
Proceedings of the Edinburgh Mathematical Society (2014) 57, 231–252
DOI:10.1017/S0013091513000850

3-FOLD EXTREMAL CONTRACTIONS OF
TYPES (IC) AND (IIB)

SHIGEFUMI MORI1 AND YURI PROKHOROV2,3

1RIMS, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku,
Kyoto 606-8502, Japan (mori@kurims.kyoto-u.ac.jp)

2Department of Algebra, Faculty of Mathematics,
Moscow State University, Vorob′evy Gory, Moscow 117234, Russia

3Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Street,
Moscow 117312, Russia (prokhoro@gmail.com)

Dedicated to Vyacheslav Shokurov on the occasion of his 60th birthday

Abstract Let (X, C) be a germ of a 3-fold X with terminal singularities along an irreducible reduced
complete curve C with a contraction f : (X, C) → (Z, o) such that C = f−1(o)red and −KX is ample.
Assume that (X, C) contains a point of type (IC) or (IIB). We complete the classification of such germs
in terms of a general member H ∈ |OX | containing C.
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1. Introduction

1.1. Let (X, C) be a germ of a 3-fold with terminal singularities along a reduced com-
plete curve. We say that (X, C) is an extremal curve germ if there exists a contraction
f : (X, C) → (Z, o) such that C = f−1(o)red and −KX is f -ample.

If, furthermore, f is birational, then (X, C) is said to be an extremal neighbourhood [5].
In this case f is called flipping if its exceptional locus coincides with C (and then (X, C)
is called isolated). Otherwise, the exceptional locus of f is two dimensional and f is
called divisorial. If f is not birational, then dimZ = 2 and (X, C) is said to be a Q-conic
bundle germ [6].

1.2. In this paper we consider only extremal curve germs with an irreducible central
fibre C. For each singular point P of X, with P ∈ C, consider the germ (P ∈ C ⊂ X).
All such germs are classified into types (IA), (IC), (IIA), (IIB), (IA∨), (II∨), (ID∨), (IE∨)
and (III), for the definitions of which we refer the reader to [4,6].

In this paper we complete the classification of extremal curve germs with irreducible
central fibres containing points of type (IC) or (IIB). As in [4, 8], the classification is
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done in terms of a general hyperplane section, that is, a general divisor H of |OX |C , the
linear subsystem of |OX | consisting of sections containing C.

For a normal surface S and a curve V ⊂ S, we use the usual notation of graphs ∆(S, V )
of the minimal resolution of S near V : each � corresponds to an irreducible component
of V and each ◦ corresponds to an exceptional divisor on the minimal resolution of S,
and we may use • instead of � if we want to emphasize that it is a complete (−1)-curve.
A number attached to a vertex denotes the minus self-intersection number. For short, we
may omit 2 if the self-intersection is −2.

Recall that if an extremal curve germ (X, C � P1) contains a point of type (IC), then
(X, C) is not divisorial [4, Corollary 8.3.3]. For the remaining Q-conic bundle case we
prove the following.

Theorem 1.1. Let (X, C) be a Q-conic bundle germ of type (IC) with irreducible C

and let f : (X, C) → (Z, o) be the corresponding contraction. Let P ∈ X be a (unique)
singular point. We then have the following.

1.2.1. The point P ∈ X is of index 5. Moreover, the general member H ∈ |OX |C is
normal, smooth outside of P , has only rational singularities, and the following is the
only possibility for the dual graph of (H, C):

3◦
|

◦ ◦
| |

• — ◦ — ◦ — ◦ — ◦
3
— ◦

3
— ◦

If an extremal curve germ (X, C � P1) contains a point of type (IIB), then it cannot be
flipping [4, Theorem 4.5]. Remaining cases of divisorial contractions and Q-conic bundles
are covered by the following theorem.

Theorem 1.2. Let (X, C) be an extremal curve germ of type (IIB) with irreducible
C and let f : (X, C) → (Z, o) be the corresponding contraction. Let P ∈ X be a (unique)
singular point. The general member H ∈ |OX |C is then normal, smooth outside of P ,
and has only rational singularities. Moreover, the following are the only possibilities for
the dual graph of (H, C).

1.2.2. If (X, P ) is a simple cAx/4 point (see § 3.1), f is a divisorial contraction, T :=
f(H) is Du Val of type A2, we have the following:

3◦ —
4◦ — ◦ — ◦ — ◦
| |
◦
3

◦ — •

1.2.3. If (X, P ) is a simple cAx/4 point, f is a divisorial contraction, T := f(H) is
smooth, we have the following:

3◦ — ◦ — ◦ — ◦ — ◦ — ◦ — •
|

◦
3
— ◦

4
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1.2.4. If (X, P ) is a double cAx/4 point, f is a divisorial contraction, T := f(H) is
Du Val of type D4, we have the following:

◦
|

◦ — ◦ — ◦ —
4◦ —

3◦ — ◦
| |

• — ◦ ◦

1.2.5. If (X, P ) is a double cAx/4 point, f is a Q-conic bundle, we have the following:

◦ —
3◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — •
| |
◦ ◦

4

2. The case (IC)

In this section we prove Theorem 1.1. The techniques of [4, Chapter 8] will be used freely,
sometimes without additional explanations.

2.1. Set-up

Let (X, P ) be the germ of a three-dimensional terminal singularity and let C ⊂ (X, P )
be a smooth curve. Recall that the triple (X, C, P ) is said to be of type (IC) if there exist
analytic isomorphisms

(X, P ) � C3
y1,y2,y4

/µm(2, m − 2, 1), C� � {ym−2
1 − y2

2 = y4 = 0},

where m is odd and m � 5.

2.1.1. Let (X, C) be a Q-conic bundle germ and let f : (X, C) → (Z, o) be the corre-
sponding contraction. In this section we assume that C is irreducible and has a point P

of type (IC). Recall that (X, C) is locally primitive at P [5, § 4.2]. Moreover, P is the
only singular point on C [6, Theorem 8.6, Lemma 7.1.2]. Thus, the group Cl(Z, o) has
no torsion. Moreover, the base point (Z, o) is smooth [6, Lemma 8.1.2].

2.2. We have an �-splitting

gr1C O = (4P �) ⊕̃(−1 + (m − 1)P �) (2.1)

by [7, § 3], [4, § 2.10.2], and, hence, the unique (4P �) in gr1C O. Since y4 and ym−2
1 − y2

2
form an �-free �-basis of gr1C O at P , (4P �) has an �-free �-basis of the form

u = λ1y
(m−5)/2
1 y4 + µ1(ym−2

1 − y2
2) (2.2)

for some λ1 and µ1 ∈ OC,P . It is easy to see that whether or not λ1(P ) �= 0 does not
depend on the choice of coordinates.

https://doi.org/10.1017/S0013091513000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000850


234 S. Mori and Y. Prokhorov

Remark 2.1. We have that

OC = OC(−H) ↪→ gr1C O = O ⊕ O(−1).

If m � 7, this implies that the term y2
1(ym−2

1 − y2
2) appears in the equation of H. If

m = 5, then either y2
1(y3

1 − y2
2) or y2

1y4 appears in the equation of H.

2.3. According to [7, § 3] (cf. [4, § 2.10]) a general member F ∈ |−KX | contains C, has
only Du Val singularities, and ∆(F, C) is the following graph of (−2)-curves:

•
|

◦ — · · · — ◦︸ ︷︷ ︸
m−3

— ◦ — ◦ (2.3)

where • corresponds to C. We can choose coordinates y1, y2, y4 in a neighbourhood of
P such that F = {y4 = 0}/µm. In particular, the �-splitting (2.1) has the form

gr1C O = (4P �) ⊕̃OC(−F ). (2.4)

Lemma 2.2. A general member H ∈ |OX |C is normal, has only rational singularities,
and is smooth outside of P .

Proof. This is similar to § 3.3.4. Let T := f(H) and let Γ := H ∩ F . As in § 3.3.2,
consider the Stein factorization

fF : (F, C)
f1−→ (FZ , oZ)

f2−→ (Z, o). (2.5)

Set ΓZ := f1(Γ ). We may assume that, in some coordinate system, the germ (FZ , oZ) is
given by z2 + xy2 + xm−1 = 0. Then, by [2], up to coordinate change the double cover
(FZ , oZ) → (Z, o) is just the projection to the (x, y)-plane. Hence, we may assume that
ΓZ is given by x = y. By § 2.3 we see that the fundamental cycle of the graph ∆(F, Γ ) is
given by

1� 1•
| |

◦
1
— ◦

2
— · · · — ◦

2
— ◦

2
— ◦

1

where the number attached to each vertex denotes its coefficient in the fundamental
cycle. Therefore, Γ is reduced, so H is smooth outside of P . The restriction fH : H → T

is a rational curve fibration. Hence, H has only rational singularities. �

2.4. Let J be the C-laminal ideal such that IC ⊃ J ⊃ F 2
CO and J/F 2

CO = (4P �) in
(2.4). Since J is locally a nested complete intersection (c.i.) on C \ {P}, and (y4, u) is
a (1,2)-monomializing �-basis of IC ⊃ J at P with u, as in (2.2), we have an �-exact
sequence

0 → OC(−2F ) → gr0C J → (4P �) → 0 (2.6)
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and an �-isomorphism OC(−2F ) � (−1+(m−2)P �). Thus, we have gr0C J � O ⊕O(−1)
as OC-modules. The unique O in gr0C J is generated near P by

y2
1u + αy2y

2
4 mod F 3(O, J) (2.7)

for some α ∈ OC,P .
Proofs of the following two lemmas given in [4] apply to our situation without any

changes.

Lemma 2.3 (Kollár and Mori [4, Lemma 8.5.3]).

F 3(O, J)� ⊂ ((ym−2
1 − y2

2)2, (ym−2
1 − y2

2)y4, λ1y
(m−5)/2
1 y2

4 , y3
4).

Lemma 2.4 (Kollár and Mori [4, Lemma 8.6]). The �-exact sequence (2.6) is
�-split if and only if α(P ) = 0.

Proposition 2.5. If m � 7, then α(P ) �= 0.

Proof. Assume that α(P ) = 0, that is, (2.6) is �-split. Then, gr0C J contains a unique
(4P �). Let K be the C-laminal ideal such that J ⊃ K ⊃ F 1

C(J) and K /F 1
C(J) = (4P �).

By [5, § 8.14], K is locally a nested c.i. on C \ {P} and (1, 3)-monomializable at P , and
we have the �-isomorphisms

gri
C(O, K ) � (−1 + (m − i)P �), i = 1, 2, (2.8)

and an �-exact sequence

0 → (−1 + (m − 3)P �) → gr3C(O, K ) → (4P �) → 0. (2.9)

By (2.8) ⊗̃ ωX , we see that gri
C(ωX , K ) � (−1+(m− i−1)P �), so Hj(gri

C(ωX , K )) = 0
for i = 1, 2, j = 0, 1 because

m − 2, m − 3 ∈ 2Z+ + (m − 2)Z+.

Now, using (2.9) ⊗̃ ωX , we obtain that

0 → (−2 + (2m − 4)P �) → gr3C(ωX , K ) → (−1 + (m + 3)P �) → 0.

We note that (−1 + (m + 3)P �) � O(−1) as OC-modules because 3 /∈ 2Z+ + (m − 2)Z+

for m � 7. We similarly note that (−2 + (2m − 4)P �) � O(−2) because m − 4 /∈ 2Z+ +
(m − 2)Z+. Hence, H1(gr3C(ωX , K )) �= 0. Note that ωX/F 1(ωX , K ) = gr0C ω � O(−1).
Using the standard exact sequences

0 → gri
C(ωX , K ) → ωX/F i+1(ωX , K ) → ωX/F i(ωX , K ) → 0

we obtain that H1(ωX/F 4(ωX , K )) �= 0. By [6, § 4.4] we have that

−KX · V = 5/m � −KX · f−1(o) = 2,

where V = SpecX OX/F 4(OX , K ), which is a contradiction. �
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Proposition 2.6.

(i) OF (−C) is an �-invertible OF -module with an �-free �-basis ym−2
1 − y2

2 at P and
an �-isomorphism

OC ⊗̃OF (−C) � (4P �).

(ii) H0(OF (−νC)) � H0(OC ⊗̃OF (−νC)) for all ν � 0.

(iii) There exist sections s1, s2 ∈ H0(IC) such that

s1 ≡ (unit) · (y1 + ξ1y
m−1
2 )2(ym−2

1 − y2
2) mod y4 near P,

s2 ≡ (unit) · (y2 + ξ2y
m−1
1 )(ym−2

1 − y2
2)(m−1)/2 mod y4 near P,

where ξ1, ξ2 ∈ OX� are invariants.

(iv) H0(IC) � H0(gr0C J) = H0(IC/F 3(O, J)) � C.

Proof. Part (i) follows from the construction of F . Hence, H1(OC ⊗̃OF (−νC)) = 0
for all ν � 0, and H1(OF (−νC)) = 0 since C is a fibre of proper f . Thus we have (ii).

To prove (iii) consider the Stein factorization (2.5) and, as in the proof of Lemma 2.2, we
take an embedding (FZ , oZ) ⊂ C3

x,y,z such that (FZ , oZ) is given by the equation z2+xy2+
xm−1, and the map f2 : (FZ , oZ) → (Z, o) is just the projection to the (x, y)-plane. Take
s1 = f∗x and s2 = f∗y. The weighted blow-up of (FZ , oZ), with weights (2, m−2, m−1),
extracts the central vertex of the Dm-diagram (2.3). The multiplicity of the corresponding
exceptional curve in f∗

2 x and f∗
2 y is equal to 2 and m−2, respectively. Using this, one can

easily show that the multiplicities of all exceptional curves in f∗
2 x and f∗

2 y, respectively,
are given by the following diagrams:

1•
|

�
2
— ◦

2
— · · · — ◦

2
— ◦

2
— ◦

1

m−1
2• —

1�
|

◦
1
— ◦

2
— · · · — ◦

m−3
— ◦

m−2
— ◦

m−1
2

— �
1

where the vertex •, as usual, corresponds to C and the vertices � correspond to compo-
nents of the proper transforms of {f∗

2 x = 0} and {f∗
2 y = 0}. The multiplicity of C is

exactly the exponent of ym−2
1 − y2

2 in si mod y4. Therefore,

s1 ≡ γ1(ym−2
1 − y2

2), s2 ≡ γ2(ym−2
1 − y2

2)(m−1)/2 mod y4,

where γi ∈ OX� are semi-invariants. Using the above diagrams, we see that

({γ1 = 0} · C)F = −4/m and ({γ2 = 0} · C)F = (m − 2)/m

because (C2)F = 4/m by (i). Since y1y2 is of weight 0, we have that

γ1 = (unit) · (y1 + ym−1
2 ξ1)2 mod y4
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for some ξ1 ∈ OX . Indeed, since γ1 = 0 defines a double curve on F , one has that
γ1 = (unit) · δ2 mod y4 for some δ ∈ OX� with weight ≡ 2 such that δ|C = y1|C .

Similarly, we have that γ2|C = y2|C . Hence,

γ2 = (unit) · (y2 + ym−1
1 ξ2) mod y4.

Finally, (iv) follows from (iii) because H0(gr0C J) � C. �

2.5. By Proposition 2.5 there are four cases to treat.

2.5.1. The case m � 7, α(P ) �= 0.

2.5.2. The case m = 5, λ1(P ) �= 0.

2.5.3. The case m = 5, λ1(P ) = 0, α(P ) �= 0.

2.5.4. The case m = 5, λ1(P ) = 0, α(P ) = 0.

We show that cases 2.5.1–2.5.3 do not occur and that case 2.5.4 implies case 1.2.1.

2.6. Proof of Theorem 1.1 for cases 2.5.1 and 2.5.3. By (2.7) and Proposition 2.6,
a general section s ∈ H0(IC) satisfies

s ≡ (unit) · (y2
1u + αy2y

2
4) mod F 3(O, J) at P,

where α(P ) �= 0 by assumption. We take s2 as given in Proposition 2.6 (iii). We claim that
s2 belongs to H0(F 3(O, J)). Indeed, it is obvious that s /∈ C·s2+F 3(O, J) near P . Hence,
by H0(IC/F 3(O, J)) = C · s we have s2 ∈ H0(F 3(O, J)), as claimed. By Lemma 2.3,
we see that the coefficient of y2y

2
4 (respectively, ym

2 ) in the Taylor expansion of s2 at
P � is 0 (respectively, non-zero) because m � 7 or λ1(P ) = 0. We now analyse the
set H = {s = 0}. By Bertini’s theorem, H is smooth outside of C. Since O · s is the
unique O in gr1C O � O ⊕ O(−1), H is smooth on C \ {P}. To study (H, P ), we can
apply [4, § 10.7]. Indeed, if λ1(P ) = 0, then µ1(P ) �= 0 by the construction in § 2.2.
Thus, [4, § 10.7.1] holds by Lemma 2.3. Replacing s with a general linear combination
of s and s2 we see that [4, § 10.7.2] is satisfied. Since m � 7 or λ1(P ) = 0, we can now
apply [4, § 10.7]. One can see that the contraction fH : H → T must be birational in this
case, which is a contradiction.

2.7. Proof of Theorem 1.1 for case 2.5.2. The argument is the same as that in § 2.6
except that we need to check the conditions of [4, § 10.7]. Note that (2.2) has the form
u = λ1y4 + µ1(y3

1 − y2
2). Since λ1(P ) �= 0, by a coordinate change we can assume that

µ1(P ) �= 0. Let D := {y1 = 0}/µm ∈ |−2KX | and let

φD :=
u − λ1(P )y4

dy1 ∧ dy2 ∧ dy4
=

(λ1 − λ1(P ))y4 + µ1(y3
1 − y2

2)
dy1 ∧ dy2 ∧ dy4

∈ OD(−KX).
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Arguments in [7, § 3.1] show that there exists a section φ ∈ H0(O(−KX)) sent to φD

modulo ωZ . Thus the image of φ under the homomorphism

IC ⊗̃OX(−KX) � gr1C OX(−KX) = (1) ⊕̃(0) � (0)

is non-zero because λ1(P ) �= 0. Hence, F ′ = {φ = 0} ∈ |−KX | is smooth outside of P

and we may choose φ such that F ′ is, furthermore, normal by Bertini’s theorem. We have
an �-splitting

gr1C O = (4P �) ⊕̃OC(−F ′).

By the construction of F ′, we see that (F ′, P ) = {v = 0}/µm, where v = y3
1−y2

2+λ′
1y4 for

some λ′
1 ∈ OC,P such that λ′

1(P ) = 0. As in Proposition 2.6, we see that OF ′(−C) is an
�-invertible OF ′ -module with an �-free �-basis u at P , and there exists an �-isomorphism

OC ⊗̃OF ′(−C) � (4P �).

We similarly see that

H0(OF ′(−νC)) � H0(OC ⊗̃OF ′(−νC)) for all ν � 0.

We note that y2
1u and y2u

2 are bases of OC ⊗̃OF ′(−νC) at P for ν = 1 and 2, respectively.
Thus, for arbitrary a1, a2 ∈ C, there exists a section s′

0 ∈ H0(OF ′(−C)) such that

s′
0 ≡ a1y

2
1u + a2y2u

2 mod(v, u3).

Recall that the map H0(OX) → H0(OF ′) is surjective modulo f∗ωZ [7, Proposition 2.1].
In our situation, sections of f∗ωZ lifted to C3

y1,y2,y4
are contained in

∧2
Ω1

X . We claim
that

2∧
Ω1

X ⊂ (y1, y2, y4)3 · Ω2
X� ⊂ (y1, y2, y4)4 · ωF ′� (2.10)

on the index-1 cover F ′� ⊂ X� of F ′ ⊂ X.
Note first that the local coordinates of X at P are

y1y2, y5
1 , y5

2 , y2
1y4, y3

2y4, y2y
2
4 .

Since y1y2 is the only term of degree 2, and the rest are of degree greater than or equal
to 3, we see that

∧2
Ω1

X ⊂ (y1, y2, y4)3 · Ω2
X� , the first inclusion.

Since φ = β1(y3
1 − y2

2) + β2y4 with β1, β2 ∈ OX such that β2(P ) = 0, we have that
Ω2

X� |F ′� ⊂ (y1, y2, y4) · ωF ′� because

Ω :=
dy2 ∧ dy4

∂φ/∂y1

∣∣∣∣
F ′�

= ±dy1 ∧ dy4

∂φ/∂y2

∣∣∣∣
F ′�

= ±dy1 ∧ dy2

∂φ/∂y4

∣∣∣∣
F ′�

∈ ωF ′� ,

which settles the second inclusion.
From (2.10) and (v, u3) ⊂ (y3

1 , y2
2 , y3

4) we see that there exists s′ ∈ H0(IC) such that

s′ ≡ a1y2y4 + a2y2y
2
4 mod(y1, y2, y4)4 + (y3

1 , y2
2 , y3

4).

By this, we obtain non-vanishing of the coefficient of x2x
2
3 in [4, § 10.7]. Note that [4,

§ 10.7.1] is satisfied because λ1(P ) �= 0, and [4, § 10.7.3] is satisfied because the term y5
2

appears and y2
1y2

2 does not appear in s2. The rest of the proof is the same as in § 2.6.
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Remark 2.7. In [4], the explanation at the beginning of [4, § 8.11] was not appropriate:
the non-vanishing of the coefficient of x2x

2
3 of [4, § 10.7] as well as [4, § 10.7.3] should

have been verified. The last three lines of our § 2.7 supplement the insufficient treatment
in [4, § 8.11].

2.8. The case 2.5.4

In this case m = 5 and λ1(P ) = α(P ) = 0. Since λ1(P ) = 0, we have that µ1(P ) �= 0
because u is an �-basis (see (2.2)). Since α(P ) = 0, we have that αy2 = λ2y

4
1 for some

λ2 ∈ OC,P , as in Lemma 2.4. Thus, a general section s ∈ H0(IC) satisfies the following
relation near P :

s ≡ (unit) · y2
1(u + λ2y

2
1y2

4) mod F 3(O, J). (2.11)

Hence, s does not contain any of the terms y1y2, y2
1y4, y2y

2
4 and contains terms y5

1 , y2
1y2

2 .
By the lemma below, s also contains y3

2y4.

Lemma 2.8. Let τ be the weight τ = 1
5 (4, 1, 2) and let (H, P ) ⊂ C3/µ5(2, 3, 1) be a

normal surface singularity given by φ(x1, x2, x3) = 0, where φ is a µ5-invariant that does
not contain any terms of τ -weight less than 2. Then, (H, P ) is not a rational singularity.

Proof. According to [3] we may assume that the coefficients of φ are general under the
assumption that φτ=1 = 0. Consider the weighted blow-up with weight τ . The exceptional
divisor Υ is given in P(4, 1, 2) by the equation φτ=2(x1, x2, x3) = 0 or, equivalently, in
P(2, 1, 1) by φτ=2(x1, x

1/2
2 , x3) = 0. Thus, Υ ∈ |OP(2,1,1)(5)| is a general member. By

Bertini’s theorem Υ is smooth and the pair (P(2, 1, 1), Υ ) is purely log terminal (PLT).
By the subadjunction formula,

2pa(Υ ) − 2 = (KP(2,1,1) + Υ ) · Υ − 1
2 = 2.

Hence, Υ is not rational. �

Lemma 2.9. The equation s contains the term y1y
3
4 .

Proof. Since α(P ) = 0, we can write that α = y1y2β for some β ∈ OC,P . The unique
O ⊂ gr0C J is generated near P by

y2
1u + (y1y2β)y2y

2
4 = y2

1u + y4
1βy2

4 = y2
1(u + y1βy2

4) ∈ F 3(O, J).

By Lemma 2.4, the sequence (2.6) splits and we have

gr0C J � (4P �) ⊕̃OC(−2F )

(−1 + (3P �))
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Let K be the C-laminal ideal such that J ⊃ K ⊃ F 3(OC , J) and K /F 3(O, J) = (4P �).
Then, K is locally a nested c.i. on C \ {P} and (y4, u) is a (1, 3)-monomializable �-basis
of IC ⊃ K at P (where u is given by (2.2)). We have

0 �� (−1 + 2P �) �� gr0C K �� (4P �) �� 0

OC(−3F )

Since H1(OC(−3F ) ⊗̃ ω) �= 0, as in the proof of Proposition 2.5, the sequence does not
split. So, locally near P , the sheaf gr0C K has a section y2

1u + γy1y
3
4 with γ(P ) �= 0. �

Thus, by Lemmas 2.8 and 2.9, s does not contain any of the terms y1y2, y2
1y4, y2y

2
4

and contains terms y5
1 , y2

1y2
2 , y3

2y4, y1y
3
4 . Therefore, [4, § 10.8] can be applied to (H, P ).

It is easy to see that the whole configuration contracts to a curve. We get the case 1.2.1.
This completes the proof of Theorem 1.1.

3. The case (IIB)

3.1. Set-up

Let (X, P ) be the germ of a three-dimensional terminal singularity and let C ⊂ (X, P )
be a smooth curve. Recall that the triple (X, C, P ) is said to be of type (IIB) if (X, P )
is a terminal singularity of type cAx/4 and there exist analytic isomorphisms

(X, P ) � {y2
1 − y3

2 + α = 0}/µ4(3, 2, 1, 1) ⊂ C4
y1,...,y4

/µ4(3, 2, 1, 1),

C � {y2
1 − y3

2 = y3 = y4 = 0}/µ4(3, 2, 1, 1),

where α = α(y1, . . . , y4) ∈ (y3, y4) is a semi-invariant with wtα ≡ 2 mod 4 and
α2(0, 0, y3, y4) �= 0 (see [5, A.3]).

Definition 3.1. We say that (X, P ) is a simple (respectively, double) cAx/4-point if
rk α2(0, 0, y3, y4) = 2 (respectively, rkα2(0, 0, y3, y4) = 1).

3.1.1. Let (X, C) be an extremal curve germ and let f : (X, C) → (Z, o) be the corre-
sponding contraction. In this section we assume that C is irreducible and has a point P

of type (IIB). According to [4, Theorem 4.5] the germ (X, C) is not flipping. Recall that
(X, C) is locally primitive at P [5, § 4.2]. Moreover, P is the only singular point [5, The-
orem 6.7], [6, Theorem 8.6, Lemma 7.1.2]. Thus, the group Cl(Z, o) has no torsion.
Therefore, f is either a divisorial contraction to a cDV (compound Du Val) point or a
conic bundle over a smooth base [6, Proposition 8.4].

3.2. According to [4, Theorem 2.2] and [7], a general member F ∈ |−KX | contains C,
has only Du Val singularities, and the graph ∆(F, C) has the form

◦
|

◦ — ◦ — ◦ — ◦ — •
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where all the vertices correspond to (−2)-curves and • corresponds to C. Under the
identifications of § 3.1, a general member F ∈ |−KX | near P is given by λy3 + µy4 = 0
for some λ, µ ∈ OX such that λ(0), µ(0) are general in C∗ [4, § 2.11], [7, § 4].

3.3. Let H be a general member of |OX |C , let T := f(H), and let Γ := H ∩ F .

3.3.1. If f is divisorial, we set FZ := f(F ) and ΓZ := f(Γ ). Then, FZ ∈ |−KZ |, T is a
general hyperplane section of (Z, o) and ΓZ is a general hyperplane section of FZ .

3.3.2. If f is a Q-conic bundle, we consider the Stein factorization

fF : (F, C)
f1−→ (FZ , oZ)

f2−→ (Z, o).

Here we set ΓZ := f1(Γ ).
In both cases FZ is a Du Val singularity of type E6 by § 3.2.

Lemma 3.2.

(i) H is normal, has only rational singularities, and is smooth outside of P .

(ii) Γ = C + Γ1 (as a scheme), where Γ1 is a reduced irreducible curve.

(iii) If f is birational, then T = f(H) is a Du Val singularity of type E6, D5, D4,
A4, . . . ,A1 (or smooth).

Proof. Consider the following two cases.

3.3.3. The case when f is divisorial

Since the point (Z, o) is terminal of index 1, the germ (T, o) is a Du Val singularity.
Since ΓZ is a general hyperplane section of FZ , we see that the graph ∆(F, Γ ) has the
following form:

�
|
2◦
|

◦
1
— ◦

2
— ◦

3
— ◦

2
— •

1

(3.1)

where, as usual, � corresponds to the proper transform of ΓZ and the numbers attached
to vertices are the coefficients of the corresponding exceptional curves in the pull-back of
ΓZ . By Bertini’s theorem, H is smooth outside of C. Since the coefficient of C is equal
to 1, F ∩ H = C + Γ (as a scheme), H is smooth outside of P . In particular, H is
normal. Since fH : H → T is a birational contraction and (T, o) is a Du Val singularity,
the singularities of H are rational.
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3.3.4. The case when f is a Q-conic bundle

We may assume that, in some coordinate system, the germ (FZ , oZ) is given by x2 +
y3 + z4 = 0. Then, by [2], up to coordinate change the double cover (FZ , oZ) → (Z, o) is
just the projection to the (y, z)-plane. Hence, we may assume that ΓZ is given by z = 0.
As in the case 3.3.3 we see that the graph ∆(F, Γ ) has the form (3.1). Therefore, H is
smooth outside of P . The restriction fH : H → T is a rational curve fibration. Hence, H

has only rational singularities.
Lemma 3.2 (iii) follows by the fact that there exists a hyperplane section FZ of (Z, o)

that is Du Val of type E6 (see, for example, [1]). �

We need a more detailed description of (H, C) near P .

Lemma 3.3. In the notation of § 3.1 the surface H ⊂ X is given locally near P by
the equation y3v3 + y4v4 = 0, where v3, v4 ∈ OP �,X� are semi-invariants with wt vi ≡ 3
and at least one of v3 or v4 contains a linear term in y1.

Proof. Since H is normal and gr1C O � OP1 ⊕OP1(−1), we have that OC(−H) = O ⊂
gr1C O, i.e. the local equation of H must be a generator of O ⊂ gr1C O. �

3.4. Let σ be the weight 1
4 (3, 2, 1, 1). By Lemma 3.3 the surface germ (H, P ) can be

given in C4/µ4(3, 2, 1, 1) by the two equations

y2
1 − y3

2 + η(y3, y4) + φ(y1, y2, y3, y4) = 0,

y1l(y3, y4) + y2q(y3, y4) + ξ(y3, y4) + ψ(y1, y2, y3, y4) = 0,

}
(3.2)

where η, l, q and ξ are homogeneous polynomials of degree 2, 1, 2 and 4, respectively,
η �= 0, l �= 0, φ, ψ ∈ (y3, y4), σ- ord φ � 3

2 , σ- ord ψ � 2. Moreover, rk η = 2 (respectively,
rk η = 1) if (X, P ) is a simple (respectively, double) cAx/4-point.

3.4.1. Consider the weighted blow-up

g : (W ⊃ X̃ ⊃ H̃) → (C4/µ4(3, 2, 1, 1) ⊃ X ⊃ H)

with weight σ. Let E be the g-exceptional divisor, let Ξ := E ∩ H̃ be the exceptional
divisor of gH := g|H̃ , and let C̃ be the proper transform of C. Define

Ξ0 := {y3 = y4 = 0} ⊂ E.

If H̃ is normal, let g1 : Ĥ → H̃ be the minimal resolution. Thus, in this case, we have
the morphisms

h : Ĥ
g1−→ H̃

gH−−→ H
fH−−→ T.

Lemma 3.4.

(i) E � P(3, 2, 1, 1) and Ξ is given in this P(3, 2, 1, 1) by

η(y3, y4) = y1l(y3, y4) + y2q(y3, y4) + ξ(y3, y4) = 0.
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(ii) C̃ of C meets E at Q := (1 : 1 : 0 : 0) ∈ Ξ0.

(iii) Ξ0 is a component of Ξ and (Ξ0 · Ξ)H̃ = − 2
3 .

(iv) If H̃ is normal, then KH̃ = g∗KH − 3
4Ξ.

Proof. Statements (i) and (ii) are obvious; (iii) follows from

(Ξ0 · Ξ)H̃ = (Ξ0 · E)W = (Ξ0 · OE(E))E = (Ξ0 · OE(−4))E = − 2
3 ,

and (iv) follows from KW = g∗KC4/µ4 + 3
4E. �

3.5. The case of a simple cAx/4-point

After a coordinate change, we may assume that η = y3y4. We may also assume that
the term y3 appears in l(y3, y4) with coefficient 1, that is, l(y3, y4) = y3 + cy4, c ∈ C.
Thus, (3.2) for (H, P ) have the form

y2
1 − y3

2 + y3y4 + φ = 0,

y1(y3 + cy4) + y2q(y3, y4) + ξ(y3, y4) + ψ = 0.

}
(3.3)

It is easy to see that in this case X̃ has only isolated (terminal) singularities. Indeed,
X̃ ∩ E is given by y3y4 = 0 in E � P(3, 2, 1, 1). Hence, Sing(X̃) ⊂ Ξ0 ∪ Sing(E). There
exist the following subcases.

3.5.1. The subcase when (X, P ) is a simple cAx/4-point and c �= 0

We show that only the case 1.2.2 occurs. We may assume that in (3.3) l(y3, y4) = y3+y4.
In this case, Ξ = 2Ξ0 + Ξ ′ + Ξ ′′, where Ξ ′ and Ξ ′′ are given in E � P(3, 2, 1, 1) as

Ξ ′ := {y3 = y1 + y2q(0, y4)/y4 + ξ(0, y4)/y4 = 0},

Ξ ′′ := {y4 = y1 + y2q(y3, 0)/y3 + ξ(y3, 0)/y3 = 0}.

All the components of Ξ pass through (0 : 1 : 0 : 0) and do not meet each other elsewhere.

Claim 3.5. The surface H̃ is normal and has the following singularities (in natural
weighted coordinates on E � P(3, 2, 1, 1)):

• O1 := (1 : 0 : 0 : 0), which is of type A2,

• Q := Ξ0 ∩ C̃ = (1 : 1 : 0 : 0), which is of type A1,

• O2 := Ξ0 ∩ Ξ ′ ∩ Ξ ′′ = (0 : 1 : 0 : 0), which is a log terminal point of index 2 (a
cyclic quotient singularity of type (1, 2k − 1)/4k).
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The pairs (H̃, Ξ0 + Ξ ′ + C̃) and (H̃, Ξ0 + Ξ ′′ + C̃) are log canonical (LC). Moreover,
they are PLT at all points of Ξ0 \ {O2, Q}. Thus, the surface H̃ looks as follows:

C̃

Ξ ′

Ξ0•A2

Ξ ′′

•A1•
O2

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Proof. Since Ξ = H̃ ∩ E is reduced along Ξ ′ and Ξ ′′, the singular locus of H̃ is
contained in Ξ0 = {y3 = y4 = 0}.

Consider the chart U1 = {y1 �= 0} ⊂ W , U1 � C4/µ3(1, 1, 2, 2). The equations of H̃

have the form

y1 − y1y
3
2 + y3y4 + y1φ3/2(1, y2, y3, y4) + y2

1 (+ · · · ) = 0,

y3 + y4 + y2q(y3, y4) + ξ(y3, y4) + y1ψ2(1, y2, y3, y4) + y2
1 (+ · · · ) = 0,

and C̃ is cut out on H̃ by y3 = y4 = 0. Using the condition that y1 = y3 = y4 = 0, one
can obtain that the surface H̃ ∩ U1 has two singular points on the exceptional divisor
{y1 = 0}: Q = {y1 = y3 = y4 = 1 − y3

2 = 0} and the origin O1. It is easy to see that
(H̃, Q) is a Du Val singularity of type A1 and (H̃, O1) is a Du Val singularity of type A2.
Since Ξ0 and C̃ are smooth curves meeting each other transversely, the pair KH̃ +Ξ0 +C̃

is LC at Q.
Consider the chart U2 = {y2 �= 0} ⊂ W , U2 � C4/µ2(1, 0, 1, 1). The equations of H̃

have the form

y2
1y2 − y2 + y3y4 + y2φ3/2(y1, 1, y3, y4) + y2

2 (+ · · · ) = 0,

y1(y3 + y4) + q(y3, y4) + ξ(y3, y4) + y2ψ2(y1, 1, y3, y4) + y2
2 (+ · · · ) = 0.

We then get only one new singular point: the origin O2 where the singularity of H̃ is
analytically isomorphic to a singularity in C3

y1,y3,y4
/µ2(1, 1, 1) given by

{y1(y3 + y4) + q(y3, y4) + (terms of degree � 3) = 0}. (3.4)

Hence, (H̃, O2) is a log terminal singularity of index 2. �

Therefore, for the graph ∆(H, C) we have only the following two possibilities:

a′

◦ —
4◦ —

a0◦ — ◦ — ◦
| |
◦
a′′

◦ — •

a′

◦ —
3◦ — ◦ — · · · — ◦ —

3◦ —
a0◦ — ◦ — ◦

| |
◦
a′′

◦ — •
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where the vertex marked by a0 (respectively, a′, a′′) corresponds to Ξ0 (respectively, Ξ ′,
Ξ ′′) and • corresponds to Ĉ.

Using Lemma 3.4 (iii) one can easily obtain that a0 = 2. Similarly,

(Ξ ′ · Ξ)H̃ = (Ξ ′′ · Ξ)H̃ = −2.

This gives us that a′ = a′′ = 3. However, the right-hand configuration above is not
contractible. We get the case 1.2.2.

Corollary 3.6. We have that q(0, y4) �= 0.

Proof. Assume that q(0, y4) = 0. Take H such that in (3.2) the functions η, φ, l, q, ξ

and ψ are sufficiently general under this assumption. Let X ′ be a general one-parameter
deformation family of H. According to [4, Proposition 11.4] there exists a contraction
f ′ : X ′ → Z ′, so (X ′, C ′) is an extremal curve germ. Moreover, (X ′, C ′) is of type (IIB).
By 3.5.1 we get a contradiction (otherwise (3.4) is not a point of type 1

4 (1, 1)). �

3.5.2. The subcase when (X, P ) is a simple cAx/4-point and c = 0

We show that only the case 1.2.3 occurs. Equations (3.3) have the form

y2
1 − y3

2 + y3y4 + φ = 0,

y1y3 + y2q(y3, y4) + ξ(y3, y4) + ψ = 0.

In this case, Ξ = 3Ξ0 + Ξ ′ + Ξ ′′, where Ξ ′ and Ξ ′′ are given in E � P(3, 2, 1, 1) as

Ξ ′ = {y4 = y1 + y2q(y3, 0)/y3 + ξ(y3, 0)/y3 = 0},

Ξ ′′ = {y3 = y2q(0, y4)/y2
4 + ξ(0, y4)/y2

4 = 0}.

Claim 3.7. The surface H̃ is normal and has the following singularities (in natural
weighted coordinates on E � P(3, 2, 1, 1)):

• O1 := Ξ0 ∩ Ξ ′′ = (1 : 0 : 0 : 0), which is of type A2,

• Q := Ξ0 ∩ C̃ = (1 : 1 : 0 : 0), which is of type A2,

• O2 := Ξ0 ∩ Ξ ′ = (0 : 1 : 0 : 0), which is of type 1
4 (1, 1).

The pair (H̃, Ξ0 + Ξ ′ + Ξ ′′ + C̃) is LC. Thus, H̃ looks as follows:

C̃

•A2

Ξ ′

Ξ0•A2

Ξ ′′

•
1
4 (1, 1)
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The proof is similar to the proof of Claim 3.5, so we omit it.
By the above claim, ∆(H, C) has the form

a′′

◦ — ◦ — ◦ —
a0◦ — ◦ — ◦ — •
|

◦
a′

— ◦
4

Since
(Ξ ′ · Ξ)H̃ = −2, (Ξ ′′ · Ξ)H̃ = − 4

3

(cf. Lemma 3.4 (iii)), we have that a0 = 2 and a′ = a′′ = 3. Thus, we get the case 1.2.3.

3.6. The case of a double cAx/4-point

We may assume that η = y2
3 . By Corollary 3.6, q(0, y4) �= 0, so we also may assume

that q(0, y4) = y2
4 . Thus, Equations (3.2) for (H, P ) have the form

y2
1 − y3

2 + y2
3 + φ = 0,

y1l(y3, y4) + y2q(y3, y4) + ξ(y3, y4) + ψ = 0,

where φ does not contain any terms of degree less than or equal to 2. This case is more
complicated because X̃ has non-isolated singularities.

Remark 3.8. Sing(X̃) has exactly one one-dimensional irreducible component

Λ := {y3 = y2
1 − y3

2 + φσ=3/2(y1, y2, 0, y4) = 0} ⊂ E � P(3, 2, 1, 1).

There exist the following subcases.

3.6.1. The subcase when (X, P ) is a double cAx/4-point and l(0, y4) �= 0

We show that only the case 1.2.4 occurs. After a coordinate change, we may assume
that l(y3, y4) = y4, so Equations (3.2) for (H, P ) have the form

y2
1 − y3

2 + y2
3 + φ = 0,

y1y4 + y2q(y3, y4) + ξ(y3, y4) + ψ = 0.

}
(3.5)

In this case, Ξ = 2Ξ0 + 2Ξ ′, where

Ξ ′ = {y3 = y1 + y2q(0, y4)/y4 + ξ(0, y4)/y4 = 0} ⊂ E � P(3, 2, 1, 1).

Claim 3.9. The surface H̃ is normal and has the following singularities on Ξ0 (in
natural weighted coordinates on E � P(3, 2, 1, 1)):

• O1 := (1 : 0 : 0 : 0), which is of type A2,

• Q := Ξ0 ∩ C̃ = (1 : 1 : 0 : 0), which is of type A1,

• O2 := Ξ0 ∩ Ξ ′ = (0 : 1 : 0 : 0), which is a log terminal point of index 2.
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The pair (H̃, Ξ0+Ξ ′+C̃) is LC along Ξ0. Moreover, it is PLT at all points of Ξ0\{O2, Q}.
Thus, H̃ looks as follows:

C̃

Ξ ′

Ξ0•A2•A1•
O2

...

where there are more singular points sitting on Ξ ′ \ {O2} that must be Du Val.

The proof is similar to the proof of Claim 3.5.

Remark 3.10. For a general choice of ξ and φ, the surface H̃ has exactly three singular
points on Ξ ′ \ {O2} and these points are of type A1.

Hence, the dual graph ∆(H, C) has one of the following forms:

(a)
... —

a′

◦ —
4◦ —

a0◦ — ◦ — ◦
|
◦ — •

(b)
... —

a′

◦ —
3◦ — ◦ — · · · — ◦ —

3◦ —
a0◦ — ◦ — ◦
|
◦ — •

where
... corresponds to some Du Val singularities sitting on Ξ ′. Since the whole config-

uration is contractible to either a Du Val point or a curve, we have that a0 = 2 and
case (b) does not occur. In case (a), contracting black vertices successively, we get the
following:

... —
a′−1◦

Hence, a′ = 2 or 3.

3.6.1.1. Let (S, o) be a normal surface singularity and let µ : Ŝ → S be its resolution.
Recall that the codiscrepancy divisor is a unique Q-divisor Θ =

∑
θiΘi on Ŝ with support

in the exceptional locus such that µ∗KS = KŜ + Θ. If µ is the minimal resolution, then
Θ must be effective. The coefficient θi is called the codiscrepancy of Θi. We denote it by
cdisc(Θi). If (S, o) is a rational singularity, then θi = cdisc(Θi) can be found from the
system of linear equations∑

i

θiΘi · Θj = −KŜ · Θj = 2 + Θ2
j .
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Let ai := −Θ2
i . The system can then be rewritten as

ajθj = aj − 2 +
∑′

θi,

where
∑′ runs through all exceptional curves Θi meeting Θj .

Lemma 3.11. Let ∆ be the dual graph of a resolution of a rational singularity and
let ∆′ be its subgraph consisting of one vertex of weight a � 2 and n − 1 vertices of
weight 2. Assume that the remaining part ∆ \ ∆′ is attached to

a◦.

(i) If ∆′ has the form

◦ — · · · — ◦ —
a◦ · · ·

then the codiscrepancies of the components in ∆′, indexed from left to right, are
computed by αk = kα1, k � n.

(ii) If ∆′ has the form

◦ — ◦ — · · · — ◦ —
a◦ · · ·

|
◦

then the codiscrepancies of the components in ∆′ are computed by 2α1 = 2α2 = α3

and αk = α3 for 3 � k � n, when the bottom component is indexed first and the
rest are indexed from left to right.

3.6.1.2. By Lemma 3.4 (iv) we have that cdisc(Ξ0) = cdisc(Ξ ′) = 3
2 . Using 3.6.1.1 we

compute the codiscrepancies of exceptional divisors over H̃:

... —
3/2
◦ —

5/4
◦ —

3/2
◦ —

1◦ —
1/2
◦

|
◦

3/4
— •

3.6.1.3. If a′ = 2, then the configuration
...—

a′−1◦ is contracted either to a smooth point
or to a curve. Therefore, we have one of the following possibilities:

(a1)

α1◦ — · · · —
αn◦ —

3/2
◦ —

5/4
◦ —

3/2
◦ —

1◦ —
1/2
◦

|
◦

3/4
— •

(a2) for n � 2,

α1◦ —
α3◦ — · · · —

αn◦ —
3/2
◦ —

5/4
◦ —

3/2
◦ —

1◦ —
1/2
◦

| |
◦
α2

◦
3/4

— •

We then get a contradiction by Lemma 3.11.
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3.6.1.4. Thus, a′ = 3. Then, f is divisorial and the configuration
...—

a′−1◦ is exactly the
dual graph of the minimal resolution of (T, o), which is a Du Val graph of type E6,
D5, D4, A4, A3, A2 or A1. If the graph ∆(H, C) has the form (a1), then, as above,
3
2 = αn+1 = (n + 1)α1, 3 · 3

2 = 1 + αn + 5
4 . This gives us that nα1 = 9

4 , α1 = 3
2 − 9

4 < 0,
which is a contradiction. Similarly, in case (a2) with n � 3 we obtain that αn = 3

2 ,
3 · 3

2 = 1 + αn + 5
4 , which is a contradiction.

If there exist three connected components of the exceptional divisor attached to Ξ ′,
then for corresponding codiscrepancies αn, βm, γl we have that 3· 3

2 = 1+αn+βm+γl+ 5
4 ,

αn + βm + γl = 9
4 . On the other hand, 2αn � 3

2 , 2βm � 3
2 , 2γl � 3

2 . Hence, the equalities
αn = βm = γl = 3

4 hold and we get the case 1.2.4.
In the remaining cases, by direct computations we obtain that the exceptional divisors

have codiscrepancies whose denominators divide 4 only in cases 3.6.1.5 or 3.6.1.6.

3.6.1.5. (T, o) is Du Val of type D5, and ∆(H, C) has the form:

◦ — ◦ —
Ξ0◦ —

4◦ —
3◦ — ◦ — ◦

| | |
• — ◦ ◦ ◦

Here, H̃ has two singular points on Ξ ′ \ Ξ0 and these points are of types A1 and A3.

3.6.1.6. (T, o) is Du Val of type E6, and ∆(H, C) has the form:

◦ — ◦ —
Ξ0◦ —

4◦ —
3◦

Ξ′
— ◦ — ◦ — ◦

| |
• — ◦ ◦ — ◦

Here, H̃ has exactly one singular point on Ξ ′ \ Ξ0 and this point is of type A5.

3.6.2. We now show that in cases 3.6.1.5 and 3.6.1.6 the chosen element H ∈ |OX |C
is not general. Consider the case 3.6.1.5 (case 3.6.1.6 can be treated similarly). Take a
divisor D on Ĥ, whose coefficients are as follows:

1
�
|

2◦ —
4◦ —

6◦ —
2◦ —

2◦ —
2◦ —

1◦
| | |

•
6
— ◦

6
◦
1

◦
1

where � corresponds to an arbitrary smooth analytic curve Ĝ meeting Ξ ′ transversely,
so SuppD is a simple normal crossing divisor. It is easy to verify that D is numerically
trivial, so D = h∗GZ , where GZ is a Cartier divisor on T . There exists an exact sequence

0 → OX(−H) → OX → OH → 0.

Since D corresponds to a section in H0(OH) and R1f∗OX(−H) � R1f∗OX = 0, there
exists a member H ′ ∈ |OX |C such that H ′ ∩ H = D and, in particular, H ′ contains C.
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The proper transform H̃ ′ of H ′ by g satisfies H̃ ′ = g∗H ′ − E|X̃ . Since Ξ = E ∩ H̃ and
Ξ = 2Ξ0+2Ξ ′, we have that H̃ ′|H̃ = 4Ξ0+g1(Ĝ). In particular, Ξ ′ is not a component of
H̃ ′|H̃ . Note that |g1(Ĝ)| is a base-point-free linear system on H̃ (because H1(OH̃) = 0).
Thus, we can take H ′ such that H̃ ′ does not pass through points in H̃∩Λ\Ξ0. Now let Hε

be a general member of the pencil generated by H and H ′. Note that Λ ∩ Ξ0 = {Q} and
that Λ meets H̃ and H̃ε transversely at Q. By Bertini’s theorem the proper transform H̃ε

of Hε on X̃ also meets Λ transversely along Ξ ′. Since (H̃ε ·Λ)X̃ = (O(4) ·Λ)P(3,2,1,1) = 4,
the intersection H̃ε ∩ Λ consists of four distinct points. Therefore, H̃ε has three Du Val
points on H̃ε ∩Λ\Ξ0. This shows that for Hε the situation of § 1.2.4 holds, so the chosen
H is not general in the case 3.6.1.5.

3.6.3. The subcase when (X, P ) is a double cAx/4-point and l(0, y4) = 0

We show that only the case 1.2.5 occurs. We may assume that l(y3, y4) = y3, so
Equations (3.2) for (H, P ) have the form

y2
1 − y3

2 + y2
3 + φ = 0,

y1y3 + y2q(y3, y4) + ξ(y3, y4) + ψ = 0.

}
(3.6)

In this case, Ξ = 4Ξ0 + 2Ξ ′, where

Ξ ′ = {y3 = y2q(0, y4)/y2
4 + ξ(0, y4)/y2

4 = 0} ⊂ E � P(3, 2, 1, 1).

Claim 3.12. The surface H̃ is normal and has the following singularities on Ξ0 (in
natural weighted coordinates on E � P(3, 2, 1, 1)):

• O1 := Ξ0 ∩ Ξ ′ = (1 : 0 : 0 : 0), which is of type A2,

• Q := Ξ0 ∩ C̃ = (1 : 1 : 0 : 0), which is of type A3,

• O2 := (0 : 1 : 0 : 0), which is a cyclic quotient singularity of type 1
4 (1, 1).

The pair (H̃, Ξ0+Ξ ′+C̃) is LC along Ξ0. Moreover, it is PLT at all points of Ξ0\{O1, Q}.
Thus, H̃ looks as follows:

C̃

Ξ ′

Ξ0•
1
4 (1, 1)

•A3•
A2

...
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Hence, the dual graph ∆(H, C) has the following form:

... —
a′

◦ — ◦ — ◦ —
a0◦ — ◦ — ◦ — ◦ — •
|
◦
4

where
... corresponds to some Du Val singularities sitting on Ξ ′. Since the whole configura-

tion is contractible to either a Du Val point or a curve, we have that a0 = 2. Contracting
black vertices successively on some step we get the following:

... —
a′−2◦

Recall that
... is not empty. Hence, a′ = 3 or 4. By Lemma 3.4 (iv) we have that cdisc(Ξ0) =

3, cdisc(Ξ ′) = 3
2 . Using 3.6.1.1 we compute the codiscrepancies of exceptional divisors

over H̃ to give the following:

... —
3/2
◦ —

2◦ —
5/2
◦ —

3◦ —
9/4
◦ —

3/2
◦ —

3/4
◦ — •

|
◦

5/4

If a′ = 4, we get a contradiction as in § 3.6.1.4. If a′ = 3, then the whole configuration
contracts to a curve, i.e. f is a Q-conic bundle. As in § 3.6.1.3, we infer that the graph
∆(H, C) has the following form:

◦ —
n︷ ︸︸ ︷

◦ — · · · — ◦ —
3◦

Ξ′
— ◦ — ◦ —

Ξ0◦ — ◦ — ◦ — ◦ — •
| |
◦ ◦

4

where n � 0.
We show that n = 0, that is, the case 1.2.5 holds. As in § 3.6.2, take a divisor D on Ĥ

whose coefficients are as follows:
1◦ —

2◦ — · · · —
2◦ —

2◦ —
4◦ —

6◦ —
8◦ —

8◦ —
8◦ —

8◦ —
8•

| |
◦
1

◦
2

Then, D = h∗o is a scheme fibre of h : Ĥ → T . There exists a member H ′ ∈ |OX |C such
that H ′|H = gH∗g1∗D = f∗

Ho. Since Ξ = 4Ξ0 + 2Ξ ′, we have that H̃ ′|H̃ = g1∗D − Ξ =
4Ξ0. In particular, the curve Ξ ′ is not a component of H̃ ′|H̃ . Hence, the base locus of
the pencil generated by H̃ and H̃ ′ coincides with Ξ0. As in § 3.6.2 a general member H̃ε

of this pencil meets the curve Λ transversely outside of Ξ0. Note that Λ ∩ Ξ0 = {Q}
and the local intersection number of Λ and H̃ε at Q is equal to 2. By Bertini’s theorem,
the proper transform H̃ε of Hε on X̃ meets Λ transversely along Ξ ′. Since (H̃ε · Λ)X̃ =
(O(4) ·Λ)P(3,2,1,1) = 4, the intersection H̃ε ∩Λ consists of three distinct points. Therefore,
H̃ε has two Du Val points on H̃ε ∩ Λ \ Ξ0. This shows that for Hε the situation of § 1.2.5
holds, so the chosen H is not general if n > 0.
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Example 3.13. Let H be given by the equations

y2
1 − y3

2 + y2
3 = 0,

y1y3 + y2y
2
4 + y4

4 = 0.

Then, a one-parameter deformation of H is a Q-conic bundle as in § 1.2.5.
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