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Abstract

Under the assumption of independent and identically distributed (i.i.d.) components, the
problem of the stochastic comparison of a coherent system having used components
and a used coherent system has been considered. Necessary and sufficient conditions
on structure functions have been provided for the stochastic comparison of a coherent
system having used/inactive i.i.d. components and a used/inactive coherent system. As
a consequence, for r-out-of-n systems, it has been shown that systems having used i.i.d.
components stochastically dominate used systems in the likelihood ratio ordering.
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1. Introduction

In some practical situations, one has to make a choice between a used system ofn components
and a system made up of n used components. The used system or the system made up of used
components has a lifetime in terms of the residual life. Let X be a random variable with
probability density function f (·), distribution function F(·), and survival function F̄ (·) =
1 − F(·). The residual lifetime and the inactivity time of X with age/time t ≥ 0 is defined as

Xt = (X − t | X > t) and X(t) = (t −X | X ≤ t),

respectively. For comprehensive details on the residual lifetime and the inactivity time, we
refer the reader to [2], [3], and [12]. The stochastic comparisons and reliability properties of
the residual lifetime and the inactivity time have been discussed by [6], [7], [10], [11], and [14].

Let us denote by η(·) = −f ′(·)/f (·), the eta function of the random variable X. The eta
function plays a vital role in the study of the reliability characteristics. We refer the reader to
[4] for an overview of the eta function.

Throughout this paper, terms such as ‘increasing’ and ‘decreasing’ will be used to denote
‘nondecreasing’ and ‘nonincreasing’, respectively. To make the paper self-contained, we
include below some definitions which are standard in the literature (see [13]).

Definition 1.1. Let Zi, i = 1, 2, be two random variables with probability density functions
gi(·), distribution functionsGi(·), and survival functions Ḡi(·) = 1−Gi(·), i = 1, 2. Then the
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random variable Z1 is said to be smaller than the random variable Z2 in the

(a) likelihood ratio ordering (written as Z1 ≤lr Z2) if g2(x)/g1(x) increases in x on (0,∞);

(b) failure rate ordering (written as Z1 ≤fr Z2) if Ḡ2(x)/Ḡ1(x) increases in x on (0,∞);

(c) usual stochastic ordering (written as Z1 ≤st Z2) if Ḡ1(x) ≤ Ḡ2(x) for all x ∈ R.

The following implications/equivalances are well known in the literature (see, for example,
[13, p. 43]):

Z1 ≤lr Z2 ⇒ Z1 ≤fr Z2 ⇒ Z1 ≤st Z2, (1.1)

Z1 ≤lr Z2 ⇐⇒ Ḡ2Ḡ
−1
1 (p) is concave in p on (0, 1).

An r-out-of-n system functions if at least r out of n components of the system function,
r = {1, 2, . . . , n}. This r-out-of-n system is a particular case of a general coherent system.
Series and parallel systems are two important reliability structures. The series system is an
n-out-of-n system and the parallel system is a 1-out-of-n system. For details on general coherent
structures, we refer the reader to [1].

We now provide a brief review of the results in the literature about reliability properties
of the residual lifetime and the inactivity time. These results are related to the results proved
in this paper. Zhang and Li [14] proved that the lifetime of a parallel/series system having
independently and identically distributed (i.i.d.) components stochastically dominates the life-
time of a used parallel/series system in the usual stochastic ordering; they also derived similar
results for the inactivity time. For i.i.d. components, Li and Lu [6] strengthened the result
of Zhang and Li [14] from the usual stochastic ordering to the likelihood ratio ordering. For
independent but not necessarily identically distributed components, Li and Lu [6] proved that
the result of Zhang and Li [14] can be extended to the failure rate ordering. For independent
but not necessarily identically distributed components, Gupta et al. [5] recently derived the
conditions under which the results of Li and Lu [6] can be extended to the likelihood ratio
ordering. For general coherent systems, Pellerey and Petakos [11] proved that the lifetime of
a coherent system composed of used components dominates the lifetime of the used coherent
system in the usual stochastic ordering.

In Section 2 we provide necessary and sufficient conditions on the structure functions so
that the lifetime of a coherent system having used/inactive i.i.d. components perform
better/worse than the lifetime of a used/inactive coherent system under the likelihood ratio
ordering. Consequently, it follows that an r-out-of-n system having used i.i.d. components
stochastically dominates the used r-out-of-n system under the likelihood ratio ordering. A few
examples have been provided to illustrate the situations in which the main results of the paper
may provide comparative analysis. Also, some results of Li and Lu [6] have been obtained as
the particular case of the main results of the paper.

Intuitively, a system of used but functioning components is better than a used system where
the states of the individual components are unknown. Therefore, it is natural to ask whether this
intuition is valid for all the systems. In Example 2.4 we show that there exist such particular
systems in which a used system is better than a system of used but functioning components in
the likelihood ratio ordering.

2. Stochastic comparisons

Let us consider a coherent system, with structure function φ, having n components C1, . . . ,

Cn with i.i.d. lifetimes as X1, . . . , Xn, respectively. Let the i.i.d. components have probability
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density function f (·), distribution function F(·), and survival function F̄ (·) = 1 − F(·). The
lifetime of coherent system φ is denoted by τ(X) = τ(X1, · · · , Xn) with the survival function
as

P(τ (X) > x) = K(F̄ (x)), x ∈ R,

where K : [0, 1] → [0, 1] is an increasing function having K(0) = 0 and K(1) = 1.
The residual life of a coherent system having i.i.d. components X1, . . . , Xn is

(τ (X))t = (τ (X1, . . . , Xn))t .

Then the resulting used coherent system, denoted by SS, has survival function

F̄S(x) = P((τ (X))t > x) = P(τ (X) > t + x)

P(τ (X) > t)
=

⎧⎨
⎩

1 if x < 0,
K(F̄ (t + x))

K(F̄ (t))
if x ≥ 0.

(2.1)

The lifetime of a coherent system having residual lives (X1)t , . . . , (Xn)t is

τ(Xt ) = τ((X1)t , . . . , (Xn)t ).

Then the resulting coherent system having used components, denoted by SC, has survival
function

F̄C(x) = P(τ (Xt ) > x) =
⎧⎨
⎩

1 if x < 0,

K

(
F̄ (t + x)

F̄ (t)

)
if x ≥ 0.

(2.2)

Here we investigate the equivalent conditions for

(τ (X))t ≤lr (≥lr) τ (Xt ) for all t ≥ 0

to hold. The following theorem provides the conditions under which a coherent system of
used but functioning components performs better/worse than a used coherent system in the
likelihood ratio ordering.

Theorem 2.1. It holds that (τ (X))t ≤lr (≥lr) τ (Xt ) if and only if, for fixed t ≥ 0 and
q ∈ (0, 1), one of the following conditions hold:

(a) K(qK−1(p)) is a convex (concave) function of p on (0, 1);

(b) ψ1,q(p) = K ′(p/q)/K ′(p) is a decreasing (increasing) function of p on (0, 1), p < q;

(c) K ′′(p)/K ′(p) ≥ (≤) K ′′(p/q)/qK ′(p/q) for any p on (0, 1), p < q;

where K ′(·) and K ′′(·) denote the first and second derivatives of K(·), respectively.

Proof. Let t ≥ 0 be fixed. The survival function, the probability density function, and the
eta function of (τ (X))t are given by (2.1),

fS(x) = f (t + x)
K ′(F̄ (t + x))

K(F̄ (t))
, x ≥ 0, and ηS(x) = −f

′
S(x)

fS(x)
, x ≥ 0,

respectively. Similarly, the survival function, the probability density function, and the eta
function of τ(Xt ) are given by (2.2),

fC(x) = f (t + x)

F̄ (t)
K ′

(
F̄ (t + x)

F̄ (t)

)
, x ≥ 0, and ηC(x) = −f

′
C(x)

fC(x)
, x ≥ 0,

respectively.
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(a) Now (τ (X))t ≤lr (≥lr) τ (Xt ) if and only if F̄SF̄
−1
C (p) is a convex (concave) function

of p on (0, 1). Also, for any p ∈ (0, 1),

F̄SF̄
−1
C (p) = F̄S(F̄

−1(F̄ (t)K−1(p))− t) = K(F̄ (t))K−1(p))

K(F̄ (t))
.

Therefore, (τ (X))t ≤lr (≥lr) τ (Xt ) if and only ifK(qK−1(p)) is a convex (concave) function
of p on (0, 1) for fixed q ∈ (0, 1).

(b) Now (τ (X))t ≤lr (≥lr) τ (Xt ) if and only if

m1,t (x) = fC(x)

fS(x)
= K(F̄ (t))

F̄ (t)

K ′(F̄ (t + x)/F̄ (t))

K ′(F̄ (t + x))
= A(t)m2,t (x)

is an increasing (decreasing) function of x on (0,∞), where

A(t) = K(F̄ (t))

F̄ (t)
and m2,t (x) = K ′(F̄ (t + x)/F̄ (t))

K ′(F̄ (t + x))
.

Equivalently, (τ (X))t ≤lr (≥lr) τ (Xt ) if and only ifψ1,q(p) = K ′(p/q)/K ′(p) is a decreasing
(increasing) function of p on (0, 1) for any q ∈ (0, 1), p < q.

(c) Note that

(τ (X))t ≤lr (≥lr) τ (Xt ) ⇐⇒ ln

(
fC(x)

fS(x)

)
is increasing (decreasing) in x ∈ (0,∞)

⇐⇒ ηS(x) ≥ (≤) ηC(x) for all x ∈ (0,∞).

Consider

ηS(x)− ηC(x) = −f
′
S(x)

fS(x)
+ f ′

C(x)

fC(x)

= −f
′(t + x)K ′(F̄ (t + x))− f 2(t + x)K ′′(F̄ (t + x))

f (t + x)K ′(F̄ (t + x))

+ f ′(t + x)K ′(F̄ (t + x)/F̄ (t))− f 2(t + x)K ′′(F̄ (t + x)/F̄ (t))/F̄ (t)

f (t + x)K ′(F̄ (t + x)/F̄ (t))

= f (t + x)K ′′(F̄ (t + x))

K ′(F̄ (t + x))
− f (t + x)K ′′(F̄ (t + x)/F̄ (t))

F̄ (t)K ′(F̄ (t + x)/F̄ (t))

= f (t + x)

(
K ′′(F̄ (t + x))

K ′(F̄ (t + x))
− K ′′(F̄ (t + x)/F̄ (t))

F̄ (t)K ′(F̄ (t + x)/F̄ (t))

)
.

Therefore, it is clear that
(τ (X))t ≤lr (≥lr) τ (Xt )

if and only if
K ′′(p)
K ′(p)

≥ (≤) K
′′(p/q)

qK ′(p/q)
for any p, q on (0, 1), p < q.
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Corollary 2.1. Let r ∈ {1, 2, . . . , n}. Then, for r-out-of-n systems,

(τ (X))t ≤lr τ(Xt ).

Proof. For r-out-of-n systems (see [9]),

K(p) = n!
(n− r)! (r − 1)!

∫ 1

1−p
un−r (1 − u)r−1 du, p ∈ (0, 1),

and

K ′(p) = n!
(n− r)! (r − 1)! (1 − p)n−rpr−1.

Therefore, for fixed q ∈ (0, 1),

ψ1,q(p) = K ′(p/q)
K ′(p)

= 1

qn−1

(
q − p

1 − p

)n−r
= 1

qn−1

(
1 − 1 − q

1 − p

)n−r

is a decreasing function of p on (0, 1). The result follows from Theorem 2.1.

Remark 2.1. (a) The referee observed that the conditions provided in Theorem 2.1 depend
only on the structure of the system, not on the component lifetime distribution, provided that
the density is everywhere positive. Moreover, Corollary 2.1 shows that an r-out-of-n system
of used but functioning components is better than a used r-out-of-n system where the states of
the individual components are unknown.

(b) For a parallel system (i.e. 1-out-of-n system),

τ(X) = max(X1, . . . , Xn).

Then, from Corollary 2.1, it is clear that

(max(X1, . . . , Xn))t ≤lr max((X1)t , . . . , (Xn)t ).

The result stated in Remark 2.1(b) was proved by Li and Lu [6].
The following examples illustrate the situations in which Theorem 2.1 may provide a

comparative analysis between a system of used but functioning i.i.d. components and a used
system having i.i.d. components.

Example 2.1. Consider the example of a relay circuit (see Figure 1.3.4 of [1, p. 13]) with i.i.d.
components and lifetime

τ(X) = min(X1,max(X2, X3)).

Then, for this system,
K(p) = 2p2 − p3

and
K ′(p) = 4p − 3p2.

Hence, for fixed q ∈ (0, 1),

ψ1,q(p) = K ′(p/q)
K ′(p)

= 1

q2

4q − 3p

4 − 3p
= 1

q2

(
1 + q − 1

4 − 3p

)

is a decreasing function of p on (0, 1). Therefore, using Theorem 2.1, it follows that a relay
circuit of used but functioning components is better then a used relay circuit in the likelihood
ratio order.
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Example 2.2. Suppose that three i.i.d. components are connected in parallel, and then two such
parallel connections are hooked up in series to form a single system (see Exercise 11.16 with
k = 3 and n = 2 of [8]) with lifetime

τ(X) = min(max(X1, X2, X3),max(X4, X5, X6)).

Then, for such a system,

K(p) = (1 − (1 − p)3)2 = (p3 − 3p2 + 3p)2

and
K ′(p) = 6p(p2 − 3p + 3)(p − 1)2.

Hence, for fixed q ∈ (0, 1),

ψ1,q(p) = K ′(p/q)
K ′(p)

= 1

q5
η1,q(p)η2,q(p), (2.3)

where

η1,q(p) = p2 − 3pq + 3q2

p2 − 3p + 3
and

η2,q(p) =
(
p − q

p − 1

)2

.

Consider, for p ≤ q,

η′
1,q(p) = 1

(p2 − 3p + 3)2
((p2 − 3p + 3)(2p − 3q)− (p2 − 3pq + 3q2)(2p − 3))

= 1

(p2 − 3p + 3)2
(−3p2q + 3p2 − 6p2 + 6p2q + 6p − 6pq2 − 9q + 9q2)

= 1

(p2 − 3p + 3)2
(−9p2(1 − q)+ 6p(1 − q2)− 9q(1 − q))

= 1

(p2 − 3p + 3)2
3(1 − q)(−3p2 + 2p(1 + q)− 9q)

= 1

(p2 − 3p + 3)2
3(1 − q)(−3p2 + 2(p − q)− 4q − 2q(1 − p))

≤ 0;
therefore, η1,q(p) is a decreasing function of p on (0, 1), p ≤ q. Also, it is easy to see that
η2,q(p) is a decreasing function of p on (0, 1), p ≤ q. Since η1,q(p) ≥ 0, η2,q(p) ≥ 0, and
both are decreasing functions of p on (0, 1), p ≤ q, from (2.3), it follows that ψ1,q(p) is a
decreasing function of p on (0, 1), p ≤ q. Now, for the considered system of this example,
using Theorem 2.1, it follows that

(τ (X))t ≤lr τ(Xt ).

Example 2.3. Consider the example of a stereo hi-fi system (see Example 1.5 of [1, p. 4]) with
i.i.d. components and lifetime

τ(X) = min(max(X1, X2),X3,max(X4, X5)).

Then, for this system,

K(p) = 4p3 − 4p4 + p5 and K ′(p) = 12p2 − 16p3 + 5p4.

https://doi.org/10.1239/jap/1378401240 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401240


854 N. GUPTA

Hence, for fixed q ∈ (0, 1),

ψ1,q(p) = K ′(p/q)
K ′(p)

= 1

q4

12q2 − 16pq + 5p2

12 − 16p + 5p2

= 1

q4

(
1 + 12(q2 − 1)+ 16p(1 − q)

12 − 16p + 5p2

)

= 1

q4 (1 + (1 − q)η3,q(p)), (2.4)

where

η3,q(p) = 16p − 12(q + 1)

12 − 16p + 5p2 .

Also, for p ≤ q,

η′
3,q(p) = 1

(12 − 16p + 5p2)2
(16(12 − 16p + 5p2)− (16p − 12(q + 1))(−16 + 10p))

= 1

(12 − 16p + 5p2)2
(10p(12 − 16p)+ 80p2 + 12q(−16 + 10p))

= 1

(12 − 16p + 5p2)2
(120p − 80p2 − 292q + 120pq)

≤ 1

(12 − 16p + 5p2)2
(120q − 80p2 − 292q + 120pq)

= 1

(12 − 16p + 5p2)2
(120q(1 − p)− 80p2 − 292q)

≤ 1

(12 − 16p + 5p2)2
(120q − 80p2 − 292q)

≤ 0;
therefore, η3,q(p) is decreasing function of p on (0, 1), p ≤ q. Hence, from (2.4), it is clear
thatψ1,q(p) is a decreasing function of p on (0, 1), p ≤ q. Now, using Theorem 2.1, it follows
that a stereo hi-fi system of used but functioning components is better then a used stereo hi-fi
system in the likelihood ratio order.

Since, intuitively, a system of used but functioning components is better than a used system
where the states of the individual components are unknown, the referee raised the natural
question of whether the relation (τ (X))t ≤lr τ(Xt ) is valid for all systems. The following
example shows that there exist such systems for which (τ (X))t ≥lr τ(Xt ) holds.

Example 2.4. Consider the lifetime of coherent system to be

τ(X) = X1 +X2,

where X1 and X2 follow exponential distributions with mean 1/λ. Then the survival function
and the probability density function of a used coherent system are

F̄S(x) = P((X1 +X2)t > x) = 1

P(X1 +X2 > t)

∫
F̄ (x + t − z)f (z) dz
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and

fS(x) = 1

P(X1 +X2 > t)

∫
f (x + t − z)f (z) dz

= 1

P(X1 +X2 > t)

∫ x+t

0
λ2e−λ(x+t−z)e−λz dz

= 1

P(X1 +X2 > t)
λ2(x + t)e−λ(x+t),

respectively. Also, the survival function and the probability density function of a coherent
system with used components are

F̄C(x) = P((X1)t + (X2)t > x) = 1

F̄ 2(t)

∫
F̄ (x + t − z)f (z+ t) dz

and

fC(x) = 1

F̄ 2(t)

∫
f (x + t − z)f (z+ t) dz

= 1

e−2λt

∫ x+t

−t
λ2e−λ(x+t−z)e−λ(t+z) dz

= λ2(x + 2t)e−λx,

respectively. Consider

fC(x)

fS(x)
= P(X1 +X2 > t)

e−λt
x + 2t

x + t
= P(X1 +X2 > t)

e−λt

(
1 + t

x + t

)
,

which is a decreasing function of x on (0,∞). Hence,

(X1 +X2)t ≥lr (X1)t + (X2)t ,

where X1 and X2 follow exponential distributions with mean 1/λ.

Remark 2.2. Pellerey and Petakos [11] in the proof of their Theorem 1 claimed that

(τ (X))t ≤st τ(Xt ) for all t ≥ 0 (2.5)

(see Theorem 1, Equation (7) of [11]). They assumed in their Equation (4) that

{Xi > s for all i ∈ I } ⊆ {τ(X) > s} for all s > 0. (2.6)

Therefore, (2.5) is restricted to coherent systems where relation (2.6) holds. But, there may
exist coherent structures where relation (2.6) may not be satisfied, e.g. τ(X) = X1 +X2. From
implication (1.1) and Example 2.4, it follows that if τ(X) = X1 +X2, whereX1 andX2 follow
exponential distributions with mean 1/λ, then

(X1 +X2)t ≥st (X1)t + (X2)t .

Therefore, if condition (2.6) does not hold for a coherent structure then the relation

(τ (X))t ≤st τ(Xt ) for all t ≥ 0

may or may not hold.
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In the remainder of this paper, we compare a coherent system of inactive components and
an inactive coherent system in the likelihood ratio ordering. The inactivity time of a coherent
system with i.i.d. components X1, . . . , Xn is

(τ (X))(t) = (τ (X1, . . . , Xn))(t).

Then the resulting inactive coherent system with inactivity time t ≥ 0, denoted by SI,S, has
survival function

F̄I,S(x) = P((τ (X))(t) > x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x < 0,
1 −K(F̄ (t − x))

1 −K(F̄ (t))
if 0 ≤ x < t,

0 if x ≥ t.

(2.7)

The lifetime of a coherent system with inactivity times (X1)(t), . . . , (Xn)(t) is

τ(X(t)) = τ((X1)(t), . . . , (Xn)(t)).

Then the resulting coherent system with inactive components, denoted by SI,C, has survival
function

F̄I,C(x) = P(τ (X(t)) > x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x < 0,

K

(
1 − F̄ (t − x)

1 − F̄ (t)

)
if 0 ≤ x < t,

0 if x ≥ t.

(2.8)

Here we investigate the equivalent conditions for

(τ (X))(t) ≤lr (≥lr) τ (X(t)) for all t ≥ 0

to hold. The following theorem provides the conditions under which a coherent system of
inactive components performs better/worse than an inactive coherent system in likelihood ratio
ordering.

Theorem 2.2. It holds that (τ (X))(t) ≤lr (≥lr) τ (X(t)) if and only if, for fixed t ≥ 0 and
q ∈ (0, 1), one of the following conditions hold:

(a) 1 −K(1 − qK−1(p)) is a convex (concave) function of p on (0, 1);

(b) ψ2,q(p) = K ′((1 − p)/(1 − q))/K ′(p) is a increasing (decreasing) function of p on
(0, 1), p > q;

(c) K ′′(p)/K ′(p)+K ′′((1 − p)/(1 − q))/(1 − q)K ′((1 − p)/(1 − q)) ≤ (≥) 0 for any p
on (0, 1), p > q;

where K ′(·) and K ′′(·) denote the first and second derivatives of K(·), respectively.

Proof. Let t ≥ 0 be fixed. The survival function, the probability density function, and the
eta function of (τ (X))(t) are respectively given by (2.7),

fI,S(x) = f (t − x)
K ′(F̄ (t − x))

1 −K(F̄ (t))
, t > x ≥ 0,

and ηI,S(x) = −f
′
I,S(x)

fI,S(x)
, x ≥ 0.
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Similarly, the survival function, the probability density function, and the eta function of τ(X(t))

are respectively given by (2.8),

fI,C(x) = f (t − x)

1 − F̄ (t)
K ′

(
1 − F̄ (t − x)

1 − F̄ (t)

)
, t > x ≥ 0,

and ηI,C(x) = −f
′
I,C(x)

fI,C(x)
, x ≥ 0.

(a) Now (τ (X))t ≤lr (≥lr) τ (Xt ) if and only if F̄I,SF̄
−1
I,C(p) is a convex (concave) function

of p on (0, 1). Also, for any p ∈ (0, 1),

F̄I,SF̄
−1
I,C(p) = F̄I,S(t − F−1(F (t)K−1(p)))

= 1 −K(F̄ (F−1(F (t)K−1(p))))

1 −K(F̄ (t))

= 1 −K(1 − F(t)K−1(p))

1 −K(F̄ (t))
.

Therefore, (τ (X))t ≤lr (≥lr) τ (Xt ) if and only if 1 −K(1 − qK−1(p)) is a convex (concave)
function of p on (0, 1) for fixed q ∈ (0, 1).

(b) Now (τ (X))(t) ≤lr (≥lr) τ (X(t)) if and only if

m2,t (x) = fI,C(x)

fI,S(x)
= 1 −K(F̄ (t))

1 − F̄ (t)

K ′((1 − F̄ (t − x))/(1 − F̄ (t)))

K ′(F̄ (t − x))
= B(t)m3,t (x)

is an increasing (increasing) function of x on (0,∞), where

B(t) = 1 −K(F̄ (t))

1 − F̄ (t)
and m3,t (x) = K ′((1 − F̄ (t − x))/(1 − F̄ (t)))

K ′(F̄ (t − x))
.

Equivalently, (τ (X))(t) ≤lr (≥lr) τ (X(t)) if and only ifψ2,q(p) = K ′((1 − p)/(1 − q))/K ′(p)
is an increasing (decreasing) function of p on (0, 1) for any q ∈ (0, 1), p > q.

(c) Note that

(τ (X))(t) ≤lr (≥lr) τ (X(t)) ⇐⇒ ln

(
fI,C(x)

fI,S(x)

)
is increasing (decreasing) in x ∈ (0,∞)

⇐⇒ ηI,S(x) ≥ (≤) ηI,C(x) for all x ∈ (0,∞).

Consider

ηI,S(x)− ηI,C(x)

= −f
′
I,S(x)

fI,S(x)
+ f ′

I,C(x)

fI,C(x)

= −−f ′(t − x)K ′(F̄ (t − x))+ f 2(t − x)K ′′(F̄ (t − x))

f (t − x)K ′(F̄ (t − x))

+
(

−f ′(t − x)K ′
(

1 − F̄ (t − x)

1 − F̄ (t)

)
− f 2(t − x)K ′′((1 − F̄ (t − x))/(1 − F̄ (t)))

1 − F̄ (t)

)

×
(
f (t − x)K ′

(
1 − F̄ (t − x)

1 − F̄ (t)

))−1
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= −f (t − x)K ′′(F̄ (t − x))

K ′(F̄ (t + x))
− f (t − x)K ′′((1 − F̄ (t − x))/(1 − F̄ (t)))

(1 − F̄ (t))K ′((1 − F̄ (t − x))/(1 − F̄ (t)))

= −f (t − x)

(
K ′′(F̄ (t − x))

K ′(F̄ (t − x))
+ K ′′((1 − F̄ (t − x))/(1 − F̄ (t)))

(1 − F̄ (t))K ′((1 − F̄ (t − x))/(1 − F̄ (t)))

)
.

Therefore, it is clear that
(τ (X))(t) ≤lr (≥lr) τ (X(t)))

if and only if
K ′′(p)
K ′(p)

+ K ′′((1 − p)/(1 − q))

(1 − q)K ′((1 − p)/(1 − q))
≤ (≥) 0

for any p, q on (0, 1), p > q.

Remark 2.3. (a) The conditions provided in Theorem 2.2 depend only on the structure of the
system, not on the component lifetime distribution, provided that the density is everywhere
positive.

(b) Let r ∈ {1, 2, . . . , n}. Let p > q, p, q ∈ (0, 1). Then, for r-out-of-n systems,

ψ2,q(p) = K ′((1 − p)/(1 − q))

K ′(p)

= (1 − (1 − p)/(1 − q))n−r ((1 − p)/(1 − q))r−1

pr−1(1 − p)n−r

= (p − q)n−r

pr−1(1 − p)n−2r+1(1 − q)r−1 . (2.9)

Consider the following cases.

Case I. For a 1-out-of-n system, i.e. for a parallel system, from (2.9),

ψ2,q(p) =
(
p − q

1 − p

)n−1

,

which is an increasing function of p ∈ (0, 1) for any q ∈ (0, 1) and p > q. Hence,

(max(X1, . . . , Xn))(t) ≤lr max((X1)(t), . . . , (Xn)(t)).

This result was proved by Li and Lu [6].

Case II. For an n-out-of-n system, i.e. for a series system, from (2.9),

ψ2,q(p) = 1

(1 − q)n−1

(
1 − p

p

)n−1

,

which is a decreasing function of p ∈ (0, 1) for any q ∈ (0, 1) and p > q. Hence,

(min(X1, . . . , Xn))(t) ≥lr min((X1)(t), . . . , (Xn)(t)).

This result was proved by Li and Lu [6].
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Figure 1: Plot of ln(ψ2,0.1(p)) against p for the 51-out-of-100 system.

Case III. For a 2-out-of-3 system, from (2.9),

ψ2,q(p) = 1

1 − q

(
1 − q

p

)
,

which is an increasing function of p ∈ (0, 1) for any q ∈ (0, 1) and p > q. Hence, for
a 2-out-of-3 system,

(τ (X))(t) ≤lr τ(X(t)).

(c) From Figure 1, for a 51-out-of-100 system, it is clear that ψ2,0.1(p) is nonmonotonic in
p ∈ (0, 1) for p > q > 0. Hence, in general, the conditions of Theorem 2.2 may not be
satisfied by an r-out-of-n system, r ∈ {2, 3, . . . , n− 1}, r �= 1, n.
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