SUBALGEBRAS, DIRECT PRODUCTS AND ASSOCIATED LATTICES OF MV-ALGEBRAS

by L. P. BELLUCE, A. DI NOLA and A. LETTIERI

(Received 3 April, 1991)
0. Introduction. MV-algebras were introduced by C. C. Chang [3] in 1958 in order to provide an algebraic proof for the completeness theorem of the Lukasiewicz infinite valued propositional logic. In recent years the scope of applications of MV-algebras has been extended to lattice-ordered abelian groups, AF C*-algebras [10] and fuzzy set theory [1].

In [1] Belluce defined a functor γ from MV-algebras to bounded distributive lattices; this functor was used in proving a representation theorem and was also used to show that the prime ideal space of an MV-algebra is homeomorphic to the prime ideal space of some bounded distributive lattice (both spaces endowed with the Stone topology). The problem of what the range of γ is arises naturally. This question bears a relation to the question as to whether there is an "MV-space" in the same manner as there are Boolean spaces for Boolean algebras. Some "MV-spaces" are considered by N. G. Martinez [9].

A study of this problem was begun by Cignoli, Di Nola and Lettieri [6] where it was shown that certain elements in the range of γ have a direct decomposition by linear elements in the same range. In [2] it is proved that some bounded countable chains are in the range of γ; moreover a least MV-algebra A for which $\gamma(A)$ is a given bounded countable chain is presented.

In this paper we examine the action of γ on direct products and subalgebras of MV-algebras. We operate in an extended category of pairs (A, \mathscr{I}) where A is an MV-algebra and \mathscr{I} a non-empty set of prime ideals. We show that this category has product and that γ commutes with products. Under certain conditions we show that γ preserves monomorphisms. We also give a necessary condition for a bounded distributive lattice to be in the range of γ, from which it follows that not every such lattice is in the range of γ. And finally, we show that [0,1], as a lattice, is in the range of γ, as well as every complete bounded chain.

For the basic definition and properties of MV-algebras the reader is referred to [1], [2], [3], [10].

We consider an extended category $\mathscr{E}_{\mathrm{MV}}$ of MV-algebras. The objects of $\mathscr{E}_{\mathrm{MV}}$ are pairs (A, \mathscr{I}) where A is an MV-algebra and \mathscr{I} a non-empty subset of $\operatorname{Spec} A$, the set of prime ideals of A; a morphism $f:\left(A_{1}, \mathscr{I}_{1}\right) \rightarrow\left(A_{2}, \mathscr{I}_{2}\right)$ of $\mathscr{E}_{\mathrm{MV}}$ is an MV-homomorphism $f: A_{1} \rightarrow A_{2}$ such that $f^{-1}\left(\mathscr{I}_{2}\right) \subseteq \mathscr{I}_{1}$, i.e. if $Q \in \mathscr{I}_{2}$ then $f^{-1}(Q) \in \mathscr{I}_{1}$.

From [1] we have a functor $\gamma: \mathscr{E}_{\mathrm{MV}} \rightarrow \mathscr{D}$ where \mathscr{D} is the category of distributive lattices with 0,1 . The lattice $\gamma(A, \mathscr{F})$ has as elements equivalence classes $[x]_{\mathscr{\mathscr { C }}}, x \in A$, where $[x]_{\mathscr{F}}=[y]_{\mathscr{\mathscr { C }}}$ if for all $P \in \mathscr{I}, x \in P$ iff $y \in P$. Then $[x]_{\mathscr{\mathscr { C }}}+[y]_{\mathscr{\mathscr { C }}}=[x+y]_{\mathscr{F}},[x]_{\mathscr{F}}[y]_{\mathscr{F}}=$ $[x \wedge y]_{\mathscr{F}}$ are well-defined operations and $\gamma(A, \mathscr{I})$ becomes a distributive lattice with $0=[0]_{\mathscr{F}}$ and $1=[1]_{\mathscr{F}}$. If $f:\left(A_{1}, \mathscr{I}_{1}\right) \rightarrow\left(A_{2}, \mathscr{I}_{2}\right)$ is an $\mathscr{E}_{\mathrm{MV}}$-morphism then $\gamma(f): \gamma\left(A_{1}, \mathscr{I}_{1}\right) \rightarrow$ $\gamma\left(A_{2}, \mathscr{I}_{2}\right)$ is the lattice homomorphism, $\gamma(f)[x]_{\mathscr{F}_{1}}=[f(x)]_{\mathscr{S}_{2}} . \gamma(f)$ is an epimorphism if f is. $\gamma(A, \mathscr{I})$ is denoted by $[A]_{\mathscr{F}}$, or, when $\mathscr{I}=\operatorname{Spec} A$, by $[A]$.

The main features about $\gamma(A, \mathscr{I})$ are that some of its structure is reflected in A and its ideal structure parallels that of A; in particular $\operatorname{Spec} A, \operatorname{Spec}[A]$ are homeomorphic.

Glasgow Math. J. 34 (1992) 301-307.

1. In this first section we show the range of γ is a proper subclass of \mathscr{D}.

Let \mathscr{A} be an MV-algebra or a distributive lattice with 0,1 . We shall say that \mathscr{A} has the prime-extension property (pep) if whenever $I \subseteq J$ are proper ideals of \mathscr{A} and I is prime then J is prime. We shall show that γ preserves pep.

First we recall that in [11, Chapter III, §6, Prop. 3] it is shown that the prime deductive systems containing a given prime deductive system form a chain; so we surely can say that:

Theorem 1.1. Every MV-algebra A has pep.
Theorem 1.2. [A] has pep.
Theorem 1.3. Let $\mathscr{L}_{1}, \mathscr{L}_{2} \in \mathscr{D}$; let $g: \mathscr{L}_{1} \rightarrow \mathscr{L}_{2}$ be an epimorphism. Then if \mathscr{L}_{1} has pep so does \mathscr{L}_{2}.

Proof. Let $L \subseteq S$ be proper ideals of \mathscr{L}_{2} with L prime. Then $g^{-1}(L) \subseteq g^{-1}(S)$ and both are proper ideals of \mathscr{L}_{1}. But $g^{-1}(L)$ is prime, hence $g^{-1}(S)$ is prime. Let $a b \in S$. g is an epimorphism so there are $x, y \in \mathscr{L}_{1}$ with $g(x)=a, g(y)=b$. Hence $g(x y) \in S$ so $x y \in g^{-1}(S)$. Thus $x \in g^{-1}(S)$ or $y \in g^{-1}(S)$ and it follows that $a \in S$ or $b \in S$, so S is prime.

Now let A be an MV-algebra, $\mathscr{I} \subseteq \operatorname{Spec} A, \mathscr{I} \neq \varnothing$. We clearly have an epimorphism $i:(A, \operatorname{Spec} A) \rightarrow(A, \mathscr{I})$ in $\mathscr{E}_{\mathrm{MV}}: i(x)=x$. Thus we have an epimorphism, $[A] \rightarrow[A]_{\mathscr{F}}$, $[x] \rightarrow[x]_{\mathscr{F}}$. By Theorems $1.2,1.3$ we have the following result.

Theorem 1.4. For every $(A, \mathscr{I}) \in \mathscr{E}_{\mathrm{MV}},[A]_{\mathscr{\mathscr { C }}}$ has pep.
Thus a necessary condition for a bounded distributive lattice to lie in the range of γ is for it to have pep. Since there exist distributive lattices with 0,1 that do not have pep, we have

Theorem 1.5. The image of $\gamma: \mathscr{E}_{\mathrm{MV}} \rightarrow \mathscr{D}$ is a proper subclass of \mathscr{D}.
A bounded distributive lattice is called a P_{m}-lattice if each prime ideal is contained in a unique maximal ideal [8].

Theorem 1.6. Let \mathscr{L} be a bounded distributive lattice with pep. Then \mathscr{L} is a P_{m}-lattice.
Proof. Let P a prime ideal of $\mathscr{L}, M_{1}, M_{2}$ maximal ideals and assume $P \subseteq M_{1}, P \subseteq M_{2}$. Suppose $M_{1} \neq M_{2}$: Choose $a \in M_{1}-M_{2}, b \in M_{2}-M_{1}$. Then $a b \in M_{1} \cap M_{2}$ is prime. Thus $a \in M_{1} \cap M_{2}$ or $b \in M_{1} \cap M_{2}$, both impossible since $a \notin M_{2}$ and $b \notin M_{i}$. Thus $M_{1}=M_{2}$.

By Corollary 1.3 of [8] the maximal ideal space of a pep lattice \mathscr{L} is a Hausdorff space.

Corollary 1.1. Any lattice in the range of γ is $a P_{m}$-lattice, and so also has a Hausdorff maximal ideal space.

By [1, Theorems 15 and 20] we now have
Corollary 1.2. The maximal ideal space of an MV-algebra A is Hausdorff.
2. Here we will show that $\mathscr{E}_{\mathrm{MV}}$ is closed order products and that γ commutes with the taking of products. Thus we see that the image of γ is closed under direct products.

In this section I will be an index set and for each $i \in I$ we have an object $\left(A_{i}, \mathscr{I}_{i}\right) \in \mathscr{E}_{\mathrm{Mv}}$. Let $A=\prod_{i \in I} A_{i}$. For each $i \in I$ we have projections $\mathrm{pr}_{i}: A \rightarrow A_{i}$. If $i_{0} \in I$ and $Q \in \mathscr{F}_{i_{0}}$ then $\operatorname{pr}_{i_{0}}^{-1}(Q)=P$ is a prime ideal of A, call the ideal of A over Q, which we will denote by $\operatorname{Ov}(Q)$. Let $\mathscr{I}=\left\{P\right.$: for some $\left.Q \in \bigcup_{i \in I} \mathscr{I}_{i}, P=\operatorname{Ov}(Q)\right\}$. Then $\mathscr{I} \neq \varnothing$ and $\mathscr{I} \subseteq \operatorname{Spec} A$. Clearly then the maps $\operatorname{pr}_{i}:(A, \mathscr{I}) \rightarrow\left(A_{i}, \mathscr{I}_{i}\right)$ are $\mathscr{E}_{\mathrm{Mv}}$ morphism. Now let ($A^{\prime}, \mathscr{g}^{\prime}$) be an $\mathscr{E}_{\text {MV }}$ morphism and such that for each $i \in I$ we have an $\mathscr{E}_{\text {MV }}$ morphism $f_{i}:\left(A^{\prime}, \mathscr{I}^{\prime}\right) \rightarrow\left(A_{i}, \mathscr{I}_{i}\right)$. Since A is the direct product of the A_{i} and each f_{i} is an MV-homomorphism of A^{\prime} to A_{i} we know there is a unqiue MV-homomorphism $g: A^{\prime} \rightarrow A$ such that for each $i \in I$, the diagram

commutes, i.e. $\mathrm{pr}_{i} g=f_{i}$.
Now let $P \in \mathscr{I}$. Then for some $i \in I$ and $Q \in \mathscr{I}_{i}$, we have $P=\operatorname{Ov}(Q)$. Thus $g^{-1}(P)=g^{-1}(\operatorname{Ov}(Q))=g^{-1} \operatorname{pr}_{i}^{-1}(Q)=\left(\operatorname{pr}_{i} g\right)^{-1}(Q)=f_{i}^{-1}(Q) \in \mathscr{I}^{\prime}$ since f_{i} is an $\mathscr{E}_{\mathrm{MV}}$ morphism. Hence $g:\left(A^{\prime}, \mathscr{F}^{\prime}\right) \rightarrow(A, \mathscr{I})$ is an $\mathscr{E}_{\mathrm{MV}}$-morphism and we see that (A, \mathscr{I}) is the product, $\prod_{i \in I}\left(A_{i}, \mathscr{I}_{i}\right)$. We shall show that γ commutes with Π, i.e.:

Theorem 2.1.

$$
\gamma\left(\prod_{i \in I}\left(A_{i}, \mathscr{J}_{i}\right)\right) \cong \prod_{i \in I} \gamma\left(A_{i}, \mathscr{I}_{i}\right) .
$$

In the above notation this is $[A]_{\mathscr{g}} \cong \prod_{i \in I}\left[A_{i}\right]_{\mathscr{g}_{i}}$. First we require.
Lemma 2.1. Let $(A, \mathscr{F}),\left(A_{i}, \mathscr{I}_{i}\right) \in \mathscr{E}_{\mathrm{Mv}}$ with $\mathscr{\mathscr { F }}=\left\{P \mid\right.$ for some $\left.Q \in \bigcup_{i \in I} \mathscr{I}_{i}, P=\operatorname{Ov}(Q)\right\}$. Then, if $a, b \in A$, we have $[a]_{\mathscr{F}}=[b]_{\mathscr{g}}$ iff, for each $i \in I,\left[a_{i}\right]_{\mathscr{S}_{i}}=\left[b_{i}\right]_{\mathscr{g}_{i}}$.

Proof. Suppose $[a]_{\mathscr{S}}=[b]_{\mathscr{F}}$. Let $i \in I$ and let $Q \in \mathscr{I}_{i}$. Assume $a_{i} \in Q$. Let $P=\operatorname{Ov}(Q)$. Then $P \in \mathscr{I}$ and $a \in P$. Thus $b \in P$, so $b_{i} \in Q$. By symmetry we have $\left[a_{i}\right]_{\mathscr{\Phi}_{i}}=\left[b_{i}\right]_{\mathscr{g}_{i}}$. Conversely suppose that $\left[a_{i}\right]_{\Phi_{i}}=\left[b_{i}\right]_{\mathscr{g}_{i}}$ for each $i \in I$. ket $P \in \mathscr{I}$ and suppose $a \in P$. For some $i_{0} \in I$ and some $Q \in \mathscr{I}_{i_{0}}$ we have $P=\operatorname{Ov}(Q)$. Thus $a_{i} \in Q$; hence $b_{i_{0}} \in q$ and so $b \in P$. By symmetry we conclude $[a]_{\mathscr{P}}=[b]_{\mathscr{F}}$.

Proof of Theorem 2.1. Let $(A, \mathscr{I})=\prod_{i \in I}\left(A_{i}, \mathscr{F}_{i}\right)$. Define $h:[A]_{\mathscr{\mathscr { F }}} \rightarrow \prod_{i \in I}\left[A_{i}\right]_{\mathscr{S}_{i}}$ by $h\left([a]_{\mathscr{\mathscr { F }}}\right)=\left\langle\left[a_{i}\right]_{\mathscr{F}_{i}}\right\rangle$ where $\left\langle\left[a_{i}\right]_{\mathscr{S}_{i}}\right\rangle$ is that element of $\prod_{i \in I}\left[A_{i}\right]_{\mathscr{\mathscr { F }}_{i}}$ whose i th component is $\left[a_{i}\right]_{\mathscr{S}_{i}}$. By Lemma $2.1 h$ is well defined and bijective. It is straight forward to verify that h preserves the lattice operations; hence h is an isomorphism.

In the sequel, given $\left(A_{i}, \mathscr{I}_{i}\right), i \in I$, with each $\mathscr{I}_{i}=\operatorname{spec} A_{i}, \mathscr{I}$ will be called the over-family of prime ideals of A and will be denoted by $\operatorname{Ov}(\mathrm{A})$.

Corollary 2.1. Given MV-algebras $A_{i}, i \in I, A=\prod_{i \in I} A_{i}$, we have $[A]_{\mathrm{Ov}(A)} \cong \prod_{i \in I}\left[A_{i}\right]$.
We want now to examine the special case when I is finite. First, two preliminaries.
Proposition 2.1. Let P be a prime ideal in $A=\prod_{i \in I} A_{i}$. Then $\operatorname{pr}_{k}(P) \neq A_{k}$ for at most one $k \in I$.

Proof. Let $i, k \in I, i \neq k$ and suppose $\operatorname{pr}_{k}(P) \neq A_{k}, \operatorname{pr}_{i}(P) \neq A_{i}$. Let $\delta_{i} \in A$ be such that the i th component of δ_{i} is 1 and the j th component, $j \neq i$, is 0 . Similarly for δ_{k}. Clearly $\delta_{i} \wedge \delta_{k}=0$; thus $\delta_{i} \wedge \delta_{k} \in P$ so either $\delta_{i} \in P$ or $\delta_{k} \in P$. But then $1 \in \operatorname{pr}_{i}(P)$ or $1 \in \operatorname{pr}_{k}(P)$ which is impossible.

Proposition 2.2. If I is finite and $P \subseteq A=\prod_{i \in I} A_{i}$ is a prime ideal of A, then there is exactly one $h \in I$ with $\mathrm{pr}_{h}(P) \neq A_{h}$.

Proof. We known there is at most one such h. Suppose that $\operatorname{pr}_{i}(P)=A_{i}$ for each $i \in I$. Choose $q_{i} \in P$ such that $\mathrm{pr}_{i}\left(q_{i}\right)=1$. Then $q=\sum_{i \in I} q_{i} \in P$, and $q=1$, absurd.

Theorem 2.2. If I is finite, $A=\prod_{i \in I} A_{i}$, then $\operatorname{Ov}(A)=\operatorname{Spec} A$.
Proof. Let $P \in \operatorname{Spec} A$. By Proposition 2.2 there is a unique $h \in I$ with $\operatorname{pr}_{h}(P) \neq A_{h}$. Let $Q=\operatorname{pr}_{h}(P)$ and $Q^{\prime}=\operatorname{pr}_{h}^{-1}(Q)$. Then Q^{\prime} is a proper ideal of $A, P \subseteq Q^{\prime}$. Since $Q \in \operatorname{Spec} A_{h}, Q^{\prime} \in \operatorname{Ov}(A)$. Let $a \in Q^{\prime}$. For $i \neq h, \operatorname{pr}_{i}(P)=A_{i}$ so we can find a $u_{i} \in P$ with $\operatorname{pr}_{i}\left(u_{i}\right)=\operatorname{pr}_{i}(a)$. For h we know that $\operatorname{pr}_{h}(a) \in Q$ so we can find a $u_{h} \in P$ with $\operatorname{pr}_{h}\left(u_{h}\right)=$ $\operatorname{pr}_{h}(a)$. Let $u=\sum_{i \in I} \delta_{i} u_{i}$. Then $u \in P$. Now if $j \in I$ we have $\operatorname{pr}_{j}(u)=\sum_{i \in I} \operatorname{pr}_{j}\left(\delta_{i}\right) \operatorname{pr}_{j}\left(u_{i}\right)=$ $\operatorname{pr}_{j}\left(u_{i}\right)=\operatorname{pr}_{j}(a)$. Thus $u=a$ so $a \in P$; that is $Q^{\prime}=\operatorname{Ov}(Q)=P$ so $P \in \operatorname{Ov}(A)$.

Corollary 2.2. If I is finite and $\mathscr{I}_{i}=\operatorname{Spec} A_{i}$ for each $i \in I$, then $[A] \cong \prod_{i \in I}\left[A_{i}\right]$.
Proof. By Theorem 2.2 and Corollary 2.1.
Corollary 2.3. If A is a finite MV-algebra, then $\operatorname{Spec} A$ has a base of clopen sets.
Proof. By [5, Corollary 2.7], $A=\prod_{i \in I} A_{i}$, where A_{i} is a linearly ordered MV-algebra for every $i \in I$. Then, by Corollary $2.2,[A] \approx \prod_{i \in I}\left[A_{i}\right]=\prod_{i \in I}\{0,1\}$, i.e. $[A]$ is a boolean algebra. Thus $\operatorname{Spec} A$, which is homeomorphic to $\operatorname{Spec}[A]$, has a base of clopen sets.
3. We would like now to examine the behavior of γ with respect to subobjects, i.e. monomorphisms. It is easy to see in general that γ does not preserve monomorphisms. For example if \mathscr{I} is any proper subset of $\operatorname{Spec} A$ we have an $\mathscr{E}_{\mathrm{Mv}}$ monomorphism $i:(A, \operatorname{Spec} A) \rightarrow(A, \mathscr{I})$ where i is the identity map. But, in general, $[x] \rightarrow[x]_{\mathscr{F}}$ will not be one-one. For some subobjects however, γ will preserve monicity. In particular we will show if A is a subalgebra of B then $[A]$ is isomorphic to a sublattice of $[B]$.

To begin, let $\left(A_{1}, \mathscr{I}_{1}\right),\left(A_{2}, \mathscr{F}_{2}\right)$ be in $\mathscr{E}_{\mathrm{Mv}}$. We call $\left(A_{1}, \mathscr{I}_{1}\right)$ a full subobject of $\left(A_{2}, \mathscr{I}_{2}\right)$ if there is a monomorphism $f:\left(A_{1}, \mathscr{I}_{1}\right) \rightarrow\left(A_{2}, \mathscr{I}_{2}\right)$ such that $f^{-1}\left(\mathscr{I}_{2}\right)=\mathscr{I}_{1}$, i.e. if $P \in \mathscr{I}_{1}$ there is a $Q \in \mathscr{I}_{2}$ with $f^{-1}(Q)=P$.

Theorem 3.1. If $\left(A_{1}, \mathscr{I}_{1}\right)$ is a full subobject of $\left(A_{2}, \mathscr{I}_{2}\right)$ then there is an injective homomorphism of $\left[A_{1}\right]_{\mathscr{\Phi}_{1}}$ into $\left[A_{2}\right]_{\mathscr{F}_{2}}$.

Proof. There is a monomorphism $f:\left(A_{1}, \mathscr{I}_{1}\right) \rightarrow\left(A_{2}, \mathscr{I}_{2}\right)$. Thus $f: A_{1} \rightarrow A_{2}$ is an MV-monomorphism and $f^{-1}\left(\mathscr{I}_{2}\right)=\mathscr{F}_{1}$. We have a homomorphism $\gamma(f):\left[A_{1}\right]_{\mathscr{\mathscr { F }}_{1}} \rightarrow\left[A_{2}\right]_{\mathscr{\mathscr { F }}_{2}}$ where $\gamma(f)\left([x]_{\mathscr{s}_{1}}\right)=[f(x)]_{\mathscr{\mathscr { F }}_{2}}$. Suppose $[f(x)]_{\mathscr{\mathscr { F }}_{2}}=[f(y)]_{\mathscr{S}_{2}}$. Let $P \in \mathscr{I}_{1}$. Assume $x \in P$. Now $P=f^{-1}(Q)$ for some $Q \in \mathscr{I}_{2}$. So $f(x) \in Q$. Thus $f(y) \in Q$ and so $y \in f^{-1}(Q)=P$. By symmetry we have $[x]_{\mathscr{\Phi}_{1}}=[f(x)]_{\Phi_{2}}$ and so $\gamma(f)$ is one-one.

Now let $A \subseteq B, A$ a subalgebra of B. We have the inclusion map $i: A \rightarrow B, i(x)=x$. If $Q \in \operatorname{Spec} B \quad$ then $\quad i^{-1}(Q)=A \cap Q \in \operatorname{Spec} A$. Thus $\quad i^{-1}(\operatorname{Spec} B) \subseteq \operatorname{Spec} A \quad$ so $i:(A, \operatorname{Spec} A) \rightarrow(B, \operatorname{Spec} B)$ is a subobject of $(B, \operatorname{Spec} B)$.

Theorem 3.2. If A, B are MV-algebras, A a subalgebra of B, then

$$
\operatorname{Spec} A=\{A \cap Q \mid Q \in \operatorname{Spec} B\}
$$

Proof. Clearly $\{A \cap Q \mid Q \in \operatorname{Spec} B\} \subseteq \operatorname{Spec} A$. Let $P \in \operatorname{Spec} A$. Let H be the ideal in B generated by P. Let G be the lattice-filter in B generated by $A-P$. If $x \in H \cap G$ then there is a $p \in P$ with $x \leq p$ and a $z \in A-P$ with $z \leq x$. This implies $z \leq p$, so $z \in P$ which is impossible. So $H \cap G=\varnothing$. By [7, Theorem 2.5], there is a prime ideal $Q \in \operatorname{Spec} B$ with $H \subseteq Q, Q \cap G=\varnothing$. $A=P \cup(A-P)$, so $A \cap Q=P \cap Q=P$ since $P \subseteq Q$ and $Q \cap(A-P)=\varnothing$.

Corollary 3.1. If A is a subalgebra of B then $(A, \operatorname{Spec} A)$ is a full subobject of ($B, \operatorname{Spec} B$).

Proof. Let $i: A \rightarrow B$ be the inclusion map. If $P \in \operatorname{Spec} A$ then by the above theorem, $P=i^{-1}(Q)$ for some $Q \in \operatorname{Spec} B$.

Corollary 3.2. If A is a subalgebra of B there is an injective homomorphism of $[A]$ into $[B]$.

Proof. Clear from the above corollary and Theorem 3.1.
4. Given that not every lattice in \mathscr{D} is in the range of γ it becomes pertinent to know which lattices are. We know that some countable chains lie in the range of γ. In this section we show the same is true for the chain $[0,1]$, in fact for any complete bonded chain.

To this end let \mathbb{N} be the set of positive integers, \mathscr{F} a maximal filter in $2^{\mathbb{N}}$ that contains all cofinite subsets of \mathbb{N}. Let A be the ultrapower $[0,1]^{\mathbb{N}} / \mathscr{F}$. Then A is a linearly ordered MV-algebra. For each $r \in[0,1]$ let τ_{r} be the element of A determined by the sequence $\left\langle r, r^{2}, r^{3}, \ldots\right\rangle \in[0,1]^{\mathbb{N}}$. We then have

Proposition 4.1. Let $r, s \in[0,1), 0<r<s \leq 1$. Let P_{r}, P_{s} be the ideals of A generated by τ_{r}, τ_{s} respectively. Then $P_{r} \subseteq P_{s}$ and $\tau_{s} \notin P_{r}$.

Proof. Since $0<r<s$ we have $1<s / r$. Let h be any positive integer. Then there is a least integer $n_{0} \in \mathbb{N}$ such that $h<(s / r)^{n}$ for all $n \geq n_{0}$. Hence $\left\{n \mid h r^{n}<s^{n}\right\}=\{n \mid n \geq$ $\left.n_{0}\right\} \in \mathscr{F}$. Thus $h \tau_{r}<\tau_{s}$ and so $\tau_{s} \notin P_{r}$. Clearly $\tau_{r}<\tau_{s}$ so $\tau_{r} \in P_{s}$; thus $P_{r} \subseteq P_{s}$.

Let $s \in[0,1)$. Set $P_{s}^{\prime}=\bigcap_{s<r} P_{r}$. From the above we have $P_{s} \subseteq P_{s}^{\prime}$. Since A is linearly ordered all of its ideals are prime, if proper. Thus each $P_{s}^{\prime}, s \in[0,1)$, is a prime ideal. Let $\mathscr{I}=\left\{P_{s}^{\prime} \mid s \in[0,1)\right\}$. Then $\mathscr{I} \neq \varnothing$, and $\mathscr{I} \subseteq \operatorname{Spec} A$.

Proposition 4.2. For each $x \in A$ there is an $s \in[0,1]$ with $[x]_{\mathscr{F}}=\left[\tau_{s}\right]_{\mathscr{F}}$.
Proof. If $x \notin P_{r}$ for any $r \in[0,1)$ then $x \notin P_{s}^{\prime}$ for any $s \in[0,1)$. Thus $[x]_{\mathscr{F}}=1=\left[\tau_{1}\right]$. Otherwise let $s=\inf \left\{r \mid x \in P_{r}\right\}$. Consider τ_{s}. Let $\tau_{s} \in P_{t}^{\prime} \in \mathscr{I}$. If $t<s$ choose $r, t<r<s$. By Proposition $4.1 \tau_{s} \notin P_{r}$, hence $\tau_{s} \notin P_{t}^{\prime}$. Thus $s \leq t$. If $s=t$ then for $t<r \leq 1$ we have $x \in P_{r}$ and so $x \in \bigcap_{t<r} P_{r}=P_{t}^{\prime}$. If $s<t$ choose $r, s<r<t$ with $x \in P_{r}$. Since $P_{r} \subseteq P_{t} \subset P_{t}^{\prime}$ we have $x \in P_{t}^{\prime}$. Conversely suppose $x \in P_{t}^{\prime} \in \mathscr{I}$. Then for all $r \in[0,1), t<r$, we have $x \in P_{r}$. Hence for all $r \in[0,1), t<r$, we have $s \leq r$, so $\tau_{s} \in P_{r}$. Thus $\tau_{s} \in \bigcap_{t<r} P_{r}=P_{t}^{\prime}$. Hence $[x]_{\mathscr{F}}=\left[\tau_{s}\right]_{\mathscr{F}}$.

From the above proposition we see that $[A]_{\mathscr{\mathscr { O }}}=\left\{\left[\tau_{s}\right]_{\mathscr{S}} \mid s \in[0,1]\right\}$. Since it is evident that $\left[\tau_{s}\right] \leftrightarrow s$ is an order preserving bijection we obtain

Theorem 4.3. There is a linearly ordered MV-algebra A and non-empty subset $\mathscr{I} \subseteq \operatorname{Spec} A$ such that $[A]_{\mathscr{F}} \cong[0,1]$.

To extend the above result to any complete bounded chain we set some premises.
Let \mathscr{L} be a first order language for the theory of MV-algebras. Extend \mathscr{L} to \mathscr{L}^{+}by adding constant symbols, c_{r}, one for each $r \in \mathscr{C}$ where \mathscr{C} is a given complete bounded chain. Let Δ_{1} be the first order axioms for linearly ordered MV-algebras. Let $\Delta_{2}=\left\{n c_{r}<c_{s} \mid n=1,2 \ldots ; r, s \in \mathscr{C}, r<s\right\}$. Let $\Delta=\Delta_{1} \cup \Delta_{2}$. We now have

Proposition 4.3. Every finite subset Δ^{\prime} of Δ has a model.
Proof. Let $c_{r_{1}}, c_{r_{2}}, \ldots, c_{r_{n}}$ be the constant symbols occurring in the formulas of Δ^{\prime} (we can suppose $r_{n}<r_{n-1} \ldots<r_{1}$).

Let E_{n} be a subalgebra of a proper ultrapower $[0,1]^{*}$ of $[0,1]$ generated by $\varepsilon, \varepsilon^{2}, \ldots \varepsilon^{n}$ where ε is a non-zero infinitesimal. Then interpreting $c_{r_{k}}$ by $\varepsilon^{k} E_{n}$ becomes a model for Δ^{\prime}.

Thus, by the compactness theorem, we have the following
Corollary 3.3. Δ has a model.
Theorem 4.4. Let \mathscr{C} be a complete bounded chain. Then there exist an MV-algebra \mathscr{A} and a family \mathscr{I} of prime ideals of \mathscr{A} such that $[\mathscr{A}]_{\mathscr{F}}$ is isomorphic to \mathscr{C}.

Proof. Let $\mathscr{A}=\left\langle A,+, .,-, 0,1\left\{a_{r}: r \in \mathscr{C}\right\}\right\rangle$ be a model of Δ, by Corollary 3.3. Moreover if $r<s$, then, for any positive $n, n a_{r}<a_{s}$. Hence if we set $P_{r}=\left\langle a_{r}\right\rangle$, the principal ideal generated by a_{r}, we get prime ideals $P_{r} \subset P_{s}$ if and only if $r<s, r, s \in \mathscr{C}$. For each $x \in A$ let us define the set $B(x)=\left\{r \in \mathscr{C} \mid x \in P_{r}\right\}$, and set $m(x)=\inf B(x)$. Consider the map f defined by

$$
f:[x] \in[A] \rightarrow f([x])=m(x) .
$$

Then:
(i) f is well defined: indeed if $x \equiv y$ ($\operatorname{Spec} A$) then $B(x)=B(y)$, which implies $m(x)=m(y)$.
(ii) f is a homomorphism: indeed it is increasing because if $[x]<[y]$ then $B(y) \subseteq B(x)$ so $m(x) \leq m(y)$.
(iii) f is onto: let $r \in \mathscr{C}$, then we have that $r=\min B\left(a_{r}\right)=m\left(a_{r}\right)$. Thus, by [2, Theorem 3.1], there is a set $\mathscr{I} \subseteq \operatorname{Spec} A$ such that $[A]_{\mathscr{\mathscr { C }}} \cong \mathscr{C}$.

REFERENCES

1. L. P. Belluce, Semisimple algebras of infinite valued logic and bold fuzzy set theory, Canad. J. Math., 38 (1986), 1356-1379.
2. L. P. Belluce, A. Di Nola and A. Lettieri, On some lattices quotients of MV-Algebras, Ricerche di Matemat. 39 (1990), 41-59.
3. C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
4. C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.
5. R. Cignoli, Complete and atomic algebras of the infinite-valued Lukasiewicz logic, unpublished paper.
6. R. Cignoli, A. Di Nola and A. Lettieri, Priestley duality and quotient lattices of many-valued algebras, Rend. Circ. Matem. Palermo, to appear.
7. C. S. Hoo, Mv-algebras, ideals and semisimplicity, Math. Japon 34 (1989), 563-583.
8. U. Maddana Swany and D. Viswanadha Rajn, A note on maximal ideal spaces of distributive lattices, Bull. Calcutta Math. Soc., 80 (1988) 84-90.
9. N. G. Martinez, Priestley duality for Wajesberg algebras, Studia Logica, 49 (1990), 31-46.
10. D. Mundici, Interpretation of AF C^{*}-algebras in Lukasiewicz sentential calculus, J. Functional Analysis 65 (1986) 15-63.
11. A. J. Rodriguez, Un estudio algebraico de los calculos proposicionales de Lukasiewicz, thesis, Universidad de Barcelona, 1980.
12. A. Romanoskwa and T. Traczyk, On commutative BCK-algebras, Math. Japon 25 (1980), 567-583.
L. P. Belluce

Department of Mathematics
University of British Columbia
Vancouver, B.C.
Canada

A. Di Nola and A. Lettieri Istituto di Matematica
Facolta' di Architettura
Universita' di Napoli
80134 Via Monteoliveto N. 3 Napoli, Italy

