3-FOLD EXTREMAL CONTRACTIONS OF TYPES (IC) AND (IIB)

SHIGEFUMI MORI ${ }^{1}$ AND YURI PROKHOROV ${ }^{2,3}$
${ }^{1}$ RIMS, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan (mori@kurims.kyoto-u.ac.jp)
${ }^{2}$ Department of Algebra, Faculty of Mathematics, Moscow State University, Vorob'evy Gory, Moscow 117234, Russia
${ }^{3}$ Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Street, Moscow 117312, Russia (prokhoro@gmail.com)
Dedicated to Vyacheslav Shokurov on the occasion of his 60th birthday

Abstract Let (X, C) be a germ of a 3-fold X with terminal singularities along an irreducible reduced complete curve C with a contraction $f:(X, C) \rightarrow(Z, o)$ such that $C=f^{-1}(o)_{\text {red }}$ and $-K_{X}$ is ample. Assume that (X, C) contains a point of type (IC) or (IIB). We complete the classification of such germs in terms of a general member $H \in\left|\mathscr{O}_{X}\right|$ containing C.

Keywords: terminal singularity; extremal contraction; \mathbb{Q}-conic bundle; divisorial contraction; flip
2010 Mathematics subject classification: Primary 14J30; 14E05; 14E30

1. Introduction

1.1. Let (X, C) be a germ of a 3 -fold with terminal singularities along a reduced complete curve. We say that (X, C) is an extremal curve germ if there exists a contraction $f:(X, C) \rightarrow(Z, o)$ such that $C=f^{-1}(o)_{\text {red }}$ and $-K_{X}$ is f-ample.

If, furthermore, f is birational, then (X, C) is said to be an extremal neighbourhood [5]. In this case f is called flipping if its exceptional locus coincides with C (and then (X, C) is called isolated). Otherwise, the exceptional locus of f is two dimensional and f is called divisorial. If f is not birational, then $\operatorname{dim} Z=2$ and (X, C) is said to be a \mathbb{Q}-conic bundle germ [6].
1.2. In this paper we consider only extremal curve germs with an irreducible central fibre C. For each singular point P of X, with $P \in C$, consider the germ $(P \in C \subset X)$. All such germs are classified into types (IA), (IC), (IIA), (IIB), (IA $\left.{ }^{\vee}\right),\left(I^{\vee}\right),\left(\mathrm{ID}^{\vee}\right),\left(\mathrm{IE}^{\vee}\right)$ and (III), for the definitions of which we refer the reader to $[\mathbf{4}, \mathbf{6}]$.

In this paper we complete the classification of extremal curve germs with irreducible central fibres containing points of type (IC) or (IIB). As in $[\mathbf{4}, \boldsymbol{8}]$, the classification is
done in terms of a general hyperplane section, that is, a general divisor H of $\left|\mathscr{O}_{X}\right|_{C}$, the linear subsystem of $\left|\mathscr{O}_{X}\right|$ consisting of sections containing C.

For a normal surface S and a curve $V \subset S$, we use the usual notation of graphs $\Delta(S, V)$ of the minimal resolution of S near V : each \diamond corresponds to an irreducible component of V and each \circ corresponds to an exceptional divisor on the minimal resolution of S, and we may use \bullet instead of \diamond if we want to emphasize that it is a complete (-1)-curve. A number attached to a vertex denotes the minus self-intersection number. For short, we may omit 2 if the self-intersection is -2 .

Recall that if an extremal curve germ $\left(X, C \simeq \mathbb{P}^{1}\right)$ contains a point of type (IC), then (X, C) is not divisorial [4, Corollary 8.3.3]. For the remaining \mathbb{Q}-conic bundle case we prove the following.

Theorem 1.1. Let (X, C) be a \mathbb{Q}-conic bundle germ of type (IC) with irreducible C and let $f:(X, C) \rightarrow(Z, o)$ be the corresponding contraction. Let $P \in X$ be a (unique) singular point. We then have the following.
1.2.1. The point $P \in X$ is of index 5. Moreover, the general member $H \in\left|\mathscr{O}_{X}\right|_{C}$ is normal, smooth outside of P, has only rational singularities, and the following is the only possibility for the dual graph of (H, C) :

If an extremal curve germ $\left(X, C \simeq \mathbb{P}^{1}\right)$ contains a point of type (IIB), then it cannot be flipping [4, Theorem 4.5]. Remaining cases of divisorial contractions and \mathbb{Q}-conic bundles are covered by the following theorem.

Theorem 1.2. Let (X, C) be an extremal curve germ of type (IIB) with irreducible C and let $f:(X, C) \rightarrow(Z, o)$ be the corresponding contraction. Let $P \in X$ be a (unique) singular point. The general member $H \in\left|\mathscr{O}_{X}\right|_{C}$ is then normal, smooth outside of P, and has only rational singularities. Moreover, the following are the only possibilities for the dual graph of (H, C).
1.2.2. If (X, P) is a simple $c A x / 4$ point (see $\S 3.1), f$ is a divisorial contraction, $T:=$ $f(H)$ is $D u$ Val of type A_{2}, we have the following:

1.2.3. If (X, P) is a simple $\mathrm{cAx} / 4$ point, f is a divisorial contraction, $T:=f(H)$ is smooth, we have the following:

1.2.4. If (X, P) is a double $\mathrm{cAx} / 4$ point, f is a divisorial contraction, $T:=f(H)$ is Du Val of type D_{4}, we have the following:

1.2.5. If (X, P) is a double $c A x / 4$ point, f is a \mathbb{Q}-conic bundle, we have the following:

2. The case (IC)

In this section we prove Theorem 1.1. The techniques of [4, Chapter 8] will be used freely, sometimes without additional explanations.

2.1. Set-up

Let (X, P) be the germ of a three-dimensional terminal singularity and let $C \subset(X, P)$ be a smooth curve. Recall that the triple (X, C, P) is said to be of type (IC) if there exist analytic isomorphisms

$$
(X, P) \simeq \mathbb{C}_{y_{1}, y_{2}, y_{4}}^{3} / \boldsymbol{\mu}_{m}(2, m-2,1), \quad C^{\sharp} \simeq\left\{y_{1}^{m-2}-y_{2}^{2}=y_{4}=0\right\}
$$

where m is odd and $m \geqslant 5$.
2.1.1. Let (X, C) be a \mathbb{Q}-conic bundle germ and let $f:(X, C) \rightarrow(Z, o)$ be the corresponding contraction. In this section we assume that C is irreducible and has a point P of type (IC). Recall that (X, C) is locally primitive at $P[\mathbf{5}, \S 4.2]$. Moreover, P is the only singular point on C [6, Theorem 8.6, Lemma 7.1.2]. Thus, the group $\mathrm{Cl}(Z, o)$ has no torsion. Moreover, the base point (Z, o) is smooth [$\mathbf{6}$, Lemma 8.1.2].

2.2. We have an ℓ-splitting

$$
\begin{equation*}
\operatorname{gr}_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus}\left(-1+(m-1) P^{\sharp}\right) \tag{2.1}
\end{equation*}
$$

by $[\mathbf{7}, \S 3],[\mathbf{4}, \S 2.10 .2]$, and, hence, the unique $\left(4 P^{\sharp}\right)$ in $\operatorname{gr}_{C}^{1} \mathscr{O}$. Since y_{4} and $y_{1}^{m-2}-y_{2}^{2}$ form an ℓ-free ℓ-basis of $\operatorname{gr}_{C}^{1} \mathscr{O}$ at $P,\left(4 P^{\sharp}\right)$ has an ℓ-free ℓ-basis of the form

$$
\begin{equation*}
u=\lambda_{1} y_{1}^{(m-5) / 2} y_{4}+\mu_{1}\left(y_{1}^{m-2}-y_{2}^{2}\right) \tag{2.2}
\end{equation*}
$$

for some λ_{1} and $\mu_{1} \in \mathscr{O}_{C, P}$. It is easy to see that whether or not $\lambda_{1}(P) \neq 0$ does not depend on the choice of coordinates.

Remark 2.1. We have that

$$
\mathscr{O}_{C}=\mathscr{O}_{C}(-H) \hookrightarrow \operatorname{gr}_{C}^{1} \mathscr{O}=\mathscr{O} \oplus \mathscr{O}(-1)
$$

If $m \geqslant 7$, this implies that the term $y_{1}^{2}\left(y_{1}^{m-2}-y_{2}^{2}\right)$ appears in the equation of H. If $m=5$, then either $y_{1}^{2}\left(y_{1}^{3}-y_{2}^{2}\right)$ or $y_{1}^{2} y_{4}$ appears in the equation of H.
2.3. According to $[7, \S 3]$ (cf. $[4, \S 2.10]$) a general member $F \in\left|-K_{X}\right|$ contains C, has only Du Val singularities, and $\Delta(F, C)$ is the following graph of (-2)-curves:

$$
\begin{equation*}
\underbrace{0-\cdots-0}_{m-3}-\stackrel{i}{\bullet} \tag{2.3}
\end{equation*}
$$

where • corresponds to C. We can choose coordinates y_{1}, y_{2}, y_{4} in a neighbourhood of P such that $F=\left\{y_{4}=0\right\} / \boldsymbol{\mu}_{m}$. In particular, the ℓ-splitting (2.1) has the form

$$
\begin{equation*}
\operatorname{gr}_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus}_{\mathscr{O}}^{C}(-F) \tag{2.4}
\end{equation*}
$$

Lemma 2.2. A general member $H \in\left|\mathscr{O}_{X}\right|_{C}$ is normal, has only rational singularities, and is smooth outside of P.

Proof. This is similar to $\S 33.3$. Let $T:=f(H)$ and let $\Gamma:=H \cap F$. As in §3.3.2, consider the Stein factorization

$$
\begin{equation*}
f_{F}:(F, C) \xrightarrow{f_{1}}\left(F_{Z}, o_{Z}\right) \xrightarrow{f_{2}}(Z, o) . \tag{2.5}
\end{equation*}
$$

Set $\Gamma_{Z}:=f_{1}(\Gamma)$. We may assume that, in some coordinate system, the germ $\left(F_{Z}, o_{Z}\right)$ is given by $z^{2}+x y^{2}+x^{m-1}=0$. Then, by [2], up to coordinate change the double cover $\left(F_{Z}, o_{Z}\right) \rightarrow(Z, o)$ is just the projection to the (x, y)-plane. Hence, we may assume that Γ_{Z} is given by $x=y$. By $\S 2.3$ we see that the fundamental cycle of the graph $\Delta(F, \Gamma)$ is given by

where the number attached to each vertex denotes its coefficient in the fundamental cycle. Therefore, Γ is reduced, so H is smooth outside of P. The restriction $f_{H}: H \rightarrow T$ is a rational curve fibration. Hence, H has only rational singularities.
2.4. Let J be the C-laminal ideal such that $I_{C} \supset J \supset F_{C}^{2} \mathscr{O}$ and $J / F_{C}^{2} \mathscr{O}=\left(4 P^{\sharp}\right)$ in (2.4). Since J is locally a nested complete intersection (c.i.) on $C \backslash\{P\}$, and (y_{4}, u) is a (1,2)-monomializing ℓ-basis of $I_{C} \supset J$ at P with u, as in (2.2), we have an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{C}(-2 F) \rightarrow \operatorname{gr}_{C}^{0} J \rightarrow\left(4 P^{\sharp}\right) \rightarrow 0 \tag{2.6}
\end{equation*}
$$

and an ℓ-isomorphism $\mathscr{O}_{C}(-2 F) \simeq\left(-1+(m-2) P^{\sharp}\right)$. Thus, we have $\operatorname{gr}_{C}^{0} J \simeq \mathscr{O} \oplus \mathscr{O}(-1)$ as \mathscr{O}_{C}-modules. The unique \mathscr{O} in $\operatorname{gr}_{C}^{0} J$ is generated near P by

$$
\begin{equation*}
y_{1}^{2} u+\alpha y_{2} y_{4}^{2} \bmod F^{3}(\mathscr{O}, J) \tag{2.7}
\end{equation*}
$$

for some $\alpha \in \mathscr{O}_{C, P}$.
Proofs of the following two lemmas given in [4] apply to our situation without any changes.

Lemma 2.3 (Kollár and Mori [4, Lemma 8.5.3]).

$$
F^{3}(\mathscr{O}, J)^{\sharp} \subset\left(\left(y_{1}^{m-2}-y_{2}^{2}\right)^{2},\left(y_{1}^{m-2}-y_{2}^{2}\right) y_{4}, \lambda_{1} y_{1}^{(m-5) / 2} y_{4}^{2}, y_{4}^{3}\right) .
$$

Lemma 2.4 (Kollár and Mori [4, Lemma 8.6]). The ℓ-exact sequence (2.6) is ℓ-split if and only if $\alpha(P)=0$.

Proposition 2.5. If $m \geqslant 7$, then $\alpha(P) \neq 0$.
Proof. Assume that $\alpha(P)=0$, that is, (2.6) is ℓ-split. Then, $\operatorname{gr}_{C}^{0} J$ contains a unique $\left(4 P^{\sharp}\right)$. Let \mathscr{K} be the C-laminal ideal such that $J \supset \mathscr{K} \supset F_{C}^{1}(J)$ and $\mathscr{K} / F_{C}^{1}(J)=\left(4 P^{\sharp}\right)$. By $[\mathbf{5}, \S 8.14], \mathscr{K}$ is locally a nested c.i. on $C \backslash\{P\}$ and $(1,3)$-monomializable at P, and we have the ℓ-isomorphisms

$$
\begin{equation*}
\operatorname{gr}_{C}^{i}(\mathscr{O}, \mathscr{K}) \simeq\left(-1+(m-i) P^{\sharp}\right), \quad i=1,2, \tag{2.8}
\end{equation*}
$$

and an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow\left(-1+(m-3) P^{\sharp}\right) \rightarrow \operatorname{gr}_{C}^{3}(\mathscr{O}, \mathscr{K}) \rightarrow\left(4 P^{\sharp}\right) \rightarrow 0 . \tag{2.9}
\end{equation*}
$$

By $(2.8) \tilde{\otimes} \omega_{X}$, we see that $\operatorname{gr}_{C}^{i}\left(\omega_{X}, \mathscr{K}\right) \simeq\left(-1+(m-i-1) P^{\sharp}\right)$, so $H^{j}\left(\operatorname{gr}_{C}^{i}\left(\omega_{X}, \mathscr{K}\right)\right)=0$ for $i=1,2, j=0,1$ because

$$
m-2, m-3 \in 2 \mathbb{Z}_{+}+(m-2) \mathbb{Z}_{+}
$$

Now, using (2.9) $\tilde{\otimes} \omega_{X}$, we obtain that

$$
0 \rightarrow\left(-2+(2 m-4) P^{\sharp}\right) \rightarrow \operatorname{gr}_{C}^{3}\left(\omega_{X}, \mathscr{K}\right) \rightarrow\left(-1+(m+3) P^{\sharp}\right) \rightarrow 0 .
$$

We note that $\left(-1+(m+3) P^{\sharp}\right) \simeq \mathscr{O}(-1)$ as \mathscr{O}_{C}-modules because $3 \notin 2 \mathbb{Z}_{+}+(m-2) \mathbb{Z}_{+}$ for $m \geqslant 7$. We similarly note that $\left(-2+(2 m-4) P^{\sharp}\right) \simeq \mathscr{O}(-2)$ because $m-4 \notin 2 \mathbb{Z}_{+}+$ $(m-2) \mathbb{Z}_{+}$. Hence, $H^{1}\left(\operatorname{gr}_{C}^{3}\left(\omega_{X}, \mathscr{K}\right)\right) \neq 0$. Note that $\omega_{X} / F^{1}\left(\omega_{X}, \mathscr{K}\right)=\operatorname{gr}_{C}^{0} \omega \simeq \mathscr{O}(-1)$. Using the standard exact sequences

$$
0 \rightarrow \operatorname{gr}_{C}^{i}\left(\omega_{X}, \mathscr{K}\right) \rightarrow \omega_{X} / F^{i+1}\left(\omega_{X}, \mathscr{K}\right) \rightarrow \omega_{X} / F^{i}\left(\omega_{X}, \mathscr{K}\right) \rightarrow 0
$$

we obtain that $H^{1}\left(\omega_{X} / F^{4}\left(\omega_{X}, \mathscr{K}\right)\right) \neq 0$. By $[\mathbf{6}, \S 4.4]$ we have that

$$
-K_{X} \cdot V=5 / m \geqslant-K_{X} \cdot f^{-1}(o)=2
$$

where $V=\operatorname{Spec}_{X} \mathscr{O}_{X} / F^{4}\left(\mathscr{O}_{X}, \mathscr{K}\right)$, which is a contradiction.

Proposition 2.6.

(i) $\mathscr{O}_{F}(-C)$ is an ℓ-invertible \mathscr{O}_{F}-module with an ℓ-free ℓ-basis $y_{1}^{m-2}-y_{2}^{2}$ at P and an ℓ-isomorphism

$$
\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{F}(-C) \simeq\left(4 P^{\sharp}\right)
$$

(ii) $H^{0}\left(\mathscr{O}_{F}(-\nu C)\right) \rightarrow H^{0}\left(\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{F}(-\nu C)\right)$ for all $\nu \geqslant 0$.
(iii) There exist sections $s_{1}, s_{2} \in H^{0}\left(I_{C}\right)$ such that

$$
\begin{array}{ll}
s_{1} \equiv(\text { unit }) \cdot\left(y_{1}+\xi_{1} y_{2}^{m-1}\right)^{2}\left(y_{1}^{m-2}-y_{2}^{2}\right) \bmod y_{4} & \text { near } P, \\
s_{2} \equiv(\text { unit }) \cdot\left(y_{2}+\xi_{2} y_{1}^{m-1}\right)\left(y_{1}^{m-2}-y_{2}^{2}\right)^{(m-1) / 2} \bmod y_{4} & \text { near } P,
\end{array}
$$

where $\xi_{1}, \xi_{2} \in \mathscr{O}_{X \sharp}$ are invariants.
(iv) $H^{0}\left(I_{C}\right) \rightarrow H^{0}\left(\operatorname{gr}_{C}^{0} J\right)=H^{0}\left(I_{C} / F^{3}(\mathscr{O}, J)\right) \simeq \mathbb{C}$.

Proof. Part (i) follows from the construction of F. Hence, $H^{1}\left(\mathscr{O}_{C} \tilde{\otimes}_{\mathscr{O}_{F}}(-\nu C)\right)=0$ for all $\nu \geqslant 0$, and $H^{1}\left(\mathscr{O}_{F}(-\nu C)\right)=0$ since C is a fibre of proper f. Thus we have (ii).

To prove (iii) consider the Stein factorization (2.5) and, as in the proof of Lemma 2.2, we take an embedding $\left(F_{Z}, o_{Z}\right) \subset \mathbb{C}_{x, y, z}^{3}$ such that $\left(F_{Z}, o_{Z}\right)$ is given by the equation $z^{2}+x y^{2}+$ x^{m-1}, and the map $f_{2}:\left(F_{Z}, o_{Z}\right) \rightarrow(Z, o)$ is just the projection to the (x, y)-plane. Take $s_{1}=f^{*} x$ and $s_{2}=f^{*} y$. The weighted blow-up of $\left(F_{Z}, o_{Z}\right)$, with weights $(2, m-2, m-1)$, extracts the central vertex of the D_{m}-diagram (2.3). The multiplicity of the corresponding exceptional curve in $f_{2}^{*} x$ and $f_{2}^{*} y$ is equal to 2 and $m-2$, respectively. Using this, one can easily show that the multiplicities of all exceptional curves in $f_{2}^{*} x$ and $f_{2}^{*} y$, respectively, are given by the following diagrams:

where the vertex \bullet, as usual, corresponds to C and the vertices \diamond correspond to components of the proper transforms of $\left\{f_{2}^{*} x=0\right\}$ and $\left\{f_{2}^{*} y=0\right\}$. The multiplicity of C is exactly the exponent of $y_{1}^{m-2}-y_{2}^{2}$ in $s_{i} \bmod y_{4}$. Therefore,

$$
s_{1} \equiv \gamma_{1}\left(y_{1}^{m-2}-y_{2}^{2}\right), \quad s_{2} \equiv \gamma_{2}\left(y_{1}^{m-2}-y_{2}^{2}\right)^{(m-1) / 2} \bmod y_{4}
$$

where $\gamma_{i} \in \mathscr{O}_{X^{\sharp}}$ are semi-invariants. Using the above diagrams, we see that

$$
\left(\left\{\gamma_{1}=0\right\} \cdot C\right)_{F}=-4 / m \quad \text { and } \quad\left(\left\{\gamma_{2}=0\right\} \cdot C\right)_{F}=(m-2) / m
$$

because $\left(C^{2}\right)_{F}=4 / m$ by (i). Since $y_{1} y_{2}$ is of weight 0 , we have that

$$
\gamma_{1}=(\text { unit }) \cdot\left(y_{1}+y_{2}^{m-1} \xi_{1}\right)^{2} \bmod y_{4}
$$

for some $\xi_{1} \in \mathscr{O}_{X}$. Indeed, since $\gamma_{1}=0$ defines a double curve on F, one has that $\gamma_{1}=($ unit $) \cdot \delta^{2} \bmod y_{4}$ for some $\delta \in \mathscr{O}_{X^{\sharp}}$ with weight $\equiv 2$ such that $\left.\delta\right|_{C}=\left.y_{1}\right|_{C}$.

Similarly, we have that $\left.\gamma_{2}\right|_{C}=\left.y_{2}\right|_{C}$. Hence,

$$
\gamma_{2}=(\text { unit }) \cdot\left(y_{2}+y_{1}^{m-1} \xi_{2}\right) \bmod y_{4}
$$

Finally, (iv) follows from (iii) because $H^{0}\left(\operatorname{gr}_{C}^{0} J\right) \simeq \mathbb{C}$.
2.5. By Proposition 2.5 there are four cases to treat.
2.5.1. The case $m \geqslant 7, \alpha(P) \neq 0$.
2.5.2. The case $m=5, \lambda_{1}(P) \neq 0$.
2.5.3. The case $m=5, \lambda_{1}(P)=0, \alpha(P) \neq 0$.
2.5.4. The case $m=5, \lambda_{1}(P)=0, \alpha(P)=0$.

We show that cases 2.5.1-2.5.3 do not occur and that case 2.5.4 implies case 1.2.1.
2.6. Proof of Theorem 1.1 for cases 2.5.1 and 2.5.3. By (2.7) and Proposition 2.6, a general section $s \in H^{0}\left(I_{C}\right)$ satisfies

$$
s \equiv(\text { unit }) \cdot\left(y_{1}^{2} u+\alpha y_{2} y_{4}^{2}\right) \bmod F^{3}(\mathscr{O}, J) \quad \text { at } P
$$

where $\alpha(P) \neq 0$ by assumption. We take s_{2} as given in Proposition 2.6 (iii). We claim that s_{2} belongs to $H^{0}\left(F^{3}(\mathscr{O}, J)\right)$. Indeed, it is obvious that $s \notin \mathbb{C} \cdot s_{2}+F^{3}(\mathscr{O}, J)$ near P. Hence, by $H^{0}\left(I_{C} / F^{3}(\mathscr{O}, J)\right)=\mathbb{C} \cdot s$ we have $s_{2} \in H^{0}\left(F^{3}(\mathscr{O}, J)\right)$, as claimed. By Lemma 2.3, we see that the coefficient of $y_{2} y_{4}^{2}$ (respectively, y_{2}^{m}) in the Taylor expansion of s_{2} at P^{\sharp} is 0 (respectively, non-zero) because $m \geqslant 7$ or $\lambda_{1}(P)=0$. We now analyse the set $H=\{s=0\}$. By Bertini's theorem, H is smooth outside of C. Since $\mathscr{O} \cdot s$ is the unique \mathscr{O} in $\operatorname{gr}_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}(-1), H$ is smooth on $C \backslash\{P\}$. To study (H, P), we can apply $[4, \S 10.7]$. Indeed, if $\lambda_{1}(P)=0$, then $\mu_{1}(P) \neq 0$ by the construction in $\S 2.2$. Thus, $[\mathbf{4}, \S 10.7 .1]$ holds by Lemma 2.3. Replacing s with a general linear combination of s and s_{2} we see that $[4, \S 10.7 .2]$ is satisfied. Since $m \geqslant 7$ or $\lambda_{1}(P)=0$, we can now apply $[\mathbf{4}, \S 10.7]$. One can see that the contraction $f_{H}: H \rightarrow T$ must be birational in this case, which is a contradiction.
2.7. Proof of Theorem 1.1 for case 2.5.2. The argument is the same as that in $\S 2.6$ except that we need to check the conditions of [4, §10.7]. Note that (2.2) has the form $u=\lambda_{1} y_{4}+\mu_{1}\left(y_{1}^{3}-y_{2}^{2}\right)$. Since $\lambda_{1}(P) \neq 0$, by a coordinate change we can assume that $\mu_{1}(P) \neq 0$. Let $D:=\left\{y_{1}=0\right\} / \mu_{m} \in\left|-2 K_{X}\right|$ and let

$$
\phi_{D}:=\frac{u-\lambda_{1}(P) y_{4}}{\mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2} \wedge \mathrm{~d} y_{4}}=\frac{\left(\lambda_{1}-\lambda_{1}(P)\right) y_{4}+\mu_{1}\left(y_{1}^{3}-y_{2}^{2}\right)}{\mathrm{d} y_{1} \wedge \mathrm{~d} y_{2} \wedge \mathrm{~d} y_{4}} \in \mathscr{O}_{D}\left(-K_{X}\right)
$$

Arguments in $[\mathbf{7}, \S 3.1]$ show that there exists a section $\phi \in H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)$ sent to ϕ_{D} modulo ω_{Z}. Thus the image of ϕ under the homomorphism

$$
I_{C} \tilde{\otimes} \mathscr{O}_{X}\left(-K_{X}\right) \rightarrow \operatorname{gr}_{C}^{1} \mathscr{O}_{X}\left(-K_{X}\right)=(1) \tilde{\oplus}(0) \rightarrow(0)
$$

is non-zero because $\lambda_{1}(P) \neq 0$. Hence, $F^{\prime}=\{\phi=0\} \in\left|-K_{X}\right|$ is smooth outside of P and we may choose ϕ such that F^{\prime} is, furthermore, normal by Bertini's theorem. We have an ℓ-splitting

$$
\operatorname{gr}_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus}_{\mathscr{O}}^{C}\left(-F^{\prime}\right) .
$$

By the construction of F^{\prime}, we see that $\left(F^{\prime}, P\right)=\{v=0\} / \boldsymbol{\mu}_{m}$, where $v=y_{1}^{3}-y_{2}^{2}+\lambda_{1}^{\prime} y_{4}$ for some $\lambda_{1}^{\prime} \in \mathscr{O}_{C, P}$ such that $\lambda_{1}^{\prime}(P)=0$. As in Proposition 2.6 , we see that $\mathscr{O}_{F^{\prime}}(-C)$ is an ℓ-invertible $\mathscr{O}_{F^{\prime}}$-module with an ℓ-free ℓ-basis u at P, and there exists an ℓ-isomorphism

$$
\mathscr{O}_{C}{\tilde{\otimes} \mathscr{O}_{F^{\prime}}(-C) \simeq\left(4 P^{\sharp}\right) ~}_{\text {. }}
$$

We similarly see that

$$
H^{0}\left(\mathscr{O}_{F^{\prime}}(-\nu C)\right) \rightarrow H^{0}\left(\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{F^{\prime}}(-\nu C)\right) \quad \text { for all } \nu \geqslant 0
$$

We note that $y_{1}^{2} u$ and $y_{2} u^{2}$ are bases of $\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{F^{\prime}}(-\nu C)$ at P for $\nu=1$ and 2 , respectively. Thus, for arbitrary $a_{1}, a_{2} \in \mathbb{C}$, there exists a section $s_{0}^{\prime} \in H^{0}\left(\mathscr{O}_{F^{\prime}}(-C)\right)$ such that

$$
s_{0}^{\prime} \equiv a_{1} y_{1}^{2} u+a_{2} y_{2} u^{2} \bmod \left(v, u^{3}\right)
$$

Recall that the map $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow H^{0}\left(\mathscr{O}_{F^{\prime}}\right)$ is surjective modulo $f^{*} \omega_{Z}$ [7, Proposition 2.1]. In our situation, sections of $f^{*} \omega_{Z}$ lifted to $\mathbb{C}_{y_{1}, y_{2}, y_{4}}^{3}$ are contained in $\bigwedge^{2} \Omega_{X}^{1}$. We claim that

$$
\begin{equation*}
\bigwedge^{2} \Omega_{X}^{1} \subset\left(y_{1}, y_{2}, y_{4}\right)^{3} \cdot \Omega_{X^{\sharp}}^{2} \subset\left(y_{1}, y_{2}, y_{4}\right)^{4} \cdot \omega_{F^{\prime \sharp}} \tag{2.10}
\end{equation*}
$$

on the index-1 cover $F^{\not \sharp} \subset X^{\sharp}$ of $F^{\prime} \subset X$.
Note first that the local coordinates of X at P are

$$
y_{1} y_{2}, \quad y_{1}^{5}, \quad y_{2}^{5}, \quad y_{1}^{2} y_{4}, \quad y_{2}^{3} y_{4}, \quad y_{2} y_{4}^{2}
$$

Since $y_{1} y_{2}$ is the only term of degree 2 , and the rest are of degree greater than or equal to 3 , we see that $\bigwedge^{2} \Omega_{X}^{1} \subset\left(y_{1}, y_{2}, y_{4}\right)^{3} \cdot \Omega_{X^{\sharp}}^{2}$, the first inclusion.

Since $\phi=\beta_{1}\left(y_{1}^{3}-y_{2}^{2}\right)+\beta_{2} y_{4}$ with $\beta_{1}, \beta_{2} \in \mathscr{O}_{X}$ such that $\beta_{2}(P)=0$, we have that $\left.\Omega_{X^{\sharp}}^{2}\right|_{F^{\prime \sharp}} \subset\left(y_{1}, y_{2}, y_{4}\right) \cdot \omega_{F^{\prime \sharp}}$ because

$$
\Omega:=\left.\frac{\mathrm{d} y_{2} \wedge \mathrm{~d} y_{4}}{\partial \phi / \partial y_{1}}\right|_{F^{\prime \sharp}}= \pm\left.\frac{\mathrm{d} y_{1} \wedge \mathrm{~d} y_{4}}{\partial \phi / \partial y_{2}}\right|_{F^{\prime \sharp}}= \pm\left.\frac{\mathrm{d} y_{1} \wedge \mathrm{~d} y_{2}}{\partial \phi / \partial y_{4}}\right|_{F^{\prime \sharp}} \in \omega_{F^{\prime \sharp}}
$$

which settles the second inclusion.
From (2.10) and $\left(v, u^{3}\right) \subset\left(y_{1}^{3}, y_{2}^{2}, y_{4}^{3}\right)$ we see that there exists $s^{\prime} \in H^{0}\left(I_{C}\right)$ such that

$$
s^{\prime} \equiv a_{1} y_{2} y_{4}+a_{2} y_{2} y_{4}^{2} \bmod \left(y_{1}, y_{2}, y_{4}\right)^{4}+\left(y_{1}^{3}, y_{2}^{2}, y_{4}^{3}\right)
$$

By this, we obtain non-vanishing of the coefficient of $x_{2} x_{3}^{2}$ in $[\mathbf{4}, \S 10.7]$. Note that $[\mathbf{4}$, $\S 10.7 .1]$ is satisfied because $\lambda_{1}(P) \neq 0$, and $[4, \S 10.7 .3]$ is satisfied because the term y_{2}^{5} appears and $y_{1}^{2} y_{2}^{2}$ does not appear in s_{2}. The rest of the proof is the same as in $\S 2.6$.

Remark 2.7. In [4], the explanation at the beginning of [4, § 8.11] was not appropriate: the non-vanishing of the coefficient of $x_{2} x_{3}^{2}$ of [4, §10.7] as well as [4, §10.7.3] should have been verified. The last three lines of our $\S 2.7$ supplement the insufficient treatment in $[4, \S 8.11]$.

2.8. The case 2.5.4

In this case $m=5$ and $\lambda_{1}(P)=\alpha(P)=0$. Since $\lambda_{1}(P)=0$, we have that $\mu_{1}(P) \neq 0$ because u is an ℓ-basis (see (2.2)). Since $\alpha(P)=0$, we have that $\alpha y_{2}=\lambda_{2} y_{1}^{4}$ for some $\lambda_{2} \in \mathscr{O}_{C, P}$, as in Lemma 2.4. Thus, a general section $s \in H^{0}\left(I_{C}\right)$ satisfies the following relation near P :

$$
\begin{equation*}
s \equiv(\text { unit }) \cdot y_{1}^{2}\left(u+\lambda_{2} y_{1}^{2} y_{4}^{2}\right) \bmod F^{3}(\mathscr{O}, J) \tag{2.11}
\end{equation*}
$$

Hence, s does not contain any of the terms $y_{1} y_{2}, y_{1}^{2} y_{4}, y_{2} y_{4}^{2}$ and contains terms $y_{1}^{5}, y_{1}^{2} y_{2}^{2}$. By the lemma below, s also contains $y_{2}^{3} y_{4}$.

Lemma 2.8. Let τ be the weight $\tau=\frac{1}{5}(4,1,2)$ and let $(H, P) \subset \mathbb{C}^{3} / \boldsymbol{\mu}_{5}(2,3,1)$ be a normal surface singularity given by $\phi\left(x_{1}, x_{2}, x_{3}\right)=0$, where ϕ is a $\boldsymbol{\mu}_{5}$-invariant that does not contain any terms of τ-weight less than 2 . Then, (H, P) is not a rational singularity.

Proof. According to [3] we may assume that the coefficients of ϕ are general under the assumption that $\phi_{\tau=1}=0$. Consider the weighted blow-up with weight τ. The exceptional divisor Υ is given in $\mathbb{P}(4,1,2)$ by the equation $\phi_{\tau=2}\left(x_{1}, x_{2}, x_{3}\right)=0$ or, equivalently, in $\mathbb{P}(2,1,1)$ by $\phi_{\tau=2}\left(x_{1}, x_{2}^{1 / 2}, x_{3}\right)=0$. Thus, $\Upsilon \in\left|\mathscr{O}_{\mathbb{P}(2,1,1)}(5)\right|$ is a general member. By Bertini's theorem Υ is smooth and the pair $(\mathbb{P}(2,1,1), \Upsilon)$ is purely log terminal (PLT). By the subadjunction formula,

$$
2 p_{a}(\Upsilon)-2=\left(K_{\mathbb{P}(2,1,1)}+\Upsilon\right) \cdot \Upsilon-\frac{1}{2}=2
$$

Hence, Υ is not rational.
Lemma 2.9. The equation s contains the term $y_{1} y_{4}^{3}$.
Proof. Since $\alpha(P)=0$, we can write that $\alpha=y_{1} y_{2} \beta$ for some $\beta \in \mathscr{O}_{C, P}$. The unique $\mathscr{O} \subset \operatorname{gr}_{C}^{0} J$ is generated near P by

$$
y_{1}^{2} u+\left(y_{1} y_{2} \beta\right) y_{2} y_{4}^{2}=y_{1}^{2} u+y_{1}^{4} \beta y_{4}^{2}=y_{1}^{2}\left(u+y_{1} \beta y_{4}^{2}\right) \in F^{3}(\mathscr{O}, J)
$$

By Lemma 2.4, the sequence (2.6) splits and we have

Let \mathscr{K} be the C-laminal ideal such that $J \supset \mathscr{K} \supset F^{3}\left(\mathscr{O}_{C}, J\right)$ and $\mathscr{K} / F^{3}(\mathscr{O}, J)=\left(4 P^{\sharp}\right)$. Then, \mathscr{K} is locally a nested c.i. on $C \backslash\{P\}$ and $\left(y_{4}, u\right)$ is a $(1,3)$-monomializable ℓ-basis of $I_{C} \supset \mathscr{K}$ at P (where u is given by (2.2)). We have

Since $H^{1}\left(\mathscr{O}_{C}(-3 F) \tilde{\otimes} \omega\right) \neq 0$, as in the proof of Proposition 2.5 , the sequence does not split. So, locally near P, the sheaf $\operatorname{gr}_{C}^{0} \mathscr{K}$ has a section $y_{1}^{2} u+\gamma y_{1} y_{4}^{3}$ with $\gamma(P) \neq 0$.

Thus, by Lemmas 2.8 and 2.9, s does not contain any of the terms $y_{1} y_{2}, y_{1}^{2} y_{4}, y_{2} y_{4}^{2}$ and contains terms $y_{1}^{5}, y_{1}^{2} y_{2}^{2}, y_{2}^{3} y_{4}, y_{1} y_{4}^{3}$. Therefore, $[4, \S 10.8]$ can be applied to (H, P). It is easy to see that the whole configuration contracts to a curve. We get the case 1.2.1. This completes the proof of Theorem 1.1.

3. The case (IIB)

3.1. Set-up

Let (X, P) be the germ of a three-dimensional terminal singularity and let $C \subset(X, P)$ be a smooth curve. Recall that the triple (X, C, P) is said to be of type (IIB) if (X, P) is a terminal singularity of type $\mathrm{cAx} / 4$ and there exist analytic isomorphisms

$$
\begin{gathered}
(X, P) \simeq\left\{y_{1}^{2}-y_{2}^{3}+\alpha=0\right\} / \boldsymbol{\mu}_{4}(3,2,1,1) \subset \mathbb{C}_{y_{1}, \ldots, y_{4}}^{4} / \boldsymbol{\mu}_{4}(3,2,1,1) \\
C \simeq\left\{y_{1}^{2}-y_{2}^{3}=y_{3}=y_{4}=0\right\} / \boldsymbol{\mu}_{4}(3,2,1,1)
\end{gathered}
$$

where $\alpha=\alpha\left(y_{1}, \ldots, y_{4}\right) \in\left(y_{3}, y_{4}\right)$ is a semi-invariant with wt $\alpha \equiv 2 \bmod 4$ and $\alpha_{2}\left(0,0, y_{3}, y_{4}\right) \neq 0$ (see [5, A.3]).

Definition 3.1. We say that (X, P) is a simple (respectively, double) cAx/4-point if $\operatorname{rk} \alpha_{2}\left(0,0, y_{3}, y_{4}\right)=2\left(\right.$ respectively, $\left.\operatorname{rk} \alpha_{2}\left(0,0, y_{3}, y_{4}\right)=1\right)$.
3.1.1. Let (X, C) be an extremal curve germ and let $f:(X, C) \rightarrow(Z, o)$ be the corresponding contraction. In this section we assume that C is irreducible and has a point P of type (IIB). According to [4, Theorem 4.5] the germ (X, C) is not flipping. Recall that (X, C) is locally primitive at $P[\mathbf{5}, \S 4.2]$. Moreover, P is the only singular point $[\mathbf{5}$, Theorem 6.7], [6, Theorem 8.6, Lemma 7.1.2]. Thus, the group $\mathrm{Cl}(Z, o)$ has no torsion. Therefore, f is either a divisorial contraction to a cDV (compound Du Val) point or a conic bundle over a smooth base [6, Proposition 8.4].
3.2. According to $\left[\mathbf{4}\right.$, Theorem 2.2] and $[\mathbf{7}]$, a general member $F \in\left|-K_{X}\right|$ contains C, has only Du Val singularities, and the graph $\Delta(F, C)$ has the form

where all the vertices correspond to (-2)-curves and \bullet corresponds to C. Under the identifications of $\S 3.1$, a general member $F \in\left|-K_{X}\right|$ near P is given by $\lambda y_{3}+\mu y_{4}=0$ for some $\lambda, \mu \in \mathscr{O}_{X}$ such that $\lambda(0), \mu(0)$ are general in $\mathbb{C}^{*}[\mathbf{4}, \S 2.11],[\mathbf{7}, \S 4]$.
3.3. Let H be a general member of $\left|\mathscr{O}_{X}\right|_{C}$, let $T:=f(H)$, and let $\Gamma:=H \cap F$.
3.3.1. If f is divisorial, we set $F_{Z}:=f(F)$ and $\Gamma_{Z}:=f(\Gamma)$. Then, $F_{Z} \in\left|-K_{Z}\right|, T$ is a general hyperplane section of (Z, o) and Γ_{Z} is a general hyperplane section of F_{Z}.
3.3.2. If f is a \mathbb{Q}-conic bundle, we consider the Stein factorization

$$
f_{F}:(F, C) \xrightarrow{f_{1}}\left(F_{Z}, o_{Z}\right) \xrightarrow{f_{2}}(Z, o) .
$$

Here we set $\Gamma_{Z}:=f_{1}(\Gamma)$.
In both cases F_{Z} is a Du Val singularity of type E_{6} by $\S 3.2$.
Lemma 3.2.
(i) H is normal, has only rational singularities, and is smooth outside of P.
(ii) $\Gamma=C+\Gamma_{1}$ (as a scheme), where Γ_{1} is a reduced irreducible curve.
(iii) If f is birational, then $T=f(H)$ is a $D u$ Val singularity of type $\mathrm{E}_{6}, \mathrm{D}_{5}, \mathrm{D}_{4}$, $\mathrm{A}_{4}, \ldots, \mathrm{~A}_{1}$ (or smooth).

Proof. Consider the following two cases.

3.3.3. The case when f is divisorial

Since the point (Z, o) is terminal of index 1 , the germ (T, o) is a Du Val singularity. Since Γ_{Z} is a general hyperplane section of F_{Z}, we see that the graph $\Delta(F, \Gamma)$ has the following form:

where, as usual, \diamond corresponds to the proper transform of Γ_{Z} and the numbers attached to vertices are the coefficients of the corresponding exceptional curves in the pull-back of Γ_{Z}. By Bertini's theorem, H is smooth outside of C. Since the coefficient of C is equal to $1, F \cap H=C+\Gamma$ (as a scheme), H is smooth outside of P. In particular, H is normal. Since $f_{H}: H \rightarrow T$ is a birational contraction and (T, o) is a Du Val singularity, the singularities of H are rational.

3.3.4. The case when f is $a \mathbb{Q}$-conic bundle

We may assume that, in some coordinate system, the germ $\left(F_{Z}, o_{Z}\right)$ is given by $x^{2}+$ $y^{3}+z^{4}=0$. Then, by [2], up to coordinate change the double cover $\left(F_{Z}, o_{Z}\right) \rightarrow(Z, o)$ is just the projection to the (y, z)-plane. Hence, we may assume that Γ_{Z} is given by $z=0$. As in the case 3.3.3 we see that the graph $\Delta(F, \Gamma)$ has the form (3.1). Therefore, H is smooth outside of P. The restriction $f_{H}: H \rightarrow T$ is a rational curve fibration. Hence, H has only rational singularities.

Lemma 3.2 (iii) follows by the fact that there exists a hyperplane section F_{Z} of (Z, o) that is Du Val of type E_{6} (see, for example, $[\mathbf{1}]$).

We need a more detailed description of (H, C) near P.
Lemma 3.3. In the notation of $\S 3.1$ the surface $H \subset X$ is given locally near P by the equation $y_{3} v_{3}+y_{4} v_{4}=0$, where $v_{3}, v_{4} \in \mathscr{O}_{P^{\sharp}, X^{\sharp}}$ are semi-invariants with wt $v_{i} \equiv 3$ and at least one of v_{3} or v_{4} contains a linear term in y_{1}.

Proof. Since H is normal and $\operatorname{gr}_{C}^{1} \mathscr{O} \simeq \mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(-1)$, we have that $\mathscr{O}_{C}(-H)=\mathscr{O} \subset$ $\operatorname{gr}_{C}^{1} \mathscr{O}$, i.e. the local equation of H must be a generator of $\mathscr{O} \subset \operatorname{gr}_{C}^{1} \mathscr{O}$.
3.4. Let σ be the weight $\frac{1}{4}(3,2,1,1)$. By Lemma 3.3 the surface germ (H, P) can be given in $\mathbb{C}^{4} / \boldsymbol{\mu}_{4}(3,2,1,1)$ by the two equations

$$
\left.\begin{array}{r}
y_{1}^{2}-y_{2}^{3}+\eta\left(y_{3}, y_{4}\right)+\phi\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0, \\
y_{1} l\left(y_{3}, y_{4}\right)+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+\psi\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0, \tag{3.2}
\end{array}\right\}
$$

where η, l, q and ξ are homogeneous polynomials of degree $2,1,2$ and 4 , respectively, $\eta \neq 0, l \neq 0, \phi, \psi \in\left(y_{3}, y_{4}\right), \sigma$ - ord $\phi \geqslant \frac{3}{2}, \sigma$ - ord $\psi \geqslant 2$. Moreover, $\operatorname{rk} \eta=2$ (respectively, $\mathrm{rk} \eta=1$) if (X, P) is a simple (respectively, double) cAx/4-point.
3.4.1. Consider the weighted blow-up

$$
g:(W \supset \tilde{X} \supset \tilde{H}) \rightarrow\left(\mathbb{C}^{4} / \boldsymbol{\mu}_{4}(3,2,1,1) \supset X \supset H\right)
$$

with weight σ. Let E be the g-exceptional divisor, let $\Xi:=E \cap \tilde{H}$ be the exceptional divisor of $g_{H}:=\left.g\right|_{\tilde{H}}$, and let \tilde{C} be the proper transform of C. Define

$$
\Xi_{0}:=\left\{y_{3}=y_{4}=0\right\} \subset E .
$$

If \tilde{H} is normal, let $g_{1}: \hat{H} \rightarrow \tilde{H}$ be the minimal resolution. Thus, in this case, we have the morphisms

$$
h: \hat{H} \xrightarrow{g_{1}} \tilde{H} \xrightarrow{g_{H}} H \xrightarrow{f_{H}} T .
$$

Lemma 3.4.

(i) $E \simeq \mathbb{P}(3,2,1,1)$ and Ξ is given in this $\mathbb{P}(3,2,1,1)$ by

$$
\eta\left(y_{3}, y_{4}\right)=y_{1} l\left(y_{3}, y_{4}\right)+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)=0 \text {. }
$$

(ii) \tilde{C} of C meets E at $Q:=(1: 1: 0: 0) \in \Xi_{0}$.
(iii) Ξ_{0} is a component of Ξ and $\left(\Xi_{0} \cdot \Xi\right)_{\tilde{H}}=-\frac{2}{3}$.
(iv) If \tilde{H} is normal, then $K_{\tilde{H}}=g^{*} K_{H}-\frac{3}{4} \Xi$.

Proof. Statements (i) and (ii) are obvious; (iii) follows from

$$
\left(\Xi_{0} \cdot \Xi\right)_{\tilde{H}}=\left(\Xi_{0} \cdot E\right)_{W}=\left(\Xi_{0} \cdot \mathscr{O}_{E}(E)\right)_{E}=\left(\Xi_{0} \cdot \mathscr{O}_{E}(-4)\right)_{E}=-\frac{2}{3}
$$

and (iv) follows from $K_{W}=g^{*} K_{\mathbb{C}^{4} / \boldsymbol{\mu}_{4}}+\frac{3}{4} E$.

3.5. The case of a simple $c A x / 4$-point

After a coordinate change, we may assume that $\eta=y_{3} y_{4}$. We may also assume that the term y_{3} appears in $l\left(y_{3}, y_{4}\right)$ with coefficient 1 , that is, $l\left(y_{3}, y_{4}\right)=y_{3}+c y_{4}, c \in \mathbb{C}$. Thus, (3.2) for (H, P) have the form

$$
\left.\begin{array}{rl}
y_{1}^{2}-y_{2}^{3}+y_{3} y_{4}+\phi & =0 \tag{3.3}\\
y_{1}\left(y_{3}+c y_{4}\right)+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+\psi & =0
\end{array}\right\}
$$

It is easy to see that in this case \tilde{X} has only isolated (terminal) singularities. Indeed, $\tilde{X} \cap E$ is given by $y_{3} y_{4}=0$ in $E \simeq \mathbb{P}(3,2,1,1)$. Hence, $\operatorname{Sing}(\tilde{X}) \subset \Xi_{0} \cup \operatorname{Sing}(E)$. There exist the following subcases.
3.5.1. The subcase when (X, P) is a simple $\mathrm{cAx} / 4$-point and $c \neq 0$

We show that only the case 1.2 .2 occurs. We may assume that in (3.3) $l\left(y_{3}, y_{4}\right)=y_{3}+y_{4}$. In this case, $\Xi=2 \Xi_{0}+\Xi^{\prime}+\Xi^{\prime \prime}$, where Ξ^{\prime} and $\Xi^{\prime \prime}$ are given in $E \simeq \mathbb{P}(3,2,1,1)$ as

$$
\begin{aligned}
\Xi^{\prime} & :=\left\{y_{3}=y_{1}+y_{2} q\left(0, y_{4}\right) / y_{4}+\xi\left(0, y_{4}\right) / y_{4}=0\right\} \\
\Xi^{\prime \prime} & :=\left\{y_{4}=y_{1}+y_{2} q\left(y_{3}, 0\right) / y_{3}+\xi\left(y_{3}, 0\right) / y_{3}=0\right\}
\end{aligned}
$$

All the components of Ξ pass through $(0: 1: 0: 0)$ and do not meet each other elsewhere.
Claim 3.5. The surface \tilde{H} is normal and has the following singularities (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1))$:

- $O_{1}:=(1: 0: 0: 0)$, which is of type A_{2},
- $Q:=\Xi_{0} \cap \tilde{C}=(1: 1: 0: 0)$, which is of type A_{1},
- $O_{2}:=\Xi_{0} \cap \Xi^{\prime} \cap \Xi^{\prime \prime}=(0: 1: 0: 0)$, which is a log terminal point of index 2 (a cyclic quotient singularity of type $(1,2 k-1) / 4 k)$.

The pairs $\left(\tilde{H}, \Xi_{0}+\Xi^{\prime}+\tilde{C}\right)$ and $\left(\tilde{H}, \Xi_{0}+\Xi^{\prime \prime}+\tilde{C}\right)$ are log canonical (LC). Moreover, they are PLT at all points of $\Xi_{0} \backslash\left\{O_{2}, Q\right\}$. Thus, the surface \tilde{H} looks as follows:

Proof. Since $\Xi=\tilde{H} \cap E$ is reduced along Ξ^{\prime} and $\Xi^{\prime \prime}$, the singular locus of \tilde{H} is contained in $\Xi_{0}=\left\{y_{3}=y_{4}=0\right\}$.

Consider the chart $U_{1}=\left\{y_{1} \neq 0\right\} \subset W, U_{1} \simeq \mathbb{C}^{4} / \boldsymbol{\mu}_{3}(1,1,2,2)$. The equations of \tilde{H} have the form

$$
\begin{array}{r}
y_{1}-y_{1} y_{2}^{3}+y_{3} y_{4}+y_{1} \phi_{3 / 2}\left(1, y_{2}, y_{3}, y_{4}\right)+y_{1}^{2}(+\cdots)=0, \\
y_{3}+y_{4}+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+y_{1} \psi_{2}\left(1, y_{2}, y_{3}, y_{4}\right)+y_{1}^{2}(+\cdots)=0,
\end{array}
$$

and \tilde{C} is cut out on \tilde{H} by $y_{3}=y_{4}=0$. Using the condition that $y_{1}=y_{3}=y_{4}=0$, one can obtain that the surface $\tilde{H} \cap U_{1}$ has two singular points on the exceptional divisor $\left\{y_{1}=0\right\}: Q=\left\{y_{1}=y_{3}=y_{4}=1-y_{2}^{3}=0\right\}$ and the origin O_{1}. It is easy to see that (\tilde{H}, Q) is a Du Val singularity of type A_{1} and $\left(\tilde{H}, O_{1}\right)$ is a Du Val singularity of type A_{2}. Since Ξ_{0} and \tilde{C} are smooth curves meeting each other transversely, the pair $K_{\tilde{H}}+\Xi_{0}+\tilde{C}$ is LC at Q.
Consider the chart $U_{2}=\left\{y_{2} \neq 0\right\} \subset W, U_{2} \simeq \mathbb{C}^{4} / \boldsymbol{\mu}_{2}(1,0,1,1)$. The equations of \tilde{H} have the form

$$
\begin{array}{r}
y_{1}^{2} y_{2}-y_{2}+y_{3} y_{4}+y_{2} \phi_{3 / 2}\left(y_{1}, 1, y_{3}, y_{4}\right)+y_{2}^{2}(+\cdots)=0, \\
y_{1}\left(y_{3}+y_{4}\right)+q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+y_{2} \psi_{2}\left(y_{1}, 1, y_{3}, y_{4}\right)+y_{2}^{2}(+\cdots)=0 .
\end{array}
$$

We then get only one new singular point: the origin O_{2} where the singularity of \tilde{H} is analytically isomorphic to a singularity in $\mathbb{C}_{y_{1}, y_{3}, y_{4}}^{3} / \boldsymbol{\mu}_{2}(1,1,1)$ given by

$$
\begin{equation*}
\left\{y_{1}\left(y_{3}+y_{4}\right)+q\left(y_{3}, y_{4}\right)+(\text { terms of degree } \geqslant 3)=0\right\} . \tag{3.4}
\end{equation*}
$$

Hence, $\left(\tilde{H}, O_{2}\right)$ is a log terminal singularity of index 2 .
Therefore, for the graph $\Delta(H, C)$ we have only the following two possibilities:

where the vertex marked by a_{0} (respectively, $a^{\prime}, a^{\prime \prime}$) corresponds to Ξ_{0} (respectively, Ξ^{\prime}, $\Xi^{\prime \prime}$) and • corresponds to \hat{C}.

Using Lemma 3.4 (iii) one can easily obtain that $a_{0}=2$. Similarly,

$$
\left(\Xi^{\prime} \cdot \Xi\right)_{\tilde{H}}=\left(\Xi^{\prime \prime} \cdot \Xi\right)_{\tilde{H}}=-2
$$

This gives us that $a^{\prime}=a^{\prime \prime}=3$. However, the right-hand configuration above is not contractible. We get the case 1.2.2

Corollary 3.6. We have that $q\left(0, y_{4}\right) \neq 0$.
Proof. Assume that $q\left(0, y_{4}\right)=0$. Take H such that in (3.2) the functions η, ϕ, l, q, ξ and ψ are sufficiently general under this assumption. Let X^{\prime} be a general one-parameter deformation family of H. According to [4, Proposition 11.4] there exists a contraction $f^{\prime}: X^{\prime} \rightarrow Z^{\prime}$, so $\left(X^{\prime}, C^{\prime}\right)$ is an extremal curve germ. Moreover, $\left(X^{\prime}, C^{\prime}\right)$ is of type (IIB). By 3.5.1 we get a contradiction (otherwise (3.4) is not a point of type $\frac{1}{4}(1,1)$).

3.5.2. The subcase when (X, P) is a simple $\mathrm{cAx} / 4$-point and $c=0$

We show that only the case 1.2 .3 occurs. Equations (3.3) have the form

$$
\begin{array}{r}
y_{1}^{2}-y_{2}^{3}+y_{3} y_{4}+\phi=0 \\
y_{1} y_{3}+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+\psi=0
\end{array}
$$

In this case, $\Xi=3 \Xi_{0}+\Xi^{\prime}+\Xi^{\prime \prime}$, where Ξ^{\prime} and $\Xi^{\prime \prime}$ are given in $E \simeq \mathbb{P}(3,2,1,1)$ as

$$
\begin{aligned}
\Xi^{\prime} & =\left\{y_{4}=y_{1}+y_{2} q\left(y_{3}, 0\right) / y_{3}+\xi\left(y_{3}, 0\right) / y_{3}=0\right\} \\
\Xi^{\prime \prime} & =\left\{y_{3}=y_{2} q\left(0, y_{4}\right) / y_{4}^{2}+\xi\left(0, y_{4}\right) / y_{4}^{2}=0\right\}
\end{aligned}
$$

Claim 3.7. The surface \tilde{H} is normal and has the following singularities (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1)$):

- $O_{1}:=\Xi_{0} \cap \Xi^{\prime \prime}=(1: 0: 0: 0)$, which is of type A_{2},
- $Q:=\Xi_{0} \cap \tilde{C}=(1: 1: 0: 0)$, which is of type A_{2},
- $O_{2}:=\Xi_{0} \cap \Xi^{\prime}=(0: 1: 0: 0)$, which is of type $\frac{1}{4}(1,1)$.

The pair $\left(\tilde{H}, \Xi_{0}+\Xi^{\prime}+\Xi^{\prime \prime}+\tilde{C}\right)$ is LC. Thus, \tilde{H} looks as follows:

The proof is similar to the proof of Claim 3.5, so we omit it.
By the above claim, $\Delta(H, C)$ has the form

Since

$$
\left(\Xi^{\prime} \cdot \Xi\right)_{\tilde{H}}=-2, \quad\left(\Xi^{\prime \prime} \cdot \Xi\right)_{\tilde{H}}=-\frac{4}{3}
$$

(cf. Lemma 3.4(iii)), we have that $a_{0}=2$ and $a^{\prime}=a^{\prime \prime}=3$. Thus, we get the case 1.2.3.

3.6. The case of a double $\mathrm{cAx} / 4$-point

We may assume that $\eta=y_{3}^{2}$. By Corollary $3.6, q\left(0, y_{4}\right) \neq 0$, so we also may assume that $q\left(0, y_{4}\right)=y_{4}^{2}$. Thus, Equations (3.2) for (H, P) have the form

$$
\begin{aligned}
y_{1}^{2}-y_{2}^{3}+y_{3}^{2}+\phi & =0, \\
y_{1} l\left(y_{3}, y_{4}\right)+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+\psi & =0,
\end{aligned}
$$

where ϕ does not contain any terms of degree less than or equal to 2 . This case is more complicated because \tilde{X} has non-isolated singularities.
Remark 3.8. Sing (\tilde{X}) has exactly one one-dimensional irreducible component

$$
\Lambda:=\left\{y_{3}=y_{1}^{2}-y_{2}^{3}+\phi_{\sigma=3 / 2}\left(y_{1}, y_{2}, 0, y_{4}\right)=0\right\} \subset E \simeq \mathbb{P}(3,2,1,1) .
$$

There exist the following subcases.
3.6.1. The subcase when (X, P) is a double $\mathrm{cAx} / 4$-point and $l\left(0, y_{4}\right) \neq 0$

We show that only the case 1.2.4 occurs. After a coordinate change, we may assume that $l\left(y_{3}, y_{4}\right)=y_{4}$, so Equations (3.2) for (H, P) have the form

$$
\left.\begin{array}{r}
y_{1}^{2}-y_{2}^{3}+y_{3}^{2}+\phi=0, \tag{3.5}\\
y_{1} y_{4}+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+\psi=0
\end{array}\right\}
$$

In this case, $\Xi=2 \Xi_{0}+2 \Xi^{\prime}$, where

$$
\Xi^{\prime}=\left\{y_{3}=y_{1}+y_{2} q\left(0, y_{4}\right) / y_{4}+\xi\left(0, y_{4}\right) / y_{4}=0\right\} \subset E \simeq \mathbb{P}(3,2,1,1) .
$$

Claim 3.9. The surface \tilde{H} is normal and has the following singularities on Ξ_{0} (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1))$:

- $O_{1}:=(1: 0: 0: 0)$, which is of type A_{2},
- $Q:=\Xi_{0} \cap \tilde{C}=(1: 1: 0: 0)$, which is of type A_{1},
- $O_{2}:=\Xi_{0} \cap \Xi^{\prime}=(0: 1: 0: 0)$, which is a log terminal point of index 2 .

The pair $\left(\tilde{H}, \Xi_{0}+\Xi^{\prime}+\tilde{C}\right)$ is LC along Ξ_{0}. Moreover, it is PLT at all points of $\Xi_{0} \backslash\left\{O_{2}, Q\right\}$. Thus, \tilde{H} looks as follows:

where there are more singular points sitting on $\Xi^{\prime} \backslash\left\{O_{2}\right\}$ that must be Du Val.
The proof is similar to the proof of Claim 3.5.
Remark 3.10. For a general choice of ξ and ϕ, the surface \tilde{H} has exactly three singular points on $\Xi^{\prime} \backslash\left\{O_{2}\right\}$ and these points are of type A_{1}.

Hence, the dual graph $\Delta(H, C)$ has one of the following forms:
(a)

(b)

where \vdots corresponds to some Du Val singularities sitting on Ξ^{\prime}. Since the whole configuration is contractible to either a Du Val point or a curve, we have that $a_{0}=2$ and case (b) does not occur. In case (a), contracting black vertices successively, we get the following:

$$
\vdots a^{\prime}-1
$$

Hence, $a^{\prime}=2$ or 3 .
3.6.1.1. Let (S, o) be a normal surface singularity and let $\mu: \hat{S} \rightarrow S$ be its resolution. Recall that the codiscrepancy divisor is a unique \mathbb{Q}-divisor $\Theta=\sum \theta_{i} \Theta_{i}$ on \hat{S} with support in the exceptional locus such that $\mu^{*} K_{S}=K_{\hat{S}}+\Theta$. If μ is the minimal resolution, then Θ must be effective. The coefficient θ_{i} is called the codiscrepancy of Θ_{i}. We denote it by $\operatorname{cdisc}\left(\Theta_{i}\right)$. If (S, o) is a rational singularity, then $\theta_{i}=\operatorname{disc}\left(\Theta_{i}\right)$ can be found from the system of linear equations

$$
\sum_{i} \theta_{i} \Theta_{i} \cdot \Theta_{j}=-K_{\hat{S}} \cdot \Theta_{j}=2+\Theta_{j}^{2}
$$

Let $a_{i}:=-\Theta_{i}^{2}$. The system can then be rewritten as

$$
a_{j} \theta_{j}=a_{j}-2+\sum^{\prime} \theta_{i}
$$

where \sum^{\prime} runs through all exceptional curves Θ_{i} meeting Θ_{j}.

Lemma 3.11. Let Δ be the dual graph of a resolution of a rational singularity and let Δ^{\prime} be its subgraph consisting of one vertex of weight $a \geqslant 2$ and $n-1$ vertices of weight 2. Assume that the remaining part $\Delta \backslash \Delta^{\prime}$ is attached to $\stackrel{a}{\circ}$.
(i) If Δ^{\prime} has the form

$$
\circ-\cdots-\circ-\stackrel{a}{\circ} \ldots
$$

then the codiscrepancies of the components in Δ^{\prime}, indexed from left to right, are computed by $\alpha_{k}=k \alpha_{1}, k \leqslant n$.
(ii) If Δ^{\prime} has the form

$$
\circ-0-\cdots-\circ-\stackrel{a}{\left.\right|_{0}}
$$

then the codiscrepancies of the components in Δ^{\prime} are computed by $2 \alpha_{1}=2 \alpha_{2}=\alpha_{3}$ and $\alpha_{k}=\alpha_{3}$ for $3 \leqslant k \leqslant n$, when the bottom component is indexed first and the rest are indexed from left to right.
3.6.1.2. By Lemma 3.4 (iv) we have that $\operatorname{cdisc}\left(\Xi_{0}\right)=\underset{\tilde{H}}{\operatorname{cdisc}}\left(\Xi^{\prime}\right)=\frac{3}{2}$. Using 3.6.1.1 we compute the codiscrepancies of exceptional divisors over \tilde{H} :

3.6.1.3. If $a^{\prime}=2$, then the configuration $:-a^{\prime}-1$ is contracted either to a smooth point or to a curve. Therefore, we have one of the following possibilities:
(a1)

(a2) for $n \geqslant 2$,

We then get a contradiction by Lemma 3.11.
3.6.1.4. Thus, $a^{\prime}=3$. Then, f is divisorial and the configuration $:-a^{a^{\prime}-1}{ }^{-1}$ is exactly the dual graph of the minimal resolution of (T, o), which is a Du Val graph of type E_{6}, $\mathrm{D}_{5}, \mathrm{D}_{4}, \mathrm{~A}_{4}, \mathrm{~A}_{3}, \mathrm{~A}_{2}$ or A_{1}. If the graph $\Delta(H, C)$ has the form (a1), then, as above, $\frac{3}{2}=\alpha_{n+1}=(n+1) \alpha_{1}, 3 \cdot \frac{3}{2}=1+\alpha_{n}+\frac{5}{4}$. This gives us that $n \alpha_{1}=\frac{9}{4}, \alpha_{1}=\frac{3}{2}-\frac{9}{4}<0$, which is a contradiction. Similarly, in case (a2) with $n \geqslant 3$ we obtain that $\alpha_{n}=\frac{3}{2}$, $3 \cdot \frac{3}{2}=1+\alpha_{n}+\frac{5}{4}$, which is a contradiction.

If there exist three connected components of the exceptional divisor attached to Ξ^{\prime}, then for corresponding codiscrepancies $\alpha_{n}, \beta_{m}, \gamma_{l}$ we have that $3 \cdot \frac{3}{2}=1+\alpha_{n}+\beta_{m}+\gamma_{l}+\frac{5}{4}$, $\alpha_{n}+\beta_{m}+\gamma_{l}=\frac{9}{4}$. On the other hand, $2 \alpha_{n} \geqslant \frac{3}{2}, 2 \beta_{m} \geqslant \frac{3}{2}, 2 \gamma_{l} \geqslant \frac{3}{2}$. Hence, the equalities $\alpha_{n}=\beta_{m}=\gamma_{l}=\frac{3}{4}$ hold and we get the case 1.2.4.

In the remaining cases, by direct computations we obtain that the exceptional divisors have codiscrepancies whose denominators divide 4 only in cases 3.6.1.5 or 3.6.1.6.
3.6.1.5. (T, o) is Du Val of type D_{5}, and $\Delta(H, C)$ has the form:

Here, \tilde{H} has two singular points on $\Xi^{\prime} \backslash \Xi_{0}$ and these points are of types A_{1} and A_{3}.
3.6.1.6. (T, o) is Du Val of type E_{6}, and $\Delta(H, C)$ has the form:

Here, \tilde{H} has exactly one singular point on $\Xi^{\prime} \backslash \Xi_{0}$ and this point is of type A_{5}.
3.6.2. We now show that in cases 3.6.1.5 and 3.6.1.6 the chosen element $H \in\left|\mathscr{O}_{X}\right|_{C}$ is not general. Consider the case 3.6.1.5 (case 3.6.1.6 can be treated similarly). Take a divisor D on \hat{H}, whose coefficients are as follows:

where \square corresponds to an arbitrary smooth analytic curve \hat{G} meeting Ξ^{\prime} transversely, so $\operatorname{Supp} D$ is a simple normal crossing divisor. It is easy to verify that D is numerically trivial, so $D=h^{*} G_{Z}$, where G_{Z} is a Cartier divisor on T. There exists an exact sequence

$$
0 \rightarrow \mathscr{O}_{X}(-H) \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{O}_{H} \rightarrow 0
$$

Since D corresponds to a section in $H^{0}\left(\mathscr{O}_{H}\right)$ and $R^{1} f_{*} \mathscr{O}_{X}(-H) \simeq R^{1} f_{*} \mathscr{O}_{X}=0$, there exists a member $H^{\prime} \in\left|\mathscr{O}_{X}\right|_{C}$ such that $H^{\prime} \cap H=D$ and, in particular, H^{\prime} contains C.

The proper transform \tilde{H}^{\prime} of H^{\prime} by g satisfies $\tilde{H}^{\prime}=g^{*} H^{\prime}-\left.E\right|_{\tilde{X}}$. Since $\Xi=E \cap \tilde{H}$ and $\Xi=2 \Xi_{0}+2 \Xi^{\prime}$, we have that $\left.\tilde{H}^{\prime}\right|_{\tilde{H}}=4 \Xi_{0}+g_{1}(\hat{G})$. In particular, Ξ^{\prime} is not a component of $\left.\tilde{H}^{\prime}\right|_{\tilde{H}}$. Note that $\left|g_{1}(\hat{G})\right|$ is a base-point-free linear system on \tilde{H} (because $H^{1}\left(\mathscr{O}_{\tilde{H}}\right)=0$). Thus, we can take H^{\prime} such that \tilde{H}^{\prime} does not pass through points in $\tilde{H} \cap \Lambda \backslash \Xi_{0}$. Now let H_{ε} be a general member of the pencil generated by H and H^{\prime}. Note that $\Lambda \cap \Xi_{0}=\{Q\}$ and that Λ meets \tilde{H} and \tilde{H}_{ε} transversely at Q. By Bertini's theorem the proper transform \tilde{H}_{ε} of H_{ε} on \tilde{X} also meets Λ transversely along Ξ^{\prime}. Since $\left(\tilde{H}_{\varepsilon} \cdot \Lambda\right)_{\tilde{X}}=(\mathscr{O}(4) \cdot \Lambda)_{\mathbb{P}(3,2,1,1)}=4$, the intersection $\tilde{H}_{\varepsilon} \cap \Lambda$ consists of four distinct points. Therefore, \tilde{H}_{ε} has three Du Val points on $\tilde{H}_{\varepsilon} \cap \Lambda \backslash \Xi_{0}$. This shows that for H_{ε} the situation of $\S 1.2 .4$ holds, so the chosen H is not general in the case 3.6.1.5.
3.6.3. The subcase when (X, P) is a double $\mathrm{cAx} / 4$-point and $l\left(0, y_{4}\right)=0$

We show that only the case 1.2 .5 occurs. We may assume that $l\left(y_{3}, y_{4}\right)=y_{3}$, so Equations (3.2) for (H, P) have the form

$$
\left.\begin{array}{r}
y_{1}^{2}-y_{2}^{3}+y_{3}^{2}+\phi=0 \tag{3.6}\\
y_{1} y_{3}+y_{2} q\left(y_{3}, y_{4}\right)+\xi\left(y_{3}, y_{4}\right)+\psi=0 .
\end{array}\right\}
$$

In this case, $\Xi=4 \Xi_{0}+2 \Xi^{\prime}$, where

$$
\Xi^{\prime}=\left\{y_{3}=y_{2} q\left(0, y_{4}\right) / y_{4}^{2}+\xi\left(0, y_{4}\right) / y_{4}^{2}=0\right\} \subset E \simeq \mathbb{P}(3,2,1,1) .
$$

Claim 3.12. The surface \tilde{H} is normal and has the following singularities on Ξ_{0} (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1))$:

- $O_{1}:=\Xi_{0} \cap \Xi^{\prime}=(1: 0: 0: 0)$, which is of type A_{2},
- $Q:=\Xi_{0} \cap \tilde{C}=(1: 1: 0: 0)$, which is of type A_{3},
- $O_{2}:=(0: 1: 0: 0)$, which is a cyclic quotient singularity of type $\frac{1}{4}(1,1)$.

The pair $\left(\tilde{H}, \Xi_{0}+\Xi^{\prime}+\tilde{C}\right)$ is LC along Ξ_{0}. Moreover, it is PLT at all points of $\Xi_{0} \backslash\left\{O_{1}, Q\right\}$. Thus, \tilde{H} looks as follows:

Hence, the dual graph $\Delta(H, C)$ has the following form:

where \vdots corresponds to some Du Val singularities sitting on Ξ^{\prime}. Since the whole configuration is contractible to either a Du Val point or a curve, we have that $a_{0}=2$. Contracting black vertices successively on some step we get the following:

$$
\vdots-a^{a^{\prime}-2}
$$

Recall that \vdots is not empty. Hence, $a^{\prime}=3$ or 4 . By Lemma 3.4 (iv) we have that $\operatorname{cdisc}\left(\Xi_{0}\right)=$ 3, $\operatorname{cdisc}\left(\Xi^{\prime}\right)=\frac{3}{2}$. Using 3.6.1.1 we compute the codiscrepancies of exceptional divisors over \tilde{H} to give the following:

If $a^{\prime}=4$, we get a contradiction as in $\S 3.6 .1 .4$. If $a^{\prime}=3$, then the whole configuration contracts to a curve, i.e. f is a \mathbb{Q}-conic bundle. As in $\S 3.6 .1 .3$, we infer that the graph $\Delta(H, C)$ has the following form:

where $n \geqslant 0$.
We show that $n=0$, that is, the case 1.2.5 holds. As in $\S 3.6 .2$, take a divisor D on \hat{H} whose coefficients are as follows:

Then, $D=h^{*} O$ is a scheme fibre of $h: \hat{H} \rightarrow T$. There exists a member $H^{\prime} \in\left|\mathscr{O}_{X}\right|_{C}$ such that $\left.H^{\prime}\right|_{H}=g_{H *} g_{1 *} D=f_{H}^{*} o$. Since $\Xi=4 \Xi_{0}+2 \Xi^{\prime}$, we have that $\left.\tilde{H}^{\prime}\right|_{\tilde{H}}=g_{1 *} D-\Xi=$ $4 \Xi_{0}$. In particular, the curve Ξ^{\prime} is not a component of $\left.\tilde{H}^{\prime}\right|_{\tilde{H}}$. Hence, the base locus of the pencil generated by \tilde{H} and \tilde{H}^{\prime} coincides with Ξ_{0}. As in $\S 3.6 .2$ a general member \tilde{H}_{ε} of this pencil meets the curve Λ transversely outside of Ξ_{0}. Note that $\Lambda \cap \Xi_{0}=\{Q\}$ and the local intersection number of Λ and \tilde{H}_{ε} at Q is equal to 2. By Bertini's theorem, the proper transform \tilde{H}_{ε} of H_{ε} on \tilde{X} meets Λ transversely along Ξ^{\prime}. Since $\left(\tilde{H}_{\varepsilon} \cdot \Lambda\right)_{\tilde{X}}=$ $(\mathscr{O}(4) \cdot \Lambda)_{\mathbb{P}(3,2,1,1)}=4$, the intersection $\tilde{H}_{\varepsilon} \cap \Lambda$ consists of three distinct points. Therefore, \tilde{H}_{ε} has two Du Val points on $\tilde{H}_{\varepsilon} \cap \Lambda \backslash \Xi_{0}$. This shows that for H_{ε} the situation of $\S 1.2 .5$ holds, so the chosen H is not general if $n>0$.

Example 3.13. Let H be given by the equations

$$
\begin{aligned}
y_{1}^{2}-y_{2}^{3}+y_{3}^{2} & =0 \\
y_{1} y_{3}+y_{2} y_{4}^{2}+y_{4}^{4} & =0 .
\end{aligned}
$$

Then, a one-parameter deformation of H is a \mathbb{Q}-conic bundle as in $\S 1.2 .5$.
Acknowledgements. The paper was written during Y.P.'s stay at RIMS, Kyoto University, in February and March 2011. Y.P. thanks the institute for the invitation, their hospitality and the nice working environment. S.M. was partly supported by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (B)(2), (Grant 20340005). Y.P. was partly supported by the RFBR (Grants 11-01-00336-a, 11-01-92613KO_a), Leading Scientific Schools (Grant 4713.2010.1) and AG Laboratory SU-HSE, RF Government (Grant Ag. 11.G34.31.0023).

References

1. V. I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups of $\mathrm{A}_{k}, \mathrm{D}_{k}, \mathrm{E}_{k}$ and Lagrangian singularities, Funct. Analysis Applic. 6 (1972), 254-272.
2. F. Catanese, Automorphisms of rational double points and moduli spaces of surfaces of general type, Compositio Math. 61 (1987), 81-102.
3. R. Elkik, Singularités rationnelles et déformations, Invent. Math. 47 (1978), 139-147.
4. J. Kollár and S. Mori, Classification of three-dimensional flips, J. Am. Math. Soc. 5(3) (1992), 533-703.
5. S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Am. Math. Soc. 1(1) (1988), 117-253.
6. S. Mori and Y. Prokhorov, On \mathbb{Q}-conic bundles, Publ. Res. Inst. Math. Sci. 44 (2008), 315-369.
7. S. Mori and Y. Prokhorov, On \mathbb{Q}-conic bundles, III, Publ. Res. Inst. Math. Sci. 45 (2009), 787-810.
8. S. Mori and Y. Prokhorov, Threefold extremal contractions of type IA, Kyoto J. Math. 51(2) (2011), 393-438.
