special constant tp to denote

the top-level continuation. The distinguishing feature of the λCtp calculus is that it

reserves a special treatment for the invocation of a continuation, which we refer to

as a jump.

3.1 Syntax and operational semantics

The syntax of λCtp is in Figure 4. The use of C is restricted: the argument is always

a λ-abstraction which binds a continuation variable. Thus, one cannot write a term

such as C (λk. (λx.C x) k). We refer to a term of the form C (λk. J) as a C-abstraction.

The body of a C-abstraction is restricted to a jump. There is a continuation constant

tp that denotes the top-level continuation. For example, one would write the λC-term

C (λ . 5) as C (λ . tp 5), explicitly indicating the return to the top level. Variables

bound to continuations are distinct from other variables and can occur only in

application position, thus one cannot write a term such as C (λk. k). Moreover, the

invocation of a continuation must be surrounded by a C-abstraction. Instead of
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Fig. 4. Syntax of λCtp.

writing (k 2) + 1 one is forced to write C (λ . k 2) + 1. This means that the abortive

nature of continuations, instead of being reflected in the semantics, is captured in

the syntax itself. The C-abstraction surrounding the invocation of a continuation

resembles the use of the ML throw construct (Duba et al., 1991). To summarize,

aborting a computation (i.e., throwing to the top-level continuation) is written as

AM Δ
= C (λ . tpM) (Abbrev. 3)

and throwing to a user-defined continuation is written as

Th k M Δ
= C (λ . kM) (Abbrev. 4)

The operational semantics of programs is given below:

βv : E[(λx.M)V ] �→λCtp
E[M [V/x]]

CTE
: E[C (λk. kM)] �→λCtp

E[M [tpE/k]]

CTE

′ : E[C (λk. tpM)] �→λCtp
M [tpE/k]

Unlike the operational semantics for λC, these rules make use of a notion of

substitution, called structural substitution, which was first introduced in Parigot

(1992). The general form of structural substitution is written M [q E/k] (resp.

J [q E/k]) and reads as “replace every jump of the form k N in M (resp. J) with the

jump (q E[N]) (and recursively in N).” The substitutions M [tpE/k] and J [tpE/k]

are defined similarly.

The structural substitution M [q E/k] (resp. J [q E/k]) is inductively defined as fol-

lows:

x [q E/k] ≡ x

(λx.M) [q E/k] ≡ λx.(M [q E/k])

(MN) [q E/k] ≡ M [q E/k]N [q E/k]

C (λk. J) [q E/k] ≡ C (λk. J)

C (λk′. J) [q E/k] ≡ C (λk′. J [q E/k]) k′ 	= k

(kM) [q E/k] ≡ q E[M [q E/k]]

(k′M) [q E/k] ≡ k′M [q E/k] k′ 	= k

(tpM) [q E/k] ≡ tpM [q E/k]

Note that this notion is not applicable to λC since continuations are not necessarily

applied to an argument (see Section 4.3 for the characterization of a subsyntax of

λC to which structural substitution applies).
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Fig. 5. Translation of λC in λCtp.

Fig. 6. Translation of λCtp in λC.

The translation of λC-terms into the λCtp-calculus is given in Figure 5. If E is a

context, its compositional application on each component of the context is written

E◦. Notice how in the C-abstraction case three things are happening:

– the captured continuation is given a name k;

– the implicit jump to the top level is made explicit;

– the implicit aborting of the context when k is applied is also made explicit.

Based on Abbrev. 1 and Abbrev. 3, we have

(AM)◦ →βv AM◦ (5)

The translation from a λCtp-term M to a λC-term is denoted by M• and simply

corresponds to dropping each reference to tp and interpreting each jump as a regular

application. The formal definition is given in Figure 6.

There are two important differences between λC and the set of terms coming

from the translation. First, for terms in the image of the translation, occurrences of

k N are necessarily surrounded by some “C (λk”. Therefore, rule Ctop is not needed

to evaluate terms coming from λCtp. Second, in the image of the translation, each

continuation is applied to an argument. This makes the use of structural substitution

possible.

Example 3.1 (The evaluation of our example term)

The evaluation of the λCtp-term corresponding to the λC-term C (λc. 1+ c 2 + (1+ 1)) +

3 is shown below:

(C (λc. 1+ c 2 + (1 + 1)) + 3)◦ Δ
=

C(λk. tp ((λc. 1 + c 2 + (1+ 1)) (λx.Th k x))) + 3 �→→λCtp

((λc. 1+ c 2 + (1 + 1)) (λx.Th k x)) [tp (� + 3)/k] ≡
(λc. 1+ c 2 + (1 + 1)) (λx.A (x+ 3)) �→→λCtp

1 + A ( 2 + 3) + (1+ 1) �→→λCtp

5

https://doi.org/10.1017/S0956796807006612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006612


Control reduction theories 399

3.2 Relating λC and λCtp operational semantics

In spite of being defined on structural substitution, the operational semantics given

for λCtp faithfully implements through ◦ the operational semantics assigned to λC. We

consider here λC with the primitive operator Abort and we let (AbortM)◦Δ
=AM◦.

We have

Proposition 3.2 (Simulation of λC oper. sem. in λCtp)

M �→λC N in λC with primitive abort operator iff M◦ �→λCtp
N◦ in λCtp.

Proof

The first clause (β-reduction) of each operational semantics trivially correspond.

The second clause for λCtp does not occur by definition of M◦. Finally, the second

and third clauses for λC map to the third clause in λCtp as shown below:

E[CM]◦ Δ
= E◦[C (λk. tp (M◦ (λx.Th k x)))]

�→λC (M◦ (λx.Th k x))[tpE◦/k]

≡ M◦ (λx.AE◦[x])
Δ
= (M (λx.AbortE[x]))◦

E[AbortM]◦ Δ
= E◦[AM◦]
Δ
= E◦[C (λ . tpM◦)]

�→λC M◦

�

By Proposition 2.2 and by iteration of the previous proposition, we get the

following:

Proposition 3.3

M �→→λC V , using either Abort or A, iff M◦ �→→λCtp
V ◦.

λCtp faithfully simulates λC through ◦, but the converse is not true. Compared to

λC, the structural substitution of λCtp “optimizes” the application to the continuation

as it does not require that the argument of the continuation be evaluated first.

Conversely, �→→λC “delays” the call to the continuation leading to a possible space

leak as discussed in Section 2.4. By reasoning on nonterminating terms, one can

show the following:

Proposition 3.4 (Non simulation of λCtp oper. sem. in λC)

We may have M �→λCtp
N without having M• �→→λC N ′• for any N ′ such that

N �→λCtp
N ′.

Proof

Consider M ≡ E[C (λk. kΩ)] where Ω stands for a nonterminating computation

(with no occurrence of k). Then M �→λCtp
E[Ω] and M• �→→λC ((λx.A (E[x])) Ω). Since

the evaluation of Ω is nonterminating, ((λx.A (E[x])) Ω) will never reach E[Ω]. Note

that one could even get an irreversible space leak in λC when instead the evaluation

in λCtp is simply looping: take Ω ≡ Y (λx.C (λk. k x)), with Y some fixpoint operator

of λ-calculus (e.g., λf. (λy. (f (y y)) λy. (f (y y)))). �
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However, we have a simulation up to applications of βΩ.

Proposition 3.5 (Simulation of λCtp oper. sem. in λC up to βΩ)

M �→→λCtp
V iff M• �→→λC V

′ where V ′ and V satisfy V ′→→βΩCidemβvV
•

The next remark will allow to simplify the notations used in the proof of

Proposition 3.5.

Remark 3.6

(On the ability to express states in the syntax) One motivation for the λ-calculus

extended with control is to provide a framework to abstractly study the operational

semantics of real languages. With a language like λC, the focus is on terms. Especially,

the notion of state, though crucial in any actual implementation of a language

handling continuations, is not representable in λC. With the explicit introduction

of the top-level continuation tp, the situation changes. Indeed, tp can be identified

with the “bottom of the stack” of stack-based computing devices. Especially, the

operational semantics of λCtp defined above can be equally rewritten as follows:

βv : tpE[(λx.M)V ] �→λCtp
tpE[M [V/x]]

CTE
: tpE[C (λk. kM)] �→λCtp

tpE [M [tpE/k]]

CTE

′ : tpE[C (λk. tpM)] �→λCtp
tpM [tpE/k]

or, more concisely, as

βv : tpE[(λx.M)V ] �→λCtp
tpE[MV/x]]

CTE
: tpE[C (λk. J)] �→λCtp

J [tpE/k]]

More generally, the evaluation semantics could be extended to open computations

as follows:

βv : q E[(λx.M)V ] �→λCtp
q E[M [V/x]]

CTE
: q E[C (λk. J)] �→λCtp

J [q E/k]]

Proof of Proposition 3.5. The result is of the same kind as Theorem 2.8 (i.e.,

Theorem 4.7 of Felleisen-Friedman-Kohlbecker-Duba; Felleisen et al. 1987). Instead

of exhibiting the relation characterizing how the two reduction paths differ, as done

in Felleisen et al. (1987), we reason by nested induction. The only difficulty is to

manage the slowdown caused by the replacement of structural substitutions by

substitutions of reified contexts.

We first prove that M �→→λCtp
V implies M• �→→λC V ′→→βΩCidemβvV

•. We reason by

induction on the length of the reduction path. The case of an empty reduction is

trivial so we can assume that M �→λCtp
M ′ �→→λCtp

V and by the induction hypothesis,

we get M ′• �→→λC V ′→→βΩCidemβvV
•. We focus on the reduction M �→λCtp

M ′. The case

of a βv contraction is easy as it behaves the same in both �→→λCtp
and �→→λC . Let

us then assume that M is E[C (λk. J)] and M ′ is P [tpE/k] (if J is tpP ) or M ′ is

E[P [tpE/k]] (if J is k P ). On the λC side, the reduction is simulated by M• �→λC

(λk. J•) (λx.AE[x]•) �→λC J• [λx.AE[x]•/k]. If moreover J has the form kW with

W a value, the reduction can progress even further with J• [λx.AE[x]•/k] �→λC

AE[W ]• [λx.AE[x]•/k] �→→λC E[W ]• [λx.AE[x]•/k]. To get a uniform notation,

we let J+ be J if J has not the form kW and E[W ] otherwise. We can then
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Fig. 7. Reductions of call-by-value λCtp.

restate the reduction in λC as follows: M• �→→λC J+• [λx.AE[x]•/k]. To use the

induction hypothesis, we need to lift the reduction M ′• �→→λC V ′, where M ′• can be

equally seen as J+ [tpE/k]
•
, into some reduction starting from J+• [λx.AE[x]•/k].

To this aim, we show that J+ [tpE/k]
• �→→λC V ′ implies J+• [λx.AE[x]•/k] �→→λC

V ′′• [λx.AE[x]•/k] where V ′ is V ′′ [tpE/k]•. Since we also have the reduction

V ′′
•
[λx.AE[x]•/k]→→βΩCidemβvV

′′ [tpE/k]
• ≡ V ′,

the value V • will eventually be reached.

The auxiliary result is by induction on the length of the reduction path from

J+ [tpE/k]
•

to V ′. The case of an empty reduction path is trivial; otherwise,

J+ [tpE/k]
• �→λC P �→→λC V ′. Necessarily, J+ has the form tpE ′[C (λk′. J ′)] or

tpE ′[(λx.M)N] and it reduces to some J ′′. Hence P has the form J ′′ [tpE/k]• and

the same reduction step occurs in J+•[λx.AE[x]•/k] leading to J ′′•[λx.AE[x]•/k].

If J ′′ does not have the form kW , the subsidiary induction hypothesis is directly

applicable; otherwise, we need first to insert a few extra steps to release the context

out of its reification:

kW • [λx.AE[x]•/k] �→λC AE[W ]• [λx.AE[x]•/k] �→→λC E[W ]• [λx.AE[x]•/k].

Conversely, we reason on states and show that for J closed, J• �→→λC V ′ implies

J �→→λCtp
tpV for some value V such that V ′→→βΩCidemβvV

•. This is by induc-

tion on the length of the reduction path from J• to V ′. Since J is closed, it

has the form tpM. The difficult case is when M is E[C (λk. J)] in which case

J• �→λC (λk. J ′•) (λx.AE[x]•) �→λC J ′•[λx.AE[x]•/k] while we have tpM �→λCtp

J ′ [tpE/k]. Since the induction hypothesis only gives J ′[λx.AE[x]/k] �→→λCtp
tpV

with V ′→→βΩCidemβvV
•, we use a subsidiary induction to show that the reduction path

J ′ [λx.AE[x]/k] �→→λCtp
tpV can be moved to J ′ [tpE/k] �→→λCtp

tpW [tpE/k] for

some W such that V coincides with W [λx.AE[x]]. The only case that does not

directly commute is when J ′ is kW ′ in which case

J ′ [λx.AE[x]/k] �→λCtp
tp (AE[W ′])[λx.AE[x]/k] �→λCtp

tpE[W ′] [λx.AE[x]/k]

while on the other side we already have J [tpE/k] ≡ tpE[W ′][ tpE/k]. It re-

mains to observe again that W [λx.AE[x]/k]•→→βΩCidemβvW [tpE/k]• to finally get

V ′→→βΩCidemβvW [tpE/k]•.

3.3 Reduction semantics

The reduction semantics is given in Figure 7. Like the original calculus, the rules

CL and CR allow one to lift the control operation step by step until it reaches a
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point where it can no longer be lifted. When the control operator reaches a jump

to the top level (rule Cidem with q instantiated with tp), the captured continuation is

the trivial continuation modeled by tp. Otherwise, if the control operator reaches a

regular continuation variable k, the captured continuation becomes k.

3.3.1 Confluence

Remark 3.7

The λCtp reduction rules are overlapping: a CL reduction can destroy a Cidem redex,

as shown below:

C (λk. kC (λq. q x)) y

CL

��

Cidem

�� C (λk. k x) y

CL

���
�
�

C (λk. k (C (λq. q x) y))
CL

����� C (λk. kC (λq. q (x y)))
Cidem

����� C (λk. k (x y))

To complete the above diagram, the newly created CL redex has to be reduced,

as also observed by Baba et al. (2001) in the context of call-by-value Parigot’s

λμ calculus. This complicates the proof of confluence based on the method of

parallel reductions of Tait and Martin-Löf, since the parallel reduction does not

satisfy thediamond property. The solution in Baba et al. (2001) is to introduce the

following generalization of Cidem which turns out to be the generalization of the

operational rule CTE
into a (congruent) reduction rule:

CJ
E : q E[C (λk. J)] → J [q E/k]

The new rule allows one to close the above diagram in one step.

Theorem 3.8

λCtp is confluent.

Proof

Follows the same steps as the proof of confluence of call-by-value λμ (Baba et al.,

2001). Since λCtp reductions rules are duplicating and interfering, one considers the

alternative reduction system λCtp. The calculus λCtp allows the reduction of multiple

redexes in one step and contains the generalization of Cidem given in the above

remark (see rule CJ
E). The calculi λCtp and λCtp have the same transitive closure, and

λCtp has the diamond property. �

3.3.2 Robustness

The λCtp reduction system can be also extended with the Celim rule that eliminates a

superfluous jump whose target is the current continuation:

Celim : C (λk. kM)→M k not free in M

The counterpart of CE in λCtp is the following rule:

CE : E[C (λk. J)] → C (λk. J [k E/k])

In contrast with λC, CE is derivable from CL and CR in λCtp.
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The fact that jumps never occur on the left- or right-hand side of an application

makes the need for a rule like Ctop useless. As a consequence, no rule artificially

breaks strong normalization (see e.g., Ariola and Herbelin 2003; Ariola et al., 2007,

for a proof of strong normalization in the simply typed case).

The use of structural substitution avoids also the space leak discussed in Sec-

tion 2.4. We have

loop 3 �→λCtp
C (λc. c (loop (3 - 1))) �→λCtp

loop (3 - 1) �→λCtp
· · ·

3.4 Relating λC and λCtp reduction semantics

As seen in the previous section, the operational semantics of λCtp is simulated by the

operational semantics of λC only up to βΩ. The same kind of discrepancy shows up

in the mutual simulation of the λC reduction rules by λCtp reduction rules. We need

to define an equivalent of βΩ on the λCtp side,

βΩ : (λx.Th k x)M →Th k M.

We denote with =λCtp , βΩ
the convertibility relation induced by the reduction relation

λCtp and the βΩ axiom. We state the results for the revised theory. To the exception

of �CT
, which is not a congruent reduction rule, the results also apply to the initial

theory whose congruent reduction rules are part of the revised theory.

Proposition 3.9

Let M and N be λC-terms. If M =λC N, then M◦ =λCtp , βΩ
N◦. More precisely, if

M →λC N, then there exists P such that M◦→→λCtp
P←←βΩ , βv ,Cidem

N◦.

Proof

By cases:

(CL)

((CM)N)◦ Δ
= C (λk.tpM◦ (λx.Th k x))N◦

→CL
C (λk. tpM◦ (λx.Th k (xN◦)))

←Cidem
C (λk. tpM◦ (λx.A (Th k (xN◦))))

←βΩ
C (λk.tp (M◦ (λx.A ((λz.Th k z) (xN◦)))))

←βv C (λk. tp ((λc.M◦ (λx.A (c (xN◦)))) (λz.Th k z)))

By (5) ←βv C (λk.tp ((λc.M◦ (λx.(A (c (xN)))◦)) (λz.Th k z)))
Δ
= C (λc.M (λx.A (c (xN))))◦

(CR)

(V (CM))◦ Δ
= V ◦ C (λk.tpM◦ (λx.Th k x))

→CR
C (λk. tp (M◦ (λx.Th k (V ◦ x))))

←Cidem
C (λk.tp (M◦ (λx. A (Th k (V ◦ x)))))

←βΩ
C (λk.tp (M◦ (λx. A ((λz.Th k z) (V ◦ x)))))

←βv C (λk. tp ((λc.M◦ (λx.A (c (V ◦ x)))) (λz.Th k z)))

By (5) ←βv C (λk. tp ((λc.M◦ (λx. (A (c (V x)))◦)) (λz.Th k z)))
Δ
= C (λc.M (λx.A (c (V x))))◦
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(Cidem)

C (λc.CM)◦ Δ
= C (λk. tp (λc.C (λk′. tp (M◦ λx.Th k′ x))) (λx.Th k x))

→βv C (λk. tpC (λk′. tpM◦ [λx.Th k x/c] (λx.Th k′ x)))

→Cidem
C (λk. tpM◦ [λx.Th k x/c] (λx.A x))

←βv C (λk. tp ((λc.M◦ (λx.A x)) (λx.Th k x)))

By (5) ←βv C (λk. tp ((λc.M◦ (λx. (A x)◦)) (λx.Th k x)))
Δ
= C (λc.M (λx.A x))◦

(Ctop)

(CM)◦ Δ
= C (λk. tp (M◦ λx.Th k x))

←Cidem
C (λk. tp (M◦ λx.A (Th k x)))

←←βv C (λk. tp ((λc. (M◦ λx.A (c x))) (λx.Th k x)))

By (5) ←βv C (λk. tp ((λc. (M◦ λx. (A (c x))◦)) (λx.Th k x)))
Δ
= C (λc.M (λx.A (c x)))◦

�

To simulate a λCtp reduction in λC, we also need βΩ.

Proposition 3.10

Let M and N be closed λCtp-terms. If M →λCtp
N then we have that M•→→λC� , βΩ

N•.

Proof

In the following, M [E/k] and M [AE/k] stand for structural substitution: each ap-

plication of k to an argument N in M is replaced by E [N [E/k]] andAE[N [AE/k]],

respectively. We remark that M [AE/k] reduces to M [E/k] by Cidem and βv .

We proceed by cases:

(CL)

(C (λk. J)M)• Δ
= C (λk. J•)M•

→CL C (λk. (λk. J•) (λf.A (k (fM•))))

→βv C (λk. J• [λf.A (k (fM•))/k])

→→βΩ
C (λk. J• [A (k (�M))/k])

→→Cidem , βv C (λk. J• [k (�M)/k])
Δ
= C (λk. J[k (�M)/k])•

(CR) As the previous case.

(Cidem) We have two cases:

C (λk. tpC (λk′. J))• Δ
= C (λk.C (λk′. J•))

→→Cidem , βv C (λk. J• [λx.A x/k′])

→→βΩ
C (λk. J• [A�/k′])

→→Cidem , βv C (λk. J• [�/k′])
Δ
= C (λk. J[tp �/k′])•
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C (λk. k′′ C (λk′. J))• Δ
= C (λk. k′′ C (λk′. J•))

→→CR
C (λk.C (λk′. J• [λx.A (k′ (k′′ x))/k′]))

→→Cidem , βv C (λk. J• [λx.A ((λy.A y) (k′′ x))/k′])

→→βΩ
C (λk. J• [λx.A (A (k′′ x))/k′])

→→Cidem , βv C (λk. J• [λx.A (k′′�)/k′])

→→βΩ
C (λk. J• [A (k′′�)/k′])

→→Cidem , βv C (λk. J• [k′′�/k′])
Δ
= C (λk. J [k′′�/k′])•

�

Remark incidentally that the composition of • and ◦ is not the identity in general.

Proposition 3.11

For all M in λCtp, M
•◦→→βΩCidem

M. For all M in λC, M
◦•→→Ctop

M.

Because of the previous results and the use of βΩ in the simulation, we cannot

prove that in general λCtp and λC simulate each other. For instance, C (λk. kC (λk′. k′ x))

is convertible to C (λk. k x) in λCtp but is not in λC. This observation has been noted

in One and Stewart (1997) and de Groote (1994), who have pointed out that the

relation between the λC-calculus and the call-by-value λμ-calculus does not preserve

convertibility, even though such a correspondence of the convertibility relation holds

in the case of call-by-name.

In order to relate λC and λCtp, we focus on the observational behavior of the

evaluation relation: a program (i.e., a term without free variables) in λC produces

an answer if and only if the evaluation of the related program in λCtp produces

an answer. As shown in Remark 2.26, the three distinct types of answers can be

simplified if the program is reduced in a context representing the top-level. We thus

formulate correctness as follows:

Given a closed λC-term M, AM→→λCAV iff tpM◦→→λCtp
tpV ′.

Before considering correctness, we focus on the weak-head reduction.

3.5 Weak-head reduction of terms

Like λC, the reduction rules of λCtp are not complete with respect to the operational

semantics when applied to terms. In particular, they cannot simulate the following

evaluations:

C (λk. kM) �→ M [tp �/k]

C (λ . tpM) �→ M

For example, the reduction rules cannot reduce the program

C (λk. k (λx.Th k (λy. y)))

to λx.A (λy. y). Like the λC-calculus, the λCtp-calculus can produce three kinds

of answers: V , C (λk. k V ), or C (λk. tpV ). The reason is that a computation

involving control is dependent on its evaluation context. While the operational

semantics implicitly works in an empty evaluation context, the reduction semantics
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cannot grant this assumption. The following unique context lemma summarizes

these observations.

Proposition 3.12 (Unique context lemma for →λCtp
on terms)

Let M be a term in λCtp. Exactly one of the following cases occurs:

– M has the form V , C (λk. k V ), or C (λk. tpV ). In this case M is called an

answer.

– M has one of the following form:

– E[P ] where P is a βv , CL or CR redex,

– C (λk. q E[P ]) where P is a βv , CL or CR redex,

– C (λk. J) where J is a Cidem redex.

In this case, M is called weakly head reducible. If the contraction of the given

redex in M gives N we write M
wh→ N and we say that M weakly head reduces

to N.

– M has the form E[xV ], C (λk. q E[xV ]), or C (λk. k′ V ) (k′ 	= k). In this case

M is said to have its weak-head reduction stopped. In the first two cases, it is

stopped by x while in the third case it is stopped by k′.

Especially, a weak-head redex, if it exists, is unique.

We write M
wh→→M ′, for the reflexive–transitive closure of

wh→. We also say that M

iteratively weakly head reduces to M ′ for
wh→.

3.6 Weak-head reduction of jumps

Fortunately, λCtp has the ability to express a fixed top-level evaluation context: it is

the purpose of the constant tp. The operational semantics can then be simulated in

λCtp by explicitly reasoning on expressions of the form tpM rather than on terms.

In fact, thanks to the notion of jumps, the λCtp calculus has the ability to lift in the

calculus the notion of state that is often considered as a purely implementation issue

in abstract evaluation machines.

The following proposition characterizes the possible forms of a jump.

Proposition 3.13 (Unique context lemma for →λCtp
on jumps)

Let J be a jump in λCtp. Exactly one of the following cases occurs:

– J has the form tpV

– J has one of the following form:

– q E[P ] where P is a βv , CL or CR redex,

– q C (λk. J) which is a Cidem redex.

In this case, J is said weakly head reducible. If the contraction of the given

redex in J gives J ′ we write J
wh→ J ′ and we say that J weakly head reduces to

J ′.

– J has the form q E[xV ] or k V . In this case J is said to have its weak-head

reduction stopped. In the first case, it is stopped by x while in the second case,

it is stopped by k.

Especially, a weak-head redex, if it exists, is unique.
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We write J
wh→→ J ′, for the reflexive–transitive closure of

wh→. We also say that

J iteratively weakly head reduces to J ′. Note that when M
wh→ N by executing a

Cidem redex and qM
wh→ q′N by also executing a Cidem redex, the two Cidem redexes

are not the same redex. Take for example, q C (λk. k C (λk. J))
wh→ q C (λk. J) and

C (λk. k C (λk. J))
wh→ C (λk. J).

Comparing Proposition 3.12 with Proposition 3.13 makes it clear that reasoning

on jumps rather than on terms allows for a uniform characterization of answers.

For instance, reasoning on jumps also makes rule Celim derivable. Indeed, as soon

as it is ensured that any expression C (λk. kM) occurs in a context of the form

q E[C (λk.kM)], its reduction to q E[M], when k does not occur free in M, is a

consequence of the other rules.

Thanks to CJ
E that we defined in Remark 3.7, a result similar to Propositions 2.7

and 2.28 can be stated in λCtp. We write
wh→CJ

Eβv
for the union of weak-head CJ

E and βv .

Proposition 3.14 (Alternative characterization of w.-h. red. in λCtp)

AM
wh→→AV iffAM

wh→→CJ
Eβv
AV . Moreover, the Unique Context Lemma still holds

by replacing the rules mentioned in item 2 of its statement by the rules composing
wh→CJ

Eβv
.

The identity between CJ
E and CTE

makes the following correspondence between

the operational and weak-head reduction semantics of λCtp trivial:

Theorem 3.15 (Simulation of oper. sem. by weak-head red. in λCtp)

M �→→λCtp
V iff tpM

wh→→ tpV .

Combined with Proposition 3.3, we get

Corollary 3.16 (Soundness of w.-h. red. in λCtp for the oper. sem. of λC)

M �→→λC V in λC iff tpM◦ wh→→ tpV ◦ in λCtp.

3.7 Weak-head standardization

Theorem 3.17 (Weak-head standardization in λCtp)

tpM→→λCtp
tpV iff tpM

wh→→ tpV ′, where V→→λCtp
V ′.

Proof

One direction is obvious. For the other direction we proceed as in the proof

of Theorem 2.32, i.e., we follow the proof technique in Huet and Lévy (1991). A

complication in constructing the projection of a reduction is the interference between

CL and Cidem. As shown in Remark 3.7, the projection of the Cidem reduction with

respect to the weak-head CL redex consists of the reduction of a newly created

redex. To avoid this problem, one uses Theorem 3.14 to characterize the weak-head

reduction tpM→→λCtp
tpV from βv and the generalized form CJ

E of Cidem. Thanks to

the use of CJ
E , the projection preserves the structure of the original reduction. Also,

at the time of projecting a nontrivial weak-head CJ
E redex along a weak-head CR or

CL, one simply removes the leading CR or CL redex and still stays with a (shorter)

weak-head CJ
E redex. �
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Fig. 8. Summary of observational equivalences.

4 Connecting λC and λCtp

4.1 The observational equivalence of λC and λCtp reduction theories

Figure 8 summarizes the equivalences shown in the paper. Especially, putting

together Theorems 2.8, 2.24, and 3.15, and Propositions 3.3 and 3.5, we get

Corollary 4.1 (Correspondence between λC and λCtp weak-head reduction)

M
wh

�∗c V iff AM
C-wh→→ AV iff tpM◦ wh→→ tpV ′◦ where V→→βΩCidemβvV

′.

M•
wh

�∗c V iff AM• C-wh→→ AV iff tpM
wh→→ tpV ′ where V→→βΩCidemβvV

′•.

Thanks to the standardization theorems, Theorems 2.10, 2.32, and 3.17, we can

extend the correspondence to arbitrary reduction paths:

Corollary 4.2 (Observational correspondence between λC and λCtp)

Let M be a closed λC-term. The evaluation of M converges iff the evaluation of M◦

converges:

M �∗c V iff AM→→λCAV iff tpM◦→→λCtp
tpV ′.

Similarly, let M be a closed λCtp-term. The evaluation of M converges iff the

evaluation of M• converges:

M• �∗c V iff AM•→→λCAV iff tpM→→λCtp
tpV ′.
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Fig. 9. How E[C (λk.M)] eventually reduces for the different op. sem. and w.-h. reductions

and how the respective results relate.

4.2 Distinguishing features of the different operational and reduction semantics

Figure 9 summarizes how the different operational semantics and weak-head

reduction semantics of λC and λCtp behave. Since βv is simulated the same in all

cases, we focus on CL, CR , Cidem, and �c. To allow a full comparison, we consider

terms that are in the image of •. The figure shows how a closed term of the form

E[C (λk.M)] eventually captures the surrounding context of C. The less efficient

semantics are the reduction semantics of λC (rules C′TE∗
and A-C′TE∗

), then comes

the operational semantics of λC (rule CTE
followed by βv) and its embedding in

λCtp when C is interpreted as an operator of reification of the context as a regular

function. Finally, structural substitution (rules CTE
and CJ

E) is the most efficient. The

results differ up to βΩβvCidem contractions in the substituends. Note that all these

contractions are nontrivial unless E is empty in which case E∗ is λx.A x which is

the same as λx.AE[x].

4.3 Simulation of structural substitution in λC

The mapping ◦ interprets C as an operator that reifies its context into a regular

function. Henceforth, it does not take advantage, as shown by Propositions 3.2 and

3.5, of the efficiency of structural substitution. We would get a better efficiency by

directly interpreting λC into the image of λCtp by •. Let us first focus on closed terms.

On closed terms, • is injective and the characteristic feature of its image in λC is

that C is necessarily applied to an abstraction of the form λk.M, and every such

k bound in the scope of C occurs applied under the form k N. Moreover, such a

subterm k N has to be itself the immediate subterm of some “C (λk′”. Let us adopt

the further convention that for every such subterm k N surrounded by some “C (λk′,”
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this “C (λk′” is omitted if k′ does not occur free in k N. Otherwise said, if some k N

is surrounded by an A, this A is left implicit. Let us call this restriction λS0
C .

Now focusing on open terms, we observe that • is not injective. The reason is

that free variables, whether they are usual variables or continuation variables, are

interpreted in the same and unique class of variables in λC. To remedy this non-

injectivity, we modify λS0
C so to introduce a distinct class of continuations variables.

Let us call λSC the resulting language. It is defined by the following grammar:

x ∈ Vars

k ∈ KVars

M,N ∈ Terms ::= x | λx.M |MN | kM | C (λk.M)

If we restrict λSC to the fragment with no free continuation variable, we fall back

on a calculus which is essentially λS0
C : the distinction between usual variables and

continuation variables becomes unnecessary because it is enough to look at whether

the variable is bound by some λ or by some C to know if it is an ordinary variable or

a continuation variable. Otherwise said, λS0
C can be equivalently seen as a restriction

of λC (where no distinction between usual and continuation variables is done) and

as a restriction of λSC .

Let † be the following interpretation of λSC into λCtp:

x† Δ
= x

(λx.M)† Δ
= λx.M†

(MN)† Δ
= M†N† if M not some k

(kM)† Δ
= Th k M†

C (λk.M)† Δ
= C (λk. k N†) if M has the form k N

C (λk.M)† Δ
= C (λk. tpM†) otherwise

This interpretation is not surjective (k N and A (k N) have the same image) but

this is sufficient to be able to transfer back structural reduction from λCtp to λSC . The

inherited reduction system for λSC is the following:

βv : (λx.M)V → M [V/x]

CL : C (λk.M)N → C (λk.M [k (�N)/k])

CR : V C (λk.M) → C (λk.M [k (V �)/k])

AL : (kM)N → kM

AR : V (kM) → kM

Cidem : k′ C (λk.M) → M [k′/k]

Cidem
′ : C (λk′.C (λk.M)) → C (λk′.M [A�/k])

Aidem : k′ (kM) → kM

Aidem
′ : A (kM) → kM

Proposition 4.3 (Simulation of λCtp within λC)

For all M and N in λSC , M → N in λSC implies M†→→N† in λCtp. For all M and N

in λCtp, M → N in λCtp implies M• → N• in λSC . Moreover, M•† ≡ M in λCtp and

M†•→→M in λSC . Since λS0
C is a subset of λC, this provides with a mutual simulation
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from this subset of λC with λCtp when the latter is restricted to the terms with no free

continuation variable.

Compiling λC into λS0
C is now simple: each occurrence of k that is bound by some

C (λk.M) and that is not applied in M is replaced by λx.A (k x), while each subterm

CM where M is not of the form λk.N is replaced by C (λk. (M (λx.A (k x)))) (these

transformations are known to be operationally sound). Of course, those occurrences

of C that are changed in that way, behave again as operators of functional reification

of contexts.

5 Conclusions

We investigated the differences between the historical calculus of control λC and

a calculus called λCtp that is derived from the interpretation of classical proofs as

programs. Both calculi manipulate continuations but the former reifies them as

regular functions and uses ordinary substitution to propagate continuations while

the latter manipulates them directly as evaluation contexts and uses a specific notion

of structural substitution.

We showed that the reduction systems of both calculi, as though they cannot

simulate each other, are observationally equivalent. We showed that control based

on structural substitution provides smoother results than control based on context

reification:

– Operational semantics and weak-head reduction match in the presence of

structural substitution while they differ when contexts are incrementally reified.

– Reification of contexts expands the size of context, leading to possible space

leaks, while structural substitution does not.

Thanks to the presence of a notation for the top-level continuation, the syntax of

λCtp has a finer structure than the syntax of λC. In particular, the constructions of λC
itself can be finely explained from the more elementary components of λCtp.

We showed that making explicit the top-level continuation provides a way to

uniformly manage the different kinds of answers that control reduction theories

traditionally require. We also clarified the role of rules like Ctop in λC or Celim in the

calculi inspired by λμ-calculus: these rules are useless to eventually reach a value as

soon as the top-level continuation of the evaluation is made formal.

We incidentally proved weak-head standardization and confluence for λCtp and

improved on previous results for λC. Especially, we provided a deterministic weak-

head standardization for the revised theory of λC, we repaired a “deterministic leak”

in Plotkin-style notion of standardization and we showed the confluence of the

revised theory when Ctop is omitted.

Scalability

We believe our study would apply in a similar way to the call-by-name variant of

λC in which β replaces βv and CR is removed. The main difference will be that βΩ

becomes an instance of β.
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We believe that our study would also directly apply to the extension of λC
with a delimiter of continuation # (see the historical note) and the operational

rules C[E[λx.M)V ]]→ C[E[M [V/x]]], C[E[#V ]]→ C[E[V ]], and C[E[CM]]]→
C[M λx.AE[x]] with C being � or C[E[# �]]. The correspondence would then be

with the λC#tp calculus in Ariola et al. (2004, 2008).

Typing

A system of simple types for λCtp, inherited from Parigot (1992), has been given in

Ariola and Herbelin (2003) and Ariola et al. (2007). A peculiarity of this typing

system is that the type of tp is a parameter of the system. Based on the definition

of (CM)◦, this typing system leads to naively type C, seen as a stand-alone constant

of λC, with type ((A→ B)→ T )→ A, where T is the type of tp and C is polymorphic

over A and B. This is quite constraining as this forces k to be used, in a given instance

of C (λk.M), only in contexts of type B. A more natural approach would be to force

B to be the top-level type T and hence to have C of type ((A→ T )→ T )→ A. With

this new constraint, each call to k would typically be surrounded by some A (itself

of derived type T → A for any A) in order to be used in a context of arbitrary type.

This system is strictly equivalent to Murthy’s parametric typing system �T Murthy

(1992), where Murthy’s rule abort1 is replaced by a dumb coercion from T to ⊥.

Indeed, Murthy’s typing system, with this modification, can be seen as a system

where the top-level type T and ⊥ are interchangeable and C can freely have type

((A→ T )→ T )→ A or ((A→ ⊥)→ ⊥)→ A or any of the two other combination

involving T and ⊥.

A more interesting typing system is obtained by eliminating the identification

between ⊥ and the top-level type T and by seeing ⊥ as an empty type equipped

with the rule

Γ �T M : ⊥

Γ �T M : B

whose computational content is the identity. Constraining B to be ⊥ in the naive

type of C, we get C of type ((A→ ⊥)→ T )→ A. By this approach, we obtain that

calls to k in C (λk.M) get usable in contexts of any type, without needing to insert any

explicit coercion from ⊥ to the type of these contexts, consistently with the abortive

nature of these calls. For instance, a λC-term like C (λk. if "foo" = k 3 then 1 else k 2)

would be typable without needing to surround the calls to k with A.

In any case, we believe that assigning type ((A→ ⊥)→ ⊥)→ A to C as in Griffin

(1990) is an overly restrictive type assignment. Yet, the typings we obtain, whatever

it is ((A → T ) → T ) → A or ((A → ⊥) → T ) → A remain consistent with the

observation that ((A→ ⊥)→ ⊥)→ A is a relevant type for C when the top-level type

is itself ⊥. Alternatively, assigning the polymorphic type ((A→ ⊥)→ ⊥)→ A to C
forces us, as in Griffin, to type closed programs in a top-level context of the form

C (λk. k �) where k, of type T → ⊥, turns to play the role of an explicit top-level

constant, a role that is devolved in λCtp to tp.
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Implementation

One could ask which of λC or λCtp simulates at best real implementations of control

operators. If we consider the call/cc operator that, among others, Scheme and

SML provide, the common practice is to implement it as an operator that first

duplicates the stack and then pushes on the stack a closure that restores this stack.

Formally, this corresponds to the rule

E[call/ccM] �→ E[M (λx.AE[x])]

where E schematizes the stack and λx.AE[x] schematizes the restoring operator.

If one tries to model call/cc in λC or λCtp one observes that only λCtp is able to

simulate the fact that the stack is kept in place by call/cc. If one takes the standard

encoding of call/cc M as C (λk. k (M k)), the derived operational rule is

E[call/ccM] �→→λC (λx.AE[x]) (M (λx.AE[x]))

and the discussion on the inefficiency of such an implementation applies (see

Section 2.4). No other encoding of call/cc in λC can give the correct operational

semantics because structural substitution is required and λC does not know about

structural substitution.

To the contrary, λCtp supports the following encoding:

call/ccM Δ
= C (λk. k (M (λx.Th k x)))

AM Δ
= Th tp M

that exactly simulates the above operational rule of call/cc:

E[call/ccM] �→→λCtp
E[M (λx.Th tp E[x])] Δ

= E[M (λx.AE[x])].

In the absence of exception handling, we can in principle do more by implementing

the calls to the continuation as special calls instead of regular call-by-value function

calls. Consider the case of SML in which jumps are made explicit by calls to the

operator throw. If throw k M were implemented as a function that first restores the

stack encoded in its first argument before starting evaluating the second argument,

one would directly obtain the efficiency of structural substitution. In short, in the

absence of exceptions, we could safely assign to throw the following alternative

semantics:

E ′[throw (λx.AE[x]) M] �→ E[M].

Of course, if the evaluation of M later throws to another continuation, the restoring

is a useless one, but in any case, it avoids keeping in place a stack that is definitely

known to be useless. In the presence of exceptions though, this is not a conservative

optimization as exceptions jump to the dynamically-closest handler (which, according

to the semantics of SML, would become the one in E instead of the one in E ′).

Related Work

The purpose of this paper was to compare the reduction semantics of the λC and

λCtp calculi which are both variants of usual λ-calculus with control. We deliberately

https://doi.org/10.1017/S0956796807006612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006612


414 Z. M. Ariola and H. Herbelin

do not study the connection with the λμ̃-calculus (Curien & Herbelin, 2000) which

is another promisingly “well-behaved” calculus for call-by-value control.

A comparison between a simply typed call-by-name variant of λC and a variant

of simply typed Parigot’s λμ-calculus similar to our calculus λSC has been done by

de Groote (1994). An interesting aspect of this work is that A is removed from

CL as it is the case in the lifting rule for F (see the historical note below). Using

the lifting rules of F in the setting of λC can indeed be seen as an improvement of

λC since an occurrence of A is eventually anyway inserted by Cidem. However, the

simulation of Cidem is only marginally treated by de Groote and it strongly depends

on the presence of types. From our point of view, this is because this study missed

the notion of top-level continuation tp and that the only way to implicitly talk about

it was to talk about terms of type ⊥: in the simply typed proof-as-program setting,

⊥ is the type of tp (see Ariola & Herbelin, 2003; Ariola et al., 2007).

A Historical Note On the Indiana Control Operators

By Matthias Felleisen

The births of C, F, and prompt took a long time. Indeed, prompt—the control

delimiter—was “born” twice for radically different reasons.

The story begins with Daniel Friedman’s famous “511” course. In the fall of 1984,

a group of enthusiastic PhD students (including Bruce Duba, Eugene Kohlbecker,

and myself) enrolled in this graduate seminar on programming language research.

At the time, Dan Friedman focused on “coordinate computing,” now known as

concurrent and distributed computing (Filman & Friedman, 1984). Every week he

asked us to implement a Scheme simulation of some coordinate computing language.

In the process, we began to program with continuations because every simulation

depended on implementing some form of threads.

After a few of those projects, I realized that capturing only a part of the current

continuation would significantly simplify the programs and provide some protection

of the kernel. In other words, while call/cc grabbed continuations between the

current expression and the prompt, most simulations needed only a part of this

continuation. Since I associated the activity of truncating the continuation with the

visible Scheme prompt, I dubbed this new construct “first-class prompt.” I used the

term “first-class” because I wanted to place the prompt anywhere in my program,

not just at the top of the main expression. My first crude implementation used

Scheme 84’s macros and engines (Haynes & Friedman, 1984).

During the following summer (1985), I worked at the MCC in Austin, and Dan

Friedman came to visit me there in August. When he arrived, he was excited about a

discovery he had made on the flight to Austin. He had understood that continuations

and call/cc could be characterized by two equations:

f (call/cc g) = call/cc (λk. (g (λx.k (f x))))

(call/cc g) f = call/cc (λk. (g (λx.k (x f))))

He liked the symmetry but he did not know where to go from here. After I returned

to Indiana later that month, Bruce, Eugene, Dan, and I studied these equations in
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more depth. We realized that the call/cc of the equations was not the call/cc

of Scheme and that the equations did not capture call/cc’s behavior properly. So

we dubbed this control operator C (after trying out some other TEX symbols) and

continued our search of meaning in these equations.

By the end of the fall semester, I had understood how these equations fit in with

the rest of Plotkin’s framework on the λv-calculus (Plotkin, 1975), and we all had

figured out the exact relationship between C and call/cc:

call/cc Δ
= λf. C (λk. k (f k))

C Δ
= λf. call/cc (λk. A (f k))

A e Δ
= C (λ . e)

The result appeared as a conference paper Felleisen et al. (1986) and in a cleaned-

up journal paper Felleisen et al. (1987). To establish the validity of the control

calculus, I had to prove a Church-Rosser lemma and a Standard Reduction lemma.

After some experimenting, I discovered that a minor modification of the above

equation worked much better:

f (C g) = C (λk. g (λx. A (k (f x))))

(C g) f = C (λk. g (λx. A (k (x f))))

A major blemish remained, however. We could not eliminate the special top-level

rule from our calculus:

C f = f (λx. A x) when C f is the entire program

Physicists would call this a “major asymmetry,” and I hated it. A minor blemish was

that we had two different versions of these pairs of equations: one for calculating

and one for meta-theorems.

Right after we had submitted the journal paper in 1986, I re-discovered my nearly

forgotten prompt. More concretely, I realized that the condition “. . . is the entire

program” in the above equation and “grabbing the current continuation of the

program” (up to the prompt) posed the same problem. If I turned the “top” of the

program into a separate, algebraically free construction, the calculus would become

an ordinary calculus of control:

# (C f) = # (f (λx. A x))

A quick check suggested that the revised theory would hold up, but now I had

become curious as to whether I could simplify the calculus even more.

My search quickly showed that I could simplify the proofs of the meta-theorems

even more if I threw out abort (A) entirely. I knew I could remove A, because

it was just an abbreviation for C anyway. Of course, just like Dan Friedman’s

original equations did not specify call/cc, these revised equations did not specify

C anymore. The next letter in the calligraphic alphabet that we had not used yet

was F and so I arrived atthese equations:

e (F g) = F (λk. g (λx. k (e x)))

(F g) e = F (λk. g (λx. k (x e)))

# (F e) = # (e (λx. x))
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and furthermore,

C Δ
= λg. F (λk. g (λx. A (k x)))

A e Δ
= F (λ . e)

Once I saw this set of equations, it was crystal clear that this was the calculus:

it had simple equations, the equations described the calculations, they posed no

problem for the meta-theorems, and the system introduced a powerful new control

construct.

Naturally, we (i.e., Bruce Duba and I) began to look for other control constructs

that could be “derived” from calculi. Our most important insight was that we had

a design choice concerning the behavior of F when it encountered a prompt:

– it could do what it does now,

– it could eliminate the prompt, and

– it could absorb it.

We called these choices F, F+, and F− because F+ could simulate F and F
could simulateF−. For all three, I sketched out proofs of the major meta-theorems,

and they all worked out fine. At that point, I tried to use pragmatics to decide

which of the three was important. I mostly used my examples from Dan Friedman’s

1984 course, and those quickly showed that F was all I needed. That settled the

question. When I finally submitted a paper to POPL 1988, I used F and prompt

to introduce control delimiters into the programming language literature (Felleisen,

1998).

Note: Around the time I left Indiana, I invented my last control operator(s): G. The

standard reduction equation for this family of operators has this shape:

# E[Genc f] = # f (enc{E})

where enc is a meta-function that maps evaluation contexts to constructs inside the

programming language. I never developed a theory or a practical framework for G,

but perhaps someone else will.

Acknowledgments

We thank Stefan Blom and Femke van Raamsdonk for answering numerous

questions regarding rewriting. The paper also benefited from conversations with

Amr Sabry.

Appendix

Decreasing diagrams

The problem with showing commutativity by means of a tiling argument is that one

needs to show that the tiling process terminates. Van Oostrom (1994) defined the

notion of decreasing diagrams and showed that tiling with decreasing diagrams

terminates. Decreasing diagrams are defined in the setting of labeled abstract

reduction systems.
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Definition A.1

An abstract rewriting system (ARS) is a structure (A,−→) consisting of a set A and

a binary relation on A. A labeled ARS is a structure 〈A, (−→
l
)l∈L〉, where L is a set of

labels and for each l ∈ L, (A,−→
l
) is an ARS.

To define the notion of decreasing diagram, we consider labeled diagrams and a

well-founded order on the labels. The key to the notion is a measure |.| defined on

strings of labels. This measure is easily computed by following these steps:

– write down the string;

– erase every element in the string, such that a larger element occurs at an earlier

position; and

– gather the remaining elements in a multiset.

For example, using the natural numbers with their natural order, we have

|121232| = |12 232| = |12 23 | = {{1, 2, 2, 3}}.

Definition A.2

Given a set of labels A and a well-founded order < on A, let |.| be the measure from

strings of labels to multisets of labels defined by

|a1 . . . an| = {{ai| there is no j < i with aj > ai}}.

Then, the diagram

a

��

b ��
a1��

an��
b1

��
bm

��

is decreasing with respect to � if {{a, b}} � |ab1 . . . bm| and {{a, b}} � |ba1 . . . an|.

We can use the notion of decreasing diagrams to prove commutativity as follows.

First, we prove the existence of enough diagrams to start a tiling process, then

we check whether all tiles are decreasing. By the following theorem we can then

conclude commutativity.

Theorem A.3

Given a labeled ARS 〈A, (−→
l
)l∈Lα∪Lβ

〉 and a well-founded order on Lα ∪ Lβ . Define

−→
α

= ∪a∈Lα
−→
a

and −→
β

= ∪b∈Lβ
−→
b

. If for every a0, a1, a2 ∈ A, lα ∈ Lα, lβ ∈ Lβ , such that

a0 −−→lα a1 and a0 −−→lβ a2 there exists a decreasing diagram

a0

lα

��

lβ �� a2

α

�����
�
�

a1
β

�� �����

then we have that −→
α

and −→
β

are commutative.
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A special case arises when we take the sets Lα and Lβ to be equal to the set of all

labels L, then confluence of →L can be concluded. A common case that decreasing

diagrams cannot handle is duplication in both the horizontal and vertical directions,

e.g., there is no possible labeling that makes the following diagrams all decreasing:

��

��

���
�
�
�

������ ��

��

���
�
�
�

���� ���� ��

��

���
�

���
�

������

It is often possible to solve this problem by introducing a form of parallel reduction

or complete development in, for example, the horizontal direction. With respect to

parallel reduction, the three diagrams should then collapse into the single diagram

��

‖ ��

�����
�
�
�

‖ ������

which can be made decreasing by ordering the parallel reduction larger than the

other reductions.
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