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0. Introduction. MV-algebras were introduced by C. C. Chang [3] in 1958 in order
to provide an algebraic proof for the completeness theorem of the Lukasiewicz infinite
valued propositional logic. In recent years the scope of applications of MV-algebras has
been extended to lattice-ordered abelian groups, AF C*-algebras [10] and fuzzy set theory

In [1] Belluce defined a functor y from MV-algebras to bounded distributive lattices;
this functor was used in proving a representation theorem and was also used to show that
the prime ideal space of an MV-algebra is homeomorphic to the prime ideal space of
some bounded distributive lattice (both spaces endowed with the Stone topology). The
problem of what the range of y is arises naturally. This question bears a relation to the
question as to whether there is an "MV-space" in the same manner as there are Boolean
spaces for Boolean algebras. Some "MV-spaces" are considered by N. G. Martinez [9].

A study of this problem was begun by Cignoli, Di Nola and Lettieri [6] where it was
shown that certain elements in the range of y have a direct decomposition by linear
elements in the same range. In [2] it is proved that some bounded countable chains are in
the range of y; moreover a least MV-algebra A for which y(A) is a given bounded
countable chain is presented.

In this paper we examine the action of y on direct products and subalgebras of
MV-algebras. We operate in an extended category of pairs (A, 3) where A is an
MV-algebra and 3 a non-empty set of prime ideals. We show that this category has
product and that y commutes with products. Under certain conditions we show that y
preserves monomorphisms. We also give a necessary condition for a bounded distributive
lattice to be in the range of y, from which it follows that not every such lattice is in the
range of y. And finally, we show that [0,1], as a lattice, is in the range of y, as well as
every complete bounded chain.

For the basic definition and properties of MV-algebras the reader is referred to

We consider an extended category <£MV of MV-algebras. The objects of ^MV are pairs
(A, 3) where A is an MV-algebra and 3 a non-empty subset of Spec A, the set of prime
ideals of A; a morphism f:(A{, $i)—>(A2,32) of £MV is an MV-homomorphism
f:Ai^>A2 such that f~\32) c 3U i.e. if Q e 32 then f~\Q) «= -?i-

From [1] we have a functor y:gMV—»2) where 2) is the category of distributive
lattices with 0,1. The lattice y(A,3) has as elements equivalence classes [x]#, xeA,
where [x\* = [y], if for all P e 3, x e P iff y e P. Then [x], + [y], = [x+y]*, [x],[y], =
\x i\y\s are well-defined operations and y(A,3) becomes a distributive lattice with
0 = [0], and 1 = [1],. Uf:(Au 3X)^(A2, 32) is an &MV-morphism then y{f):y{Au .*,)-»•
y{A2, 32) is the lattice homomorphism, y(/)[jc]^, = [/(*)W y{f) is an epimorphism if/
is. y(A, 3) is denoted by [A]#, or, when 3 = Spec/I, by [̂ 4].

The main features about y(A, 3) are that some of its structure is reflected in A and
its ideal structure parallels that of A; in particular Speed, Spec[/4] are homeomorphic.
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1. In this first section we show the range of y is a proper subclass of 3).
Let si be an MV-algebra or a distributive lattice with 0, 1. We shall say that si has

the prime-extension property (pep) if whenever / c 7 are proper ideals of M and / is
prime then J is prime. We shall show that y preserves pep.

First we recall that in [11, Chapter III, §6, Prop. 3] it is shown that the prime
deductive systems containing a given prime deductive system form a chain; so we surely
can say that:

THEOREM 1.1. Every MV-algebra A has pep.

THEOREM 1.2. [A] has pep.

THEOREM 1.3. Let i ? h ^ e 3 ; let g:if, —»i^ be an epimorphism. Then if £x has pep
so does J%.

Proof. Let L c S be proper ideals of Z£2 with L prime. Then g" ' (L)cg" ' (5) and
both are proper ideals of 5B\. But g~l(L) is prime, hence g~\S) is prime. Let ab e S. g is
an epimorphism so there are x,ye££t with g(x) = a, g(y) = b. Hence g(xy) e S so
x y e g ~ \ S ) . T h u s x e g ~ \ S ) o r y e g ~ l ( S ) a n d it fo l lows t h a t a e S o r beS, so 5 is
prime. •

Now let A be an MV-algebra, 3 c Spec .4, 3¥=0. We clearly have an epimorphism
i:(A, Spec A)—*(A, $•) in %MV.i{x)=x. Thus we have an epimorphism, [A]—*[A]^,
[x]—>[x]#. By Theorems 1.2, 1.3 we have the following result.

THEOREM 1.4. For every (A, 3) e £MV, [A]* has pep. •

Thus a necessary condition for a bounded distributive lattice to lie in the range of y is
for it to have pep. Since there exist distributive lattices with 0,1 that do not have pep, we
have

THEOREM 1.5. The image of y: (SMv~* 3> is a proper subclass of 3>. •

A bounded distributive lattice is called a Pm-lattice if each prime ideal is contained in
a unique maximal ideal [8].

THEOREM 1.6. Let !£bea bounded distributive lattice with pep. Then 56 is a Pm-lattice.

Proof. Let P a prime ideal of X, Mu M2 maximal ideals and assume P cM, , P c M2.
Suppose Mi ¥= M2: Choose a e A/, — M2, b e M2 — A/,. Then ab e M, n M2 is prime. Thus
a e M, D M2 or b e M{ D M2, both impossible since a $ M2 and b $ Mt. Thus Mx = M2. D

By Corollary 1.3 of [8] the maximal ideal space of a pep lattice X is a Hausdorff
space.

COROLLARY 1.1. Any lattice in the range of y is a Pm-lattice, and so also has a
Hausdorff maximal ideal space. •

By [1, Theorems 15 and 20] we now have

COROLLARY 1.2. The maximal ideal space of an MV-algebra A is Hausdorff. •

2. Here we will show that &MV is closed order products and that y commutes with
the taking of products. Thus we see that the image of y is closed under direct products.

https://doi.org/10.1017/S0017089500008855 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008855


M V - A L G E B R A S 303

In this section / will be an index set and for each iel we have an object
(Ah $j) e <?MV. Let A = II Aj. For each i e I we have projections p r , : / l — * A h If ioel and

16/

r-Un\ =Q e Jio then pr,0'(<2) = P is a prime ideal of A, call f/ie idea/ o / / l over Q, which we will

denote by Ov(Q). Let J? = | P : f o r some Q e l M , P = Ov(Q) | . Then j * # 0 and
L / J16/

^ c S p e C / 4 . Clearly then the maps pr, :(A, S)—*(At, S'i) are <£MV morphism. Now let
(A',Jf') be an <£MV morphism and such that for each iel we have an <£MV morphism
/: (v4 ' , $')—*{Aj, $j). Since /I is the direct product of the At and each fi is an
MV-homomorphism of A' to At we know there is a unqiue MV-homomorphism g :A' —*A
such that for each iel, the diagram

commutes, i.e. p r , g = / .
Now let P e ^ . Then for some iel and Qe3t, we have P = Ov(Q). Thus

g-1(/») = r I ( O v ( G ) ) = r 1 p r r I ( G ) = (pr,-g)-1(G)=/r1(G)6^' since /, is an gMV

morphism. Hence g:(A',^')—*(A,Jl) is an gMV-morphism and we see that (A, $) is the
product, II (A/, Sj). We shall show that y commutes with II, i.e.:

16/

THEOREM 2.1.

1 6 /

In the above notation this is [A]j, = Yl [Aj]*. First we require.
i l

LEMMA 2.1. Le/ (v4, J5), (/I,, ^,) e &MV WJVA $ = \P \for some Q e U ^/, P = Ov(Q) }.
L ie/ J

, if a, be A , we have [a]j, = [b]j, iff, for each iel, [a,-] ̂ . = [6 , ]^ . .

Proo/. Suppose [a]^ = [ft]^. Let j e / and let Q e St. Assume a,- e 0 . Let P = Ov(Q).
Then P e $ and a e P. Thus beP, so i , e Q . By symmetry we have [a,]*. = [bj]*..
Conversely suppose that [a,]j,. = [b/]*. for each i e I. Let P e3> and suppose a e P . For
some j 0 e / and some Q e ^/n

 w e n a v e ^ = O\(Q). Thus a, e Q; hence fe,-0 e 9 and so b e P.
By symmetry we conclude [a]* = [b]#. D

Proof of Theorem 2.1. Let (/I, J?) = IT ( A , 4 ) . Define h:[^4],-* II [ A U by
/ e / / e /

^([fl]j>) = ([fli]j>) where ([a,]^.) is that element of II [Ai]J,i whose tth component is [a,]^..
' ' 16/

By Lemma 2.1 h is well defined and bijective. It is straight forward to verify that h
preserves the lattice operations; hence h is an isomorphism. •

In the sequel, given (Aj,^), iel, with each (̂- = speCi4,-,^ will be called the
over-family of prime ideals of A and will be denoted by Ov(A).
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COROLLARY 2.1. Given MV-algebras A , i e /, A = n A , we have [A]Ov(A) = Yl [A/].
iel iel

We want now to examine the special case when / is finite. First, two preliminaries.

PROPOSITION 2.1. Let P be a prime ideal in A = II A- Then prk(P)=£Ak for at most
iel

one k e I.
Proof. Let i,kel, ii^k and suppose prk{P)±Ak, pr,(P)i^A,. Let bteA be such

that the ith component of <5, is 1 and the yth component, j&i, is 0. Similarly for Sk.
Clearly <5, A ^ = 0; thus <5, A bke P so either <5, € P or 8k e P. But then 1 € pr,(P) or
1 e pr*(P) which is impossible. D

PROPOSITION 2.2. / / / is finite and P cA = U A, is a prime ideal of A, then there is
iel

exactly one h si with prft(P) =£Ah.

Proof. We known there is at most one such h. Suppose that pr,(P) = A for each
i e /. Choose qt e P such that pr,^,) = 1. Then q = E q,-e P, and q — 1, absurd. D

16/

THEOREM 2.2. If Us finite, A = U Ah then Ov(A) = Spec A.
iel

Proof. Let P e Spec A By Proposition 2.2 there is a unique h el with pTh(P)¥:Ah.
Let Q = prh(P) and Q' = prj;\Q). Then Q' is a proper ideal of A, PcQ'. Since
Q e Spec A . Q' e Ov(A). Let a e Q'. For i±h, pr,(P) =At so we can find a u, e P with
pr,(«,) = pr,(«)- For h we know that pr,,(a) e Q so we can find a uhe P with prh(uh) =
prh(a). Let M = £ 6,a,. Then w e P. Now it j el we have pr/w) = E pr,(6,) pr.(«,) =

16/ ieJ

ptj(Ui) = pry(fl). Thus M = a so a e P; that is Q' = Ov(Q) = P so P € Ov(>i). •

COROLLARY 2.2. / / / is finite and $t = Spec A for each i e I, then [A] = U [A]-
iel

Proof. By Theorem 2.2 and Corollary 2.1. •
COROLLARY 2.3. If A is a finite MV-algebra, then Spec/4 has a base of clopen sets.

Proof. By [5, Corollary 2.7], A = U Ah where A, is a linearly ordered MV-algebra
16/

for every iel. Then, by Corollary 2.2, [A] = 11 [A] = II {0,1}, i.e. [A] is a boolean
16/ 16/

algebra. Thus Spec A which is homeomorphic to Spec[A], has a base of clopen sets. •

3. We would like now to examine the behavior of y with respect to subobjects, i.e.
monomorphisms. It is easy to see in general that y does not preserve monomorphisms.
For example if 3 is any proper subset of Spec A we have an <?MV monomorphism
/: (A Spec A) "*(/!, ^) w r i e r e ' ' s *he identity map. But, in general, [*]—»[*].? will not be
one-one. For some subobjects however, y will preserve monicity. In particular we will
show if A is a subalgebra of B then [A] is isomorphic to a sublattice of [B].

To begin, let (A , ^i), (A>, A) be in gMV. We call (A , ^i) a full subobject of (A?, ^2)
if there is a monomorphism f:(Au $\)^>{A2, ^2) such that f~\$2) = ^1, i.e. if Pe3>x

there is a Q e J>2 with / " ' ( g ) = P.
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THEOREM 3.1. / / (/4,,-^i) is a full subobject of (A2, ^2) then there is an injective
homomorphism of[A1]^l into [A2\#2.

Proof. There is a monomorphism f:{Au Jl
i)-+(A2, ^2)- Thus f:Al—*A2 is an

MV-monomorphism and f~l{$2)
 = <&i- We have a homomorphism Y(f)'.[Al]#l—>[A2]#2

where y(/)(M,,) = [/(*)W Suppose [/(*)],, = [f(y)]*2. Let P e K Assume x e P. Now
P=f-\Q) for some Q e 3>2. So f(x) e g - Thus / ( ^ e g and so yef~\Q) = P. By
symmetry we have [x]^t = [/(*)].?2 and so y(/) is one-one. •

Now let A c B, A a subalgebra of B. We have the inclusion map i :A —> B, i(x) = x.
If geSpecB then i~\Q) = AH Q e Spec A. Thus r ' (SpecB) c Spec.4 so
i: (A, Spec,4)—> (B, Spec B) is a subobject of (B, Spec B).

THEOREM 3.2. / /A, B are MV-algebras, A a subalgebra of B, then

SpecA = {ADQ | geSpecB}.

Proof. Clearly {ADQ\Qe Spec B} c Spec A Let P e Spec A. Let H be the ideal in
B generated by P. Let G be the lattice-filter in B generated by A - P. UxeHC\G then
there is a p e P with x <p and a z e A — P with z^x. This implies z ̂ p,so z e P which is
impossible. So HOG = 0. By [7, Theorem 2.5], there is a prime ideal QeSpecS
with H^Q, QDG = 0. A = Pl)(A-P), so ADQ = Pr\Q = P since P e g and
Qn(>t-P) = 0. •

COROLLARY 3.1. If A is a subalgebra of B then (A, Spec A) is a full subobject of
(fi.SpecS).

Proof. Let i :A-* B be the inclusion map. If P e Spec,4 then by the above theorem,
P = r\Q) for some geSpecB. •

COROLLARY 3.2. If A is a subalgebra of B there is an injective homomorphism of [A]
into [B].

Proof. Clear from the above corollary and Theorem 3.1. •

4. Given that not every lattice in 2) is in the range of y it becomes pertinent to
know which lattices are. We know that some countable chains lie in the range of y. In
this section we show the same is true for the chain [0,1], in fact for any complete bonded
chain.

To this end let N be the set of positive integers, 9 a maximal filter in 2N that contains
all cofinite subsets of N. Let A be the ultrapower [0, l ]N /$\ Then A is a linearly ordered
MV-algebra. For each r e [0,1] let xr be the element of A determined by the sequence
(r, r2, r3,. . .) e [0, i f . We then have

PROPOSITION 4.1. Let r, s 6 [0,1), 0 < r < s < 1. Let Pr, Ps be the ideals of A generated
by Tr, rs respectively. Then Pr c Ps and TS $ Pr.

Proof. Since 0 < r < s w e have Ks/r. Let h be any positive integer. Then there is a
least integer noeN such that h < (s/r)" for all n s «„. Hence {n | hr" <s"} = {n \ n >
H0} € 9. Thus hxr < TS and so TS$ Pr. Clearly xr < xs so xrePs; thus Pr c Ps. •
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Let s e [0,1). Set P's = f~"| Pr. From the above we have P s c ^ . Since A is linearly

ordered all of its ideals are prime, if proper. Thus each P's, s e [0,1), is a prime ideal. Let
J = {P's | 5 e [0,1)}. Then 3 + 0 , and 3 <=, Spec A.

PROPOSITION 4.2. For each x eA there is an s e [0,1] with [x]# = [rs]#.

Proof. If x $ Pr for any r e [0,1) then x $ P's for any s e [0,1). Thus [x]* = 1 = [r,].
Otherwise let s = inf{r | x e Pr}. Consider TS. Let rseP',eJ'. If t<s choose r, t<r<s.
By Proposition 4.1 rs $ Pr, hence xs $ P',. Thus j s r . If s = t then for t < r < 1 we have
xePr and soJC6f|/>r = /J,'- It s<t choose r,s<r<t with x e Pr. Since P r c P , c P,' we

Kr

have x e P',. Conversely suppose x e P', e A Then for all r e [0,1), t < r, we have x e Pr.
Hence for all re [0,1), t<r, we have s<r, so rs6Pr. Thus r . e f l i ' ^ / ' , ' . Hence

From the above proposition we see that [A]^ = {[rs]j. \ s e [0, 1]}. Since it is evident
that [TS]<^5 is an order preserving bijection we obtain

THEOREM 4.3. There is a linearly ordered MV-algebra A and non-empty subset
3 c Spec A such that [A]* = [0,1].

To extend the above result to any complete bounded chain we set some premises.
Let £6 be a first order language for the theory of MV-algebras. Extend Z£ to Z£+ by

adding constant symbols, cr, one for each r e% where ^ is a given complete bounded
chain. Let A) be the first order axioms for linearly ordered MV-algebras. Let
A2= {ncr <cs. | n = 1, 2 . . . ; r , i 6 ( (S , r<s} . Let A = A, U A2. We now have

PROPOSITION 4.3. Every finite subset A' of A has a model.

Proof. Let cn,cr2,. . . ,c,n be the constant symbols occurring in the formulas of A'
(we can suppose rn </•„_, . . .< r,).

Let En be a subalgebra of a proper ultrapower [0,1]* of [0,1] generated by
£, e2,. . . e" where £ is a non-zero infinitesimal. Then interpreting cn by ekEn becomes a
model for A'. •

Thus, by the compactness theorem, we have the following

COROLLARY 3.3. A has a model. •

THEOREM 4.4. Let %be a complete bounded chain. Then there exist an MV-algebra si
and a family 3 of prime ideals of si such that [s4]j is isomorphic to c€.

Proof. Let d = {A, + , . , - , 0, \{ar:r e <£}} be a model of A, by Corollary 3.3.
Moreover if r<s, then, for any positive n,nar<as. Hence if we set Pr={ar), the
principal ideal generated by ar, we get prime ideals Pr <z Ps if and only if r <s, r,s €<€.
For each xeA let us define the set B(x)-{rec€\xePr}, and set m(x) = \nfB(x).
Consider the map / defined by
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Then:
(i) / is well defined: indeed if x=y (SpecA) then B(x) = B(y), which implies
m(x) = m{y).
(ii) / i s a homomorphism: indeed it is increasing because if [x] < [y] then B(y) c B(x) so
m{x)<m{y).
(iii) / is onto: let r e ? , then we have that r = min B(ar) = m(ar). Thus, by [2, Theorem
3.1], there is a set 3 c Spec A such that \A\9 = <€. U
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