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Poincaré Lemma on Quaternion-like
Heisenberg Groups

Der-Chen Chang, Nanping Yang, and Hsi-Chun Wu

Abstract. For smooth functions ai, a2, a3, a4 on a quaternion Heisenberg group, we characterize
the existence of solutions of the partial differential operator system X; f = a1, Xo f = a2, X3 f = as,
and X4 f = a4. In addition, a formula for the solution function f is deduced, assuming solvability
of the system.

1 Introduction

Let X = {X;,X5,..., X} be m linearly independent vector fields defined on an
n-dimensional manifold M,, with m < n. The subspace Tx spanned by X, ..., X, is
called the horizontal subspace, and its complement is referred to as the missing direc-
tions. When Tx = TM,,, then one can conclude that m = n. In this case, M, (asso-
ciated with the Laplace-Beltrami operator Ax = Z}Ll XJZ.) is basically a Riemannian
manifold. Let V = (ay, az, ..., a,) be avector-valued function defined on M,,, where
aj, j = 1,...,n are smooth functions. One interesting problem is to find necessary
and sufficient conditions on a;’s so that V is conservative, i.e., there exists a potential
function f such that

le: ar, Xzf:az, an: ay.

For example, let V = (a, b) be a vector-valued function defined on R? where a and b
are two smooth functions. Assume that X; = ai and X, = ai‘ Then V is conservative
. cda _ 9b x 4

if and only if 5 = o In fact, denote w = adx + bdy and

(1.1) f(x,y) :fr(t)w:/Olw(r'(t))dtzfola(tx, ty)x + b(tx, ty)ydt,

wherer(t) = t(x, y), t € [0,1], isastraight line joining the origin and the point (x, y).
Then by straightforward computations,

of ) 1 9b da
a(x,y)—a(x,yhfo ty( Fi ay)dt’
of L 9a b
—(x, =b s f t — — —)dt.
5, (0 = by« [l 50-50)
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The result follows immediately. This is the famous Poincaré lemma. The potential
function f in (1.1) can be interpreted as the work done by the force w = adx + bdy
from the origin to the point (x, y) connecting by the straight line r(¢).

Now let us turn to the case where Tx # TM,,. Since the complement of Tx, by
definition, is the missing directions, extra vector fields are needed to generate TM,,.
Assume that X satisfies the bracket generating property: “the horizontal vector fields X
and their Lie brackets span TM,,”. Then by Chow’s Theorem [4], we know that given
any two points A, B € M,,, there is a piecewise C' horizontal curve y:[0,1] - M,,

satisfying
p(0) =4, y(1)=B, and j(s) =) ar(s)X;.
k=1
Then we can define the “length” of y as usual:
L 2 2
e - | ds.
()= [ Vai(s)+a3(s) + -+ at(s)ds

The shortest length d..(A,B) is called the Carnot-Carathéodory distance between
A, B € M,,, which is given by

d..(A, B) :=inf £(y),

where the infimum is taken over all absolutely continuous horizontal curves joining
A and B. Hence, we can define a geometry on M,, which is the so-called subRie-
mannian geometry. Under the bracket generating property, the sub-Laplace operator
Ax = Z;":I X]? is solvable and hypoelliptic, [5] and [6]. One notes that in place of
r(t) in R?, the horizontal curve y and the Carnot-Carathéodory distance will play an
essential role in proving the corresponding version of Poincarés lemma in a subRie-
mannian setting on manifolds.

We are very interested in proving results similar to Poincaré’s lemma in a sub-Rie-
mannian setting. The first result was obtained in [1] and [2]. They obtained a so-called
integrability condition for the 1-dimensional Heisenberg group H'. More precisely,
given smooth functions a and b on 3, they found conditions on the functions a and
b such that there exists a function f satisfying X; f = a and X, f = b, where

(12) X1 = ax - ZyBZ, X, = ay + 2xaz,

are the Heisenberg vector fields. Note that {X;, X, } satisfies the bracket generating
property since [X;, X5] = 4%. We recall related results for 3! in the following two
theorems.

Theorem 1.1 ([1]) Let X;,X, be the Heisenberg vector fields. The system Xif =
a, Xof = b has a solution if and only if

Xib= (X X2+ [X1,X2])a,  Xga=(XoXy +[X, X1]) b.

Theorem 1.2 ([2]) Let Xi, X, be the Heisenberg vector fields and p = (x, y, z) in F".
Given any smooth functions a and b, set

c c c
c=X1b - Xja, alza+y£, bI:b—xE, CI:Z.
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Consider
@)= [ o)+ bi(tp)y + a(tp)z] dr.
Then
() ®) = ap)+ [ (X3 (X0, + [, X:])a) (1R
(LN®) =bp) - [ E(xa- (6 + [, X)) (rp)dr

If the conditions
Xib=(X1Xo+ [X1,X2])a and Xja=(XoXi+[X2,X1])b
hold, then X, f = a, X, f = b, with

f®)= [ [alip)x + b(up)y]t

Now a quaternion Heisenberg group is a subRiemannian manifold that we are go-
ing to work with. We wish to explore whether Poincaré’s lemma remains true on such
a setting. So let us recall some notation and definitions ([3,7]) as follows.

A quaternion number can be written as

X1+ ixz +jxs + kg,
where x;s are real and i, j, k are imaginary units satisfying
jj=-ji=k, jk=-kj=i, ki=-ik=j;
=i =1 =1
Let H be the collection of all quaternion numbers. Denote
ImH = {x, +ix, +jxs +kxg e H: %, =0} = R’
The quaternion Heisenberg group gH' = R’ is a real 7-dimensional nilpotent Lie
group isomorphic to H x Im H, equipped with the group law
p-q=(pw)-(q"v)
S S Lo
- (P' +q, W+ ( Y apXixg)i+ ( > ajkx;xk)j + ( > ajkxgxk)k),
jik=1 jik=1 k=1
where p = (p’,w) and q = (q',v) are in H x R?, p’ = x; + ix; + jx; + kxy, ' =
Xy +ix} +jx3 + kxy, and all aj.k are real with aj.k = —a,’cj, for | =1, 2, 3. This group can
be considered as a translation group on the Szegd upper half space U c H?,

U={(p'.q") eH*:Re(q") > |p'*},

with the boundary oU = { (p'.q') € H* : Re(q) = \p’|2} . We define the height
function pon Uas p = x| — (x? +x3 +x2 +x2). Then the quaternion Heisenberg group
gH'" acts transitively on each level set p = constant. In particular, 9U can be viewed
as an orbit of the origin under the action of gH'.
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Consider the left-invariant vector fields

d 3 1 ) .

. = —+ GXk—, j=1,2,3,4,
(1.3) X; ox; ;;alkxkayz j=12,3,4
on gH'. Given smooth functions a, a,, a3, and ay, a necessary and sufficient condi-
tion for the solvability of the system X;f = a1, Xof = a2, X5f = a3, and Xuf = aq,
called the integrability condition, is going to be obtained in Section 2. The formula for
the solution f will be derived using similar concepts as in Heisenberg groups [2]. The
details of the proof will be presented in Section 3. We want to point out here that the
situation in the quaternion Heisenberg group is more complicated than the Heisen-
berg group. We have three missing directions in this case, making the calculation
much harder. The quaternion Heisenberg group that we are going to work with in the
sequel is, in fact, in a large class of 7-dimensional nilpotent groups of codimension 3.
Hence, all results in this paper are also true even in the large class.

2 Integrability Condition

We first use the bracket generating property by adding extra vector fields on X =
{X3, X2, X3, X4} to form an orthonormal basis on gH'. By (1.3),

82 4 3 ; 82 3 ; 9
XnXm = + Ay Xk + mn =
0%, 0X ,;; K 9%, 0y, = 9y
4 3 3 ] 4 3 P
I I
+ ank k ank'xki amk k=S )»
2k oy * (s ) (L 2wy, )
so that their Lie brackets are given by
3 ; a
1) (X Xm] = X Xm = Xn X = =2 =
1=1 91
Further,
(2.2) [ X, [Xn Xm]] =0, j=1,2,3,4.

So{Xj, X,, X3, X4 } satisfies the bracket generating property of step 2. For any smooth
functions ay, as, as, a4, we have

le:al, X1f=al, Xzf:ﬂz)

Xof = ay, — X3f = as, Xuf = ag,

X3f = as, (X1, Xo]f =ci2s [Xi, X3]f =3 [ X Xalf = s

X4f: ag, [XZ)X3]f: €23, [X21X4:|f: C24, [X3)X4]f: C34,
where ¢;; = —22?4115]'337{: = Xja; — Xja;,1 < i < j < 4. Each Lie bracket

[Xi, X;],1<i < j <4 on the right of the last statement, as shown in (2.1), is spanned

by {i, 2 i}, and thus lies in a 3-dimensional subbundle. From this, we have
dy1> 0y, 9y3

that the collection of [X;, X;],1 < i < j < 4 are linearly dependent in the subbundle.

For simplicity, suppose

2 _ 3 _ 1 _ 3 _ 1 _ 2 _
(2.3) Ay = A1y = Gp3 = d33 = 34 = A3, = 0
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for the remainder of this paper. Then
0 ) )
[Xl,Xz] = —Zaizaiyl, [Xz,Xg,] = —205387)/2, [X3,X4:| = —2(1;487}/3

are linearly independent. Let Tj; = [X;, X;]. We can drop Ti3, Ti4, and Ty from
Tij,1 < i < j < 4. Therefore, with a Riemannian metric g defined on qu,
{X1, X2, X3, X4, Tiz, Ta3, T34} forms an orthonormal basis for gH'. Let

U= a1X1 + a2X2 + a3X3 + (14X4 + C12 le + C23 T23 + C34 T34.

The equivalence of X, f = ay, Xaf = a2, Xsf = a3, Xaf = a4 becomes

Xof = an,
lef:(zzl Xif =a,  Xof =a,
Xzf_ab — X3f:a3’ X4f:a4)
3) — 43
Tinf =crn, Tosaf =cy3, Tsaf =C34.
X4f =ay, IZf 12 23f 23 34f 34

<= gradf=U<=curlU=0
= A(Xi, Xj) = A(Xi, Tr(rary) = A(Ti(ks1)> Tir41)) =0

for1<i< j<4andl<k <[ <3, wheregrad f is defined by

grad f = (X1 /) X1 + (Xof )Xo + (X3) X5 + (Xaf) Xa
+ (Tiaf)Tia + (Tasf) Tos + (T34f)T34,

and curl U is a 2-covariant antisymmetric tensor A on a pair of vector fields (X, Y)
defined by

A(X,Y)=Yg(U,X)-Xg(U,Y) +g(U,[X,Y]).

Now we calculate the contents of A(X;, X;), A(Xi, Tr(x+1))> and A(Ti(k+1)> Ti(141))
as follows. First,

A(X,,XJ) = Xjai - Xiaj + g(U, le) = Xja,- - X,-aj + Cij, 1<i< ] <4,
So A(X;, X;) = 0is equivalent to

cp = Xja; — Xpay,  c3 = Xia3 — Xzay, ¢y = Xjaq — Xyay,

c23 = Xpa3 — X3ay, 24 = Xpaq — Xyay, c34 = Xza4 — X4a3.
Secondly, due to (2.2) we have

A(Xy, Tiz) = Tioar — Xyerp = [ Xy, X oy — Xi(Xyas — Xoay)
= (X1X2 + [Xl,Xz]) a; —Xlzaz.
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Similarly,

A(Xy, Tns) = [Xa, X3]ay + X1 Xza; — X1 Xz a3,

A(X1, Tsa) = [ X3, X4]ay + X1 Xyas — X Xza4,

A(Xa, Ta) = Xia1 — (Xo X + [ X2, X1]) a2,

A(Xs, Tas) = (X0 X5 + [ X2, X3]) a2 — X3 a3,

A(X3, Tsy) = [ X3, X4]az + X X4a3 — X, X304,

A(X3, Tia) = X3 Xpa; — X3 Xa, + [ X1, X3 ]as,

A(X3, Tas) = X3z — (X3 X, + [ X3, X2]) a3,

A(X3, Tsg) = (X3 X4 + [ X3, X4])as — X3aq,

A(Xy, Tia) = X4 Xaay — Xy Xqa; + [ X1, X5 ]ay,

A(Xy, Tas) = X4 Xsa; — X4 Xaas + [ Xz, X3]ay,

A(X4, Tas) = Xjas — (XaXs + [ X4, X3]) a4
So A(Xj, Ti(k+1)) = 0 is equivalent to
Xiay = (XaXo + [X0, Xo])ar,  Xiar = (X Xy + [X2, Xa]) a2,

X3as = (X2 X3+ [X2, X3]) a2, X3az = (X3X2 + [X3, X)) a3,

(2.4) Xias = (XsXa+[Xa, Xa])as,  Xias = (XaXs + [ X4, X3]) aas
[X2>X3]al XiXaa3 - X1 X0z, [ X3, Xalar = X1 X304 — X1 X403,

Jay
(X3, X4]az = X, X304 — X X4as, [Xl,Xz]aa = X3Xja; — X3 Xzay,
(X1, Xo]as = XuXia, - XaXoar, [Xo, X3)as = X4Xoas — X4Xza;.

To calculate A( Ty (k+1)> Ti(1+41))> one notes that [ Ty (k11)> Ti(141)] = 0, and so
A(Thz, Taz) = Tazcra — Thacas
= [Xa, X3](X1a2 - Xaa1) - [ X1, X3 ] (X203 — X3a5)
~[ X2, X3]1Xza1 + ([ X1, X2 X5 + [ X2, X3]X1) a2 — [ X1, X2 ] Xaas.
By virtue of (2.2),
A(Tiz, Trs) = —Xo([Xo, Xs]an + Xu X302 - X1 X0a3) + XoXiX3a, — X0 X1 X003
+ X1 X5 X3a, - X X1 X34,
+ X1([X2, X3]az + XoX3a, — X5a3) - X1 Xo X302 + X1 X3 a3
- XiX2a3 + Xo X, Xza3
= -XA(X1, Ths) + X1A(Xs, Tns).
Similarly,
A(Ti, Tag) = ~X5A(X1, T3a) + X1A(X2, Taa),
A(Tys, Tsq) = -X3A(X3, T54) + X5A(X5, Tay).

Applying
A(X], T23) =0 A(Xl, T34) =0 A(Xz, T34) =0
A(Xz, T23) =0 A(Xz, T34) =0 A(X3, T34) =0
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to obtain A(T(k+1)> Ti(1+1y) = 0. In summary, Xif = ay, Xaof = a2, X3f = a3, Xuf =
aq is solvable if and only if (2.4) holds. We have proved the following theorem.

Theorem 2.1 Let Xy, Xa, X3, X4 be the vector fields on qH' that are defined in (1.3),
with the properties (2.1), (2.2), and (2.3). Then for any smooth functions ai, a,, as, as
we have

Xlzaz = (X1X2 + [Xl,Xz]) ai, X%al (X2X1 Xz,Xl]) aj,
X}as = (X2 X3 + [ X2, X3]) a2, 2= (XX, + [ X3, X,]) a3,
X§ﬂ4 = (X3X4 + [X3,X4:|) as, X4a3 = (X4X3 + X4,X3:|) Ay,
(X2, X3]ar = X1 Xaa3 - X1 Xza;,  [X3, Xy]ay = X1 Xza4 — X1 X4a3,
[X3,X4]a2 = Xy X3a4 — X3 X4a3, [Xl,Xz]as = X3X1a; — X3Xaay,
[X1>X2]a4 = Xy X1a; - Xy Xoa, [X2)X3]ﬂ4 = Xy Xpa3 — X4 Xza,,

if and only if there exists a function f such that X,f = a1, Xaof = a3, Xsf = as, and
X4f = day4.

3 The Poincaré Lemma

The solvability of X; f = a1, Xof = a3, X5f = a3, Xaf = a4, by Theorem 2.1, is char-
acterized by (2.4). Let p = (x1, X2, X3, X4, ¥1, ¥2, ¥3) be a point in gH'. Denote the
straight line connecting the origin and p by

r(t) = tp = (tx1, 12, X3, tx4, ty1, ty2, tys), O0<t<L

By (13) with ¢; = 5£,1=1,2,3,

Xif = ay, 8x1f+ alzclxz + Zk 3 Z, 1alkclxk
Xof = as, a—mf+a21c1x1+a23c2x3+zl 1a24c1x4 = a,,
X5f = as, ang + Y5 abcixy + ayeaxs + adcaxg = as,
Xuf = ag, ax4f Zk 121 1a4kclxk + a43C3x3 = ayg,
E] -
o) T §(C12x2 +C13X3 + ClaXy) = Ay,
3 1
Fr e 5(—612361 +C23X3 + C24X4) = G2,
5 1
P 5(—C13X1 — C23X2 + C34%Xy) = a3,
) 1
) 5(—614961 — C24Xy — C34X3) = Ay,
) %
oxt T4
9 £ g*
— 0xy/ a2
9 f£_ g*
0x3 3>
ax4f ag
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where

* 1 * 1
ay = ay + 5 (CraXa + C13X3 + C1aX4), ay = ay + 5 (—CraX1 + C23X3 + C24X4)5

* 1 * 1
az =asz+ 5(—C13X1 — 23Xy +C34Xq), Ay =agq+ 5(—C14X1 — C24X2 — C34X3).

Let w = Z?Zl a;dxj + Z?Zl cidy;. Then

e @)= [, o= et @)= [[[Za 00 Satm]
=1 -1

Takmga.,1<1<4and -, 1<a<3to(3.1)yields

S = [ a0 £ a1 (0 )
J#t

+Z

L) - [{ragmenr®) a0 ztxj -4 (1)

t))}dt

+ Z ty
l#tx

Since

0=} (1) = S0} (1) - ija a (r(1)) - Zyzfm(r(t))

J#l
egmealr(t) = Grealr(t) - ija ca(1(0) = X prgca(n(0)
it follows that "
62 L= [ fai00) —:lej;%aﬂr(t)) —:zlyz(.fylar(ra))]
jti
+a:<r<r)>+;§txj;; an(r(1))

j#i

i)+ [ 350 0) - e )]s
j=1
Jj#i

#2[5a(r()) - 5 ai ()]

I=1

https://doi.org/10.4153/CMB-2017-027-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-027-4

Poincaré Lemma on Quaternion-like Heisenberg Groups 503

and

L) = [ {50 = Sy ear(0) = X igen(r()]

j=1 J
l#oc

(o)) + 3 75 a1 (0) + 2 5 ()
= l#oc

)+ [ { S5 000 - gcatr(0)]
j=1

- 3
lZ[—cz(r(t 5 c,,,(r(t))]tyl}dt
1

Let I denote the 4 x 4 identity matrix and let B = (I4 | B;) be a 4 x 7 matrix with

alyxy + alxs +alyxy  abxs +akxy a3ixs + aj,x4
B —aj,x; + ab,x4 aZyx; + a2, xy a3, xy
L=
—aj;x; —ajx; — a3;x; —aj;x; + a3,x4
—aj x) — ab,xs —afyx) — a3xy  —a3,%) — A3,X) — A34X3
Then
axlf(p)
9x, f(p)
(X1f)(p) ’
9x, f(P)
(X2f)(p)
9, f(p) |-
cone || )
y
(X4f)(p) '
a}’zf(P)

9y:f(p)

Using (3.2) and (33), ((X,f)(p), (Xaf)(P): (X /) (p), (Xa /) ()T becomes

af (p)
Zig; ai(p)
(3.4) B| ai(p) +fOIBMr(t)Tdt: :Ei; +f01tBMpTdt,
ca(p) a:(p)
c2(p)
c3(p)
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where M = (m;;) is a 7 x 7 skew-symmetric matrix with entries
axia;—axjaf, 1<i<j<4,
(3.5) mij = ax,.c,-_4—ay}._4a;, 1<i<4,5<j<7,
8),,,74cj,4—8yj74c,-,4, 5<i <j§7.
The integrand tBMpT in (3.4) is a 4 x 1 matrix
tBMp = t( (BMp")1. (BMp )2 (BMp" ), (BMp™)a) "
Using m;  as of (3.5), each (BMp”);,1< j < 4 is calculated as follows.
(BMp" ),
= MipX2 + M13X3 + Mi1aX4 + M5 Y1 + Mig Y2 + Mi17Y3
+ (—Wllsxl — M25X2 — M35X3 — My5X4 + Ms6)2 + m57)’3)(ﬂizxz + aisx3 + a{4x4)
+ (—MieX1 — MasXs — M3sX3 — MagXa — Mss Y1 + Me7 Y3 ) (a13X3 + AygXa)
+ (—mu7 X1 — MazXy — M37X3 — MyzXe — Ms7 Y1 — Mez V2 ) (A3 X3 + ApsXs)
= {—X10x, — X20x, — X30x; — X40x, — Y10y, — Y20y, — ¥30y, + X1 X1} 1
+x2X1az + x3 X103 + x4 X104
+ {9104, — (aizxz + ai3x3 + a}4x4)(x18xl + X20x, + X305, + X40x, )
~ [y2(atax2 + aizxs + aisxa) — y1(avsxs + aigxa) ]9y,
— [y3(anxa + aixs + awxa) - yi(anxs + aixa) 10y,
+ (uizxz +abxs + ai4x4)(2 + X10x, + X204, + X30x; + X40x, + Y10y, + ¥20y, + ¥30y,) }c1
+ {920, — (133 + a14xa) (X105, + X20x, + X30x; + X40x, )
+ [y2(ataxs + aizxs + algxa) — y1(arsxs + aiyxs) ]9y,
— [ys(atsxs + argxa) — y2(aisxs + aigxa) ]9y,
+ (a123x3 + af4x4)(2 + X10x, + X20x, + X30x; + X40x, + Y10y, + ¥20y, + ¥30y;) }C2
+{y30x — (af3x3 + 51134x4)(x18,c1 + X20x, + X305, + X40x, )
+ [y3(ai2x2 +alxs + a{4x4) - yl(af3x3 + a134x4)]8y1
+ [J’3(a123x3 + a124x4) - }’2(“133x3 + af4x4)]8y2
+ (a133x3 + af4x4)(2 + X10x, + X20x, + X30x; + X40x, + Y10y, + ¥20y, + ¥30y,) } 3

= (*xlaxl — X20x, — X30x; — X40x, *J’layl *)’Zayz - y38y3)a1

+x1Xqa1 + x2Xqas + x3X1a3 + x4 X104
+ X+ 2(a}2x2 +abxs + ai4x4)]cl
+ [y X1 + 2(af3x3 + alz4x4)]cz
+[ysXa + 2(a133x3 + af4x4)]63
= {xi[- X1 + (alpX2 + al3X3 + @14X4) Dy, + (atsxs + a124x4)8y2 + (apsxs + af4x4)8},3]
+x[-Xo + (—aile + a£4x4)8y1 + (a§3x3 + a§4x4)8y2 + a§4x48y3]
+ xa[—Xa - ai3xlay1 + (_af3xl - a§3x2)ay2 + (—a133x1 + a§4x4)ay3]

+oxa[-Xa + (—ahxl - a§4xz)ayl + (—aﬁxl - a§4x2)ay2 + (—aﬂxl — alxs — a§4x3)8y3]
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= y10y, = 20y, = ¥30y; 1

+ X1X1611 + XzXlaz + X3X103 + x4X1a4

+ nXia + yaXica + y3Xics — x2(Xiaz — Xoar) — x3(Xias — Xzar) — x4 (Xias — Xaar)
= y(Xic1 = 9y,a1) + y2(Xic2 — 0y, a1) + y3(Xics — 9y; )

= Li((X]Xz + [Xl,Xz])al - Xlzaz) + Lzz([Xz,Xﬂal - XiXzas + X1X3a2)
2a12 2a3,

2 3 ([X3,X4]111 X1 X3as + X1X4a3).
Simllarly,

(BMPT)2 = )’1(ch1 - B},laz) + yz(XzCz - Byzaz) + y3(X2C3 - aysaz)

= 2)111 (X2a1 (X2X1 + [Xz,Xl])az)
12
+ 7( (X2X3 + [Xz,X:),])az -X a3)
2a23

2 ([X3, X4]as - X2 X3a4 + X, X4a3),
2a34

(BMPT)3 = yl(X_o,C] - ayla3) + yz(Xg,Cz - 8y2a3) + )/3(X3C3 - 8y3a3)

- A ([X1, Xa2)as — Xs Xyaz + X3 Xpa)
2a},
+ L(Xzaz (X3X20 + [X3,Xz])a3)
2a3,

+

2}}1 ((X3X4 + [X3,X4])as - X3a4),
34
(BMPT)4 = yl(X4C1 — 8y1a4) + )/z(X4C2 - 8y2a4) + )/3(X4C3 — aya 614)
- A ( [X1, Xz]as — X4 Xqa, + X4X2a1)
2a12
+ L( [Xz, X3]a4 — X4X203 + X4X3a2)
2a23
+ 22 (X2a5 - (X4 X5 + [X4, X3])as).
Za34
We have completed the calculations of tBMp”. To calculate (3.1) further, note that
from the first equality of (3.1), w = d f. By the fundamental theorem of calculus,

o= -100)
for any horizontal curve y joining the origin and p. Let

y(t) = (x1(t),Xz(t),X3(t),x4(t),y1(t),yz(t),y3(t)), 0<t<l1
be any curve on gH' with y(O) =0and y(1) = p. Then

foa Z}’l —JZ;XJX +Z[ i(i"; ;k)xk]aayl~

1=1 k=1 j=1
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The curve y being horizontal means that y can be represented by the vector fields
Xj, X5, X5, and X4 only, in which case,

4

(3.6) =X
k=1 "j

Combining (3.1) and (3.6), we have

[t/ )

- [ l{jzl

- [ Ham)+ (e (y(0)x: + as(p(0)xs + cu(y()x) |
#[ax(r(1)) + 5 (e () + exs((1)x + caa(y(1)x0)] 2

# [as(r(1)) + 5 (-as () = exs () + esa (1)) s

# [a0(0) + 5 (e (O)x - (D)5 - esa(p(0)x3) ] 4

+gcl(y(t))li(jz:xja}k)xk}dt

4

%jal ) ke 1=1,2,3,
1

4 ()% + 3 ci(y(£))jn } dt

= [T )i = [ gUOe).y (1),
j=1

where U = a1 X; + ax X, + a3 X3 + a4 X4 and g(-, -) is the sub-Riemannian metric.
Therefore, we have the following theorem.

Theorem 3.1 Let X;, Xa, X3, X4 be the vector fields on qH' given in (1.3), equipped
with the assumption (2.3). Consider any smooth functions ai, a,, as, aa,

Xia; — Xpay Xsa3 — Xza; Xza, — Xya;3

1 > C = > 3 =

>

1 2 3
-24a;, —-2a5, —2a3,

. 13 .
aj :aj+§k2xk(Xjak—Xkaj), i=1,2,3,4,
=t

and let
1, 4 3
f®) = [ [ X a; )+ Y eiltp)]dt
= =1
where p = (X1, X2, X3, X3, Y1, V2, ¥3). Then

KN®) = a(®)+ [ {52-(C0X: + (X XaDar - Xiaa) (1)

1
2ay,

t
+ Lj([X;,X;]al - X1 Xsas + X1X3a2)(tp)
2a5;,
t
+ L:([Xg,)ﬁ]al - X1X3a4 + X1X4a3)(tp)}dt,
2a3,
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(CNHE =a®)+ [ {32060 - (06X + (X, X])a:)(1p)

1
2a;,

t
+ Z‘JLZZ((XzXa +[X2, Xs])az - X3a3)(1p)
23

t
+ ZQL;([Xs,Xz;]az - XoXza4 + X2X4a3)(tp)} at,
34
1 tyl
(X3f)(p) = as(p) + /0‘ { 24}, [X1, X2]as — XsXias + X3 Xoa) (tp)
12

tyz
2
ass

+ (X3a2 - (X3X2a + [ X3, X2])as) (tp)

t
2 (XX + [Xs, Xa])as = X3as) (tp) } i,
2a3,

Lot

Xaf)() = as(®) + [ {52 ([ XoJas - Xaiaa + XuXoa) (1)
12

tyz

as;

+

([Xz,Xj,]{L; - X4X2a3 + X4X3a2)(tp)

t
+ ZaL;(Xias - (XaXs + [X4’X3])“4)(tp)}dt'

34

If the integrability conditions (2.4) hold, then the system of equations X1 f = a1, Xof =
az, Xsf = a3, Xaf = ay is solvable and

@)= [ 2Ui@),y o)

where U = a1 X1+ a, X, + a3 X3 + a4 Xy, y(t) is a horizontal curve connecting the origin
and p, and g( -, -) is the sub-Riemannian metric.

Assume that a}k =-2forj=1=1k=2,and aj.k = 0 otherwise. Consider the
hyperplane
:H:l:{pequ;x3:x4:y2:y3:0};
then, by (1.3), the vector fields X3 = X4 = 0 and Xj, X, reduce to the Heisenberg

vector fields (1.2); ' turns into the Heisenberg group H'. In this case, we have the
following corollary.

Corollary 3.2 Under the hypotheses of the above paragraph, Theorems 2.1 and 3.1
recover Theorems 1.1 and 1.2, respectively.
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