
JFP 15 (4): 615–650, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796804005489 Printed in the United Kingdom

615

A parallel SML compiler
based on algorithmic skeletons

NORMAN SCAIFE, SUSUMI HORIGUCHI

School of Information Science, Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Tatsunokuchi, Nomigun, Ishikawa 923-1292, Japan

(e-mail: {norman,hori}@jaist.ac.jp)

GREG MICHAELSON, PAUL BRISTOW

Department of Computing and Electrical Engineering, Heriot-Watt University,

Riccarton, Edinburgh, EH14 4AS, United Kingdom

(e-mail: {greg,paul}@macs.hw.ac.uk)

Abstract

Algorithmic skeletons are abstractions from common patterns of parallel activity which offer

a high degree of reusability for developers of parallel algorithms. Their close association with

higher order functions (HOFs) makes functional languages, with their strong transformational

properties, excellent vehicles for skeleton-based parallel program development. However, using

HOFs in this way raises substantial problems of identification of useful HOFs within a given

application and of resource allocation on target architectures. We present the design and

implementation of a parallelising compiler for Standard ML which exploits parallelism in

the familiar map and fold HOFs through skeletons for processor farms and processor

trees, respectively. The compiler extracts parallelism automatically and is target architecture

independant. HOF execution within a functional language can be nested in the sense that

one HOF may be passed and evaluated during the execution of another HOF. We are able

to exploit this by nesting our parallel skeletons in a processor topology which matches the

structure of the Standard ML source. However, where HOF arguments result from partially

applied functions, free variable bindings must be identified and communicated through the

corresponding skeleton hierarchy to where those arguments are actually applied. We describe

the analysis leading from input Standard ML through HOF instantiation and backend

compilation to an executable parallel program. We also present an overview of the runtime

system and the execution model. Finally, we give parallel performance figures for several

example programs, of varying computational loads, on the Linux-based Beowulf, IBM SP/2,

Fujitsu AP3000 and Sun StarCat 15000 MIMD parallel machines. These demonstrate good

cross-platform consistency of parallel code behaviour.

Capsule Review

This paper provides a detailed description of a parallelizing SML compiler, which the authors

have been developing over several years. The main objective of this work is to avoid runtime

mechanisms by mapping out skeleton usage statically, in the form of a tree representing the

control flow as a nest of sequentially-composed parallel skeleton calls. This paper represents

a huge effort to test these ideas on a range of application examples.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

616 N. Scaife et al.

1 Introduction

We present the construction of a parallel compiler for Standard ML based on

algorithmic skeletons; abstractions over common patterns of parallel computation

represented as higher-order functions in the source language. Our ultimate goal is

to make the use of this compiler fully automatic and the work presented here is a

significant step in this direction. Our specific technical contributions are:

• Fully automatic introduction of parallel constructs for sequential ones.

• Static generation of abstract network properties resulting in efficient use of

runtime resources.

• Automatic handling of non-functional free variables of skeleton HOFs.

• Optional handling of functional free values using defunctionalization.

• Creation of a platform for building profiling and transformation tools.

• A degree of portability and architectural independence by the use of stand-

ardized communications and source languages.

Of these the most important contribution is in the abstract network analysis since

this gives our compiler some advantages over systems which use dynamic parallelism

at runtime.

2 Motivation

2.1 Algorithmic skeletons

Parallelism brings additional complexity to programming. As well as concerns of

algorithms and data structures, exploitation of parallelism requires understanding

of the subtleties of the interaction of independent processors, and how these are

affected by underlying interconnection topologies and technologies.

Most existing languages lack appropriate abstractions for parallelism and dedi-

cated parallel languages have failed to gain widespread acceptance. Typically,

constructing parallel programs involves the use of libraries of inter-process communi-

cation constructs like PVM and MPI within a mainstream language. However, such

libraries provide relatively low-level facilities, requiring deep programmer knowledge

of implementation and application specific characteristics relating to communication

and processing behaviours. Parallel facilities are relatively scarce and costly, so

there is a strong temptation to craft application specific components to optimise

performance on a particular platform, losing both genericity and portability (McColl,

1993).

Algorithmic skeletons offer useful coarse grain abstractions for parallel program-

ming, and have been an active area of research since the term was coined by Cole in

1989 (Cole, 1989). Essentially, a skeleton is a template for generic parallel activity.

For example, in task farming (Choi et al., 1996), data is distributed amongst

multiple processors which apply the same process to individual data items. The

processed data items are then collected together to form a new data set. A task farm

skeleton offers an inter-processor communication structure which enables a farmer

processor to distribute data to and collect data from worker processors, all of which

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 617

are running a common process. This structure is independent of the types of the data

and the applied process, and parameterised on the number of available processors.

In a program, the skeleton is instantiated with a specific number of processors, with

type specific communication code and with a type specific process. At load time, one

available processor is designated as the farmer, and given responsibility for overall

coordination. The other processors are designated workers and are all initialised

with the farmed process. At run time, the farmer and workers interact through the

communication structure.

As well as genericity, skeletons offer a number of other advantages. It is relatively

straightforward to construct accurate cost models for skeletons, parameterised on

the number of processors, communication characteristics and processing cost for

the farmed process. These may be used to identify whether or not a program

offers exploitable parallelism at sites of potential skeleton use. When constructed

using mature communications libraries, skeletons offer considerable cross platform

portabilty with highly consistent performance (Scaife et al., 2002a). In addition,

skeletons are suitable for both regular and irregular parallel applications. Regular

problems have been well-studied and compilers such as the various parallel Fortrans

have expoited regular parallelism in a wide range of applications. Using algorithmic

skeletons, however, allows a wider variety of parallel structures to be more easily

investigated using suitable levels of abstraction.

2.2 Skeletons and higher order functions

While novel languages supporting skeletons have been developed, for example

Pelagatti’s P3L (Pelegatti, 1998), they have, in common with novel parallel languages,

yet to gain widespread acceptance. Approaches based on accommodating skeletons

in existing languages have proved more popular, especially where such languages

are used as a coordination layer for skeletons. Here, considerable success has been

obtained through the use of functional languages because of the close correspondence

between skeletons and higher-order functions (HOFs).

Pure functional languages such as Haskell and pure functional subsets of languages

such as Standard ML lack side effects and have the Church-Rosser property of

evaluation order independence. In principle, this makes them good vehicles for

parallel programming. However, much latent parallelism in functional programs

is too fine grain to be exploitable. HOFs appear to offer an appropriate level of

granularity both for identifying and for exploiting parallelism. The point is that

although HOFs themselves can be fine-grained or coarse-grained with respect to

the parallel machine they bring the control over granularity to the level of HOF

selection in the source language.

HOFs are often polymorphic functions that apply an argument function across

all elements of a data structure. The best known are those for list processing, for

example, map and fold. A map may be realised as a task farm, discussed above.

Similarly, a fold for an associative argument function may be realised as a divide-

and-conquer tree. Typically, each processor splits the list and passes the sub-lists

down to sub-processors. The leaf processors apply the function f to list elements

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

618 N. Scaife et al.

and the base parameter b, and each intermediate processor then applies f to the

results from its sub-processors.

The major benefit of associating skeletons with HOFs in a functional framework

is that formal reasoning techniques, such as Backus’ FP (Backus, 1978) and the

Bird Meertens Formalism (Bird & de Moor, 1997), may be employed to transform

programs whilst preserving meaning. Furthermore, transformations on HOFs have

equivalent meaning-preserving transformations on skeletons. Given cost models for

skeletons, transformations may be used to try and restructure programs to optimise

parallelism.

There are two approaches to realising skeletons in functional languages. One

is to write the skeletons in the language, implementing multi-processor behaviour

using language constructs, for example channels in Clean (Kesseler, 1995) and Eden

(Klusik et al., 2000), or using wrappers for library functions, for example MPI

wrappers with Caml (Serot, 1999).

The other approach is to write the skeletons in another language, to identify HOF

use in functional programs at compile time and replace them with the equivalent

skeleton calls. That is, the functional language forms a coordination layer for

skeletons. For example, Darlington’s group (J. Darlington & To, 1996) use the

Hope-like language SCL, Serot and Coudarcher’s SKiPPER system uses Caml

(Coudarcher et al., 2001) and our PMLS (Parallel SML with Skeletons) compiler is

based on Standard ML (Michaelson et al., 2001).

A full treatment of parallel functional programming in general may be found

in (Hammond & Michaelson, 1999). The main objective of this work is to build

a compiler for which all parallelism is implicit. We use algorithmic skeletons to

partially achieve this goal. On the one hand the selection and parallel implementation

of the higher-order functions is automatic. On the other hand the programmer is

constrained to use the particular set of HOFs provided by our compiler.

2.3 Skeleton realization

Throughout this paper we illustrate the operation of our compiler on the following

trivial SML program:

val x = 1

fun ff (y,z) = x + y + z

val result = fold ff (~x) [1,2,3]

This example uses a single non-nested instance of the fold skeleton. We do not

give a full definition of fold here, which is actually implemented sequentially using

a split and merge method to ensure the same computational complexity as the

parallel equivalent pfold, discussed below. fold is conceptually very like the foldl

and foldr functions from the SML Basis library but less general. This can be seen

in the type signatures:

val fold : (’a * ’a -> ’a) -> ’a -> ’a list -> ’a

val foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 619

In this example, fold is instantiated with a function, ff, which has a free variable,

x. Note that the default value for the fold function has to be an identity for the

instantiation function ff, if the parallel implementation is to return the same result

as the sequential implementation. The value ~x is an identity for ff, where ~ is the

unary minus operator in SML.

Given these conditions, which have to be met to allow the semantics to be

preserved under parallel implementation there are still a number of problems which

have to be overcome during compilation:

• To replace a HOF like fold with a parallel version like pfold the com-

piler needs to check that the context of application is suitable for parallel

implementation.

• In a parallel implementations of HOFs as skeletons, free values, like x above,

have to be transmitted to the remote environment prior to executing the

function argument, like ff above.

• Furthermore, if there are free functional values, it may not be possible to

directly transmit them.

• The runtime system should know what skeletons are going to be executed and

in what order to allow efficient allocation of resources.

The following sections describe the realization of the PMLS (Parallelising ML

with Skeletons) compiler that solves, at least in part, all of these problems. PMLS is

an automatically parallelising compiler for a substantial subset of the strict language

SML. We regard a strict language as more suitable for many aspects of our approach

than a lazy language because of the more predictable evaluation order.

This paper starts by focusing on our compiler’s mechanisms for handling the

problems of topological analysis and data locality identified above, that arise from

the presence of parallelisable HOFs. We then discuss the behaviours of five exemplars

on four parallel architectures. Finally, we assess the achievements and limitations of

our compiler, and consider future developments.

3 Compiler overview

The initial design of the compiler has been presented in Michaelson et al. (1997) and

Scaife et al. (1998). We decided to use existing software as far as possible for the

front end (lexical, syntax and type analysis) and back end (code generation) of our

compiler. This would enable us to focus on program analysis and transformation,

rather than attempting to build yet another SML elaboration and code generation

system from scratch.

We reviewed many languages as candidates for the backend compiler. The

only parallel machine available to us at the time was the Fujitsu AP1000 at

Imperial College – a Unix-based machine with 128 nodes and 32Mb per node.

Unfortunately, the leading candidate, SML of New Jersey, required more than 32Mb

of memory for efficient execution. This problem was encountered by the developers

of paraML (Bailey & Newey, 1993) which required extensive modifications to

NJSML. Following the success of the Pict language (Pierce & Turner, 2000),

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

620 N. Scaife et al.

file . an

file . ast

ParseElab

Network

Eval

Transform

Tddf

Free

Analyse filec . c

Learn

Weights

basis

prelude

signature HOFS

arch . pw

Verify

file . recon

Key

Computation

Data file

Library

Control path

Data transfer
Ocamlskels

Ocamlmpi

file . mlToCaml

Ncam

file_arch

file . sml

Fig. 1. The PMLS compiler modules.

which used Objective Caml as the host language, we decided to employ Objective

Caml (Chailloux et al., 2000) as our backend. This is a relatively lightweight

implementation of ML with low memory requirements and a bi-directional C

language interface, allowing us to develop our skeletons in C, linked with MPI

libraries. Other strengths include the compactness of the binaries and the modest

memory footprint.

For the front end elaborator we needed an implementation of SML which

provided an SML interpreter capable of being modified to gather dynamic profiling

information. The interpreter used by SkelML (Bratvold, 1994) was for a small SML

subset where the ML Kit (Birkedal et al., 1993) provided an interpreter up to

Version 2, written in SML. Although this was relatively slow it would admit easy

modification for our compiler.

The combination of the ML Kit with translation into Objective Caml for backend

compilation has proved a very effective combination. The structure of the compiler

is shown in Figure 1, and is organised as a series of modules:

ParseElab reads the input SML and lexically analyses, parses and performs type

inference upon the SML prototype.

Network takes an elaborated syntax tree and extracts a description of the topography

of recognised HOFs from the program. We define the topography to be the

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 621

relationship between HOFs in the source code and between skeletons in the execut-

ing program. This module uses the type information generated by the elaborator.

It is also pivotal for the success of our compiler.

Tddf is an optional module which attempts to defunctionalise (Bell et al., 1997)

the entire program. Our runtime system does not have the ability to transmit

functional values so closures are represented by datatype values which allows us

to transmit partially-applied functions at runtime.

Free performs free variable analysis and modifies functions by adding their free

variables as arguments. This ensures that free variables are present at the point

of calling a skeleton and are available for transmission at runtime. An attempt

is made to limit the transmission of such values to those which will actually be

required for remote computation. Note that if defunctionalisation is performed

then free-variable analysis is not required since free values are bound up in the

datatype representations.

Analyse is the backend processing required to transform nominated HOFs into

skeleton calls and add code to launch the skeletons at runtime. This involves

registering functions with the runtime system, passing free values to the runtime

system and also reconstructing the types of skeleton results.

ToCaml translates Core SML into Objective Caml. This is mostly a direct conversion

between semantic entities but requires some compilation support to iron out minor

differences, particularly between the two type systems.

Ncam compiles the output into an executable file. Ncam is not a module in the

main compiler but is actually an external Perl script which calls the appropriate

Objective Caml and C compilers, generating the correct compiler flags.

The modules Eval, Learn, Verify and Transform form the core of our performance

modelling and transformational system. This feature is not discussed further in this

paper and is left as a potential enhancement of our compiler:

Eval is an SML interpreter which closely corresponds to the SML definition. This

generates lists of semantics rules used in the evaluation.

Learn and Verify attempt to relate the sequential runtime of the compiled code with

these rule counts.

Transform is a simple program transformation system which is driven by the

performance prediction.

The resulting language is based upon a pure functional subset of SML with

some restrictions upon the syntax and type systems due to the translation into

Objective Caml. References can be used outside of skeletal execution and within

skeleton instance functions but access to references must not cross HOF/skeleton

boundaries.

4 Runtime system overview

At runtime, we use an SPMD approach based on MPI Version 1 (Message Passing

Interface Forum, 1994). Here, an executing program is a set of identical processes

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

622 N. Scaife et al.

running on a fixed set of processors for the lifetime of the execution. Initially,

before any skeleton functions are reached, all processes execute the same code.

When the first skeleton is encountered, one processor becomes a “master” processor

and the others become part of a pool of “worker” processors. Worker processors

then receive work from the master and return partial results until the skeleton

finishes execution. At this point, the master’s skeleton returns the actual result of the

computation.

The processor hierarchy is managed by a generic skeleton management module

called pskel which has access to the network information derived by our static

analysis and co-ordinates skeleton initialisation and termination. This module is

called by all skeleton instances in the executing program and, after initialisation,

calls the correct master or worker code for the appropriate skeleton. The network

information is used to decide the position of the skeleton in the HOF hierarchy,

the position of the current processor in the processor network, and the correct data

and instance functions registered in the Objective Caml code. If a nested skeleton is

encountered during the execution of a sequential instance function the pskel module

is re-entered.

The pmap skeleton executes as a processor farm with one master processor and

the remaining processors as workers. Since our skeletons are list-based the unit of

granularity is a fixed-size block of list elements. Currently, the block size is set as

a global constant with the value set at runtime. The pmap skeleton can be run in a

geometric decomposition mode by the expedient of setting the number of blocks to

the number of processors participating in the pmap instance.

The pfold skeleton operates as a binary tree of processes. Here, all non-leaf

processes operate as nested masters where a distinction is made between the root

master for the pfold skeleton and a parent processor for a node in the process

tree. Parallel nesting is implemented solely from the leaf processes, i.e. if a skeleton

HOF is encountered during execution of the pfold instance function it is only

implemented in parallel on leaf nodes. If a nested instance is encountered from an

intermediate node the skeleton is executed sequentially.

We identify three limitations to these skeletons. First of all, both use the Objective

Caml Marshal module for linearising data. This works on polymorphic values and

is platform independent but is not a very compact representation of the data. For

instance, lists have an overhead per list element. Furthermore, the master-worker

model tends to cause a bottleneck in communications at the master processor. This

is less pronounced for pmap since it is naturally load-balanced by the farming

mechanism but is acute for the pfold skeleton since there is the additional

overhead of applying the fold instance function to the partial results at each node.

Finally, since there are already significant latencies associated with initialising the

processor hierarchy plus relatively high latencies associated with our use of MPI

as a communications layer, our skeletons are intended for coarse-grain parallelism

only.

Our skeletons are implemented in C using the Objective Caml foreign function

interface to access Objective Caml functions on remote processors. Thus the parallel

implementation of the simple example in section 2.3 would be implemented as:

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 623

val _ = register "ff" ff

val result = pfold "ff" (~x) [1,2,3]

The function register is provided by Objective Caml as part of the foreign

function interface. This registers Objective Caml values under string names and an

access function (named value) is provided by the runtime system. Note that this

interface is not type-safe but since our executing code is derived from type-checked

SML using semantics-preserving transformations this is not an issue.

5 PMLS structure

Here we give more detailed descriptions of the compiler modules outlined in Figure 1.

5.1 ParseElab: Front-end and library support

The ML Kit parser generates a syntax tree in the Core language of the SML

definition (Milner et al., 1990), a restricted form of SML where all derived forms

have been substituted by Core expressions. The simple example in section 2.3 is

parsed into the following:

val x = 1

val rec ff = fn (y,z) => ((op +) ((op +) (x,y),z))

val result = fold ff (~x) ((op ::) (1,(op ::) (2,(op ::) (3,[]))))

This code is then elaborated and the syntax tree is annotated with the derived

type information. Together with the parser, this forms the ParseElab component in

Figure 1.

5.2 Network: Network analysis

We need to map the program execution onto a static network of processors. To

simplify this process we generate an abstract network description of the program.

This analysis works by annotating the type information in the syntax tree generated

by the ParseElab module with information concerning the potential activation

of skeletons in the creation of objects with those types. It is implemented by the

Network phase in Figure 1.

5.2.1 Skeleton nomination

Skeletons are identified solely by the names of the sequential HOFs and the names

of the functions implementing the parallel equivalent. These names are externally

defined. Nomination of skeleton HOFs is determined by an SML signature called

HOFS provided by the program being compiled, usually as part of the prelude.

In theory, this allows programmers to define their own skeletons by nominating

HOFs and providing parallel equivalents. In practice, there are strong constraints

upon which types of functions can be used as skeletons. This is a major area for

future development and not considered further here. This method is not as general

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

624 N. Scaife et al.

or flexible as programmable skeletons such as those in Eden or GpH (Loidl et al.,

2003), but has some advantages in terms of enabling static resource allocation giving

some performance advantages over such systems.

The HOFS signature contains pairs of value definitions which are matched such

that the first definition nominates the sequential SML HOF and the second gives the

SML function corresponding to the parallel skeleton. The two must have the same

type signature but with abstraction points in the HOF (e.g. the functional argument

in the fold HOF) being replaced by string types in the parallel equivalent. This

allows the skeleton instantiation function to be registered under a string name

such that the runtime system can access the skeleton function through this name.

Consider:

signature HOFS =

sig

val map : (’a->’b) -> ’a list -> ’b list

and pmap : string -> ’a list -> ’b list

val fold : (’a*’a->’a) -> ’a -> ’a list -> ’a

and pfold : string -> ’a -> ’a list -> ’a

end

This signature specifies two skeletons, map and fold which are to be replaced

by pmap and pfold, respectively. The types of the HOFs are used in the skeleton

identification process by comparison with the types of their instances.

5.2.2 Abstract network description

The abstract network (Figure 2) is a tree consisting of nodes; baseAn indicating no

skeleton instances, nodeAn indicating an instance of a (potentially nested) skeleton,

seqAn indicating a set of skeleton instances where each skeleton must terminate

before the next one can start and altAn is skeleton alternation. Note that a seqAn

means an unspecified (zero to potentially infinite) number of repetitions of the

skeleton instances in the sequence since this is how recursion is represented in the

network.

At present we cannot handle alternation in our current compiler and so each

branch of a match construct must either have the same structure (e.g. single map

or nested map map) as all the other branches or have no skeleton instances at

all. The altAn constructor is required, however, since potentially useful skeletons

often appear within conditional constructs. The term match refers to the match

grammar object in the Standard ML definition. In the Core language, this is the

only source of conditional execution. Skeletal parallelism in the presence of branches

is a major research topic in its own right, involving deep questions to do with optimal

process/processor allocation, data movement minimisation and dynamic processor

reuse.

5.2.3 Abstract network extraction

Abstract network extraction is divided into two operations:

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 625

datatype absnet =

errorAn of string (* network algorithm failure *)

(* network info *)

| baseAn (* base values *)

| nodeAn of {hof:string, (* name of HOF *)

hofAn:absnet, (* abstract network for bare HOF *)

nest:absnet list, (* list of nested constructs *)

inst:skelinfo ref option} (* referenced skeleton instance *)

| seqAn of absnet list (* sequence of skeletons *)

| altAn of absnet list (* alternation of skeletons *)

(* shadow the type system *)

| constypeAn of absnet list * string

| rectypeAn of recAn

| arrowAn of absnet * absnet

| tyvarAn of string

(* record types *)

and recAn =

nilAn

| varRecAn of string

| rowRecAn of string * absnet * recAn

Fig. 2. datatype absnet: Abstract network type representation.

1. Scan the elaborated AST converting SML types into abstract network types.

2. Strip extraneous type information leaving an abstract network description.

An abstract network type is an SML type with additional HOF information,

in the form of the absnet datatype attached to the type information. The first

phase requires maintaining a context with correct scoping of identifiers bound in

value definitions. In addition, a simplified form of type unification is required over

abstract network types to allow deduction of abstract network types for function

applications, function cases, constructor matching and explicitly typed expressions. The

result is a context with a set of mappings from bound variables to abstract network

type expressions: {v1 �→ n1, . . . , vn �→ nn} and a modified syntax tree with network

information alongside the equivalent type information for expressions only. Note

that dec, pat, etc. do not have types.

5.2.4 Abstract network type

We start our inference from the existing type information generated by the ML

Kit type inference and augment this with information about skeleton applications.

Thus our absract network description, shown in Figure 2, includes a complete

description of the native SML types. For example the type of constructors is

encoded in the constypeAn constructor. Similarly, rectypeAn encodes records (and

tuples), arrowAn encodes functional types and tyvarAn encodes type variables. This

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

626 N. Scaife et al.

information is intended to be removed once the abstract network has been generated.

The nodeAn constructor has several fields:

hof is the name of the identified HOF.

hofAn represents the type of the node and is used during function application and

constructor dereference.

nest represents the types of arguments of the original HOF definition which have

been applied. These are needed during the second phase.

inst is a skelinfo datatype and is populated during later analysis to contain the

names of the registered functions and information about processor allocation.

The additional errorAn constructor is used to store error messages during abstract

network derivation. These are intended to be extracted (and transformed into

baseAn) during the second phase of the algorithm.

5.2.5 Scanning the AST

This is the first phase of the algorithm, based on a traversal of the SML syntax

tree, converting SML types into abstract network types. The most important part

is the identification of nominated HOFs, by the signature HOFS mechanism, and

“wrapping” a nodeAn around the SML Type at the point the node is introduced.

The rest of the algorithm is a pass over the AST, deriving abstract network types

from the Type information deduced by the elaborator and applying (or unapplying)

absnets where appropriate to generate the right combination of abstract network

types for all valbinds (value bindings) in the program.

Since we are maintaining an Environment NE from Identifier to absnet types:

NE ∈ VId
fin

−→ absnet

we need a routine to lift identifier bindings from pat × absnet pairs:

patabsnets : pat × absnet → (string × absnet) list

This routine needs to make the distinction between value identifiers and con-

structors, although, in general, the overall algorithm does not. While the elaborator

implements identifier resolution, constructors in patterns need to be inverted to get

the correct abstract network type for the constructed (and bound) identifiers. It is

possible for nullary constructors to appear in pats in which case no identifiers are

bound. This also applies for exception constructors.

Otherwise, the routine scans the pat and absnet simultaneously matching con-

structors, record labels and generating additional bindings for layered pats. Suitable

handling of local declarations allows us to maintain a Context containing the

network environment, a single lookup routine is provided:

lookupId : Context → string → absnet

Figure 3 outlines a schema, T, which implements the main tree traversal. Note

that we do not make any distinction between identifier forms that the SML

definition treats as distinct, i.e. long variables, constructors, exception constructors

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 627

T : ast → absnet
T scon = baseAn
T longid = nodeAn {longid,lookupId longid,[]}, if longid ∈ HOFS

= lookupId longid, otherwise
T { exprow } = rectypeAn { T exprow }
T lab = exp <, exprow > = rowRecAn (lab,T exp,<T exprow >)
T let dec in exp end = T exp, if T dec = seqAn []

seqAn [T dec,T exp], otherwise
T exp atexp = A (T exp) (T atexp)
T exp : ty = U ty exp
T exp handle match = T exp

T raise exp = tyvarAn newTva , if N exp = exnb

= N expc , otherwise
T fn match = T match
T mrule | match = altAn [U match mrule,T match]
T pat => exp = arrowAn (T pat,T exp)
T local dec1 in dec2 end = seqAn [T dec1,T dec2]
T dec1 ; dec2 = seqAn [T dec1,T dec2]

T val pat = exp = T expd

T tyvarseq tycon = conbind = T (tyconAn)e conbind

T (tyconAn) conf <of ty > = arrowAn (T ty,tyconAn), if ty exists
tyconAn, otherwise

T excong <of ty > = arrowAn (T ty,exnAn)h , if ty exists
exnAn, otherwise

T excon = longexcon = lookupId longexcon

U : ast → ast → absnet
U obj1 obj2 = S (M (T obj1) (T obj2)) (T obj2)

a newTv generates a fresh, unique tyvar.
b By exn we mean constypeAn (,exn).
c By N exp we mean the abstract network type derived from the semantics type of exp.
d Bindings from patabsnets (T pat,T exp) are added to Context.
e Traversal of conbind needs the absnet of the tycon, ie. (constypeAn (N tyvarseq,tycon)).
f The binding (con,T con) is added to Context.
g The binding (excon,T excon) is added to Context.
h By exnAn we mean constypeAn ([],exn).

Fig. 3. Schema T: Traverse AST, annotate with HOF information.

and identifiers are all treated as long identifiers. These are resolved, when necessary,

by looking up the elaboration information.

Some notational liberties are taken here to simplify presentation. The arguments

to the T schema are AST grammar objects and the parameters of some of the

objects have been omitted for brevity.

The T schema calls several other schemas. Schema M is a type unification

algorithm for abstract network types. Schema S applies the abstract network type

substitutions generated by M to grammar objects. Schema A is a combination of

M and S which gives the result of applying one abstract network type to another.

Schema N converts an SML type into an abstract network type without adding

any absnet information.

In handling exceptions, nullary excons can cause problems with later processing

since nullary constructors are all ground to baseAn. This is circumvented by turning

exn (exception) into a tyvar (type variable) which is unified by the T algorithm,

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

628 N. Scaife et al.

Sc : absnet → absnet → esn → esn
Sc (errorAn msg) esn = adde (errorAn msg) esn
Sc baseAn esn = esn
Sc (nodeAn node) (arrowAn) esn = addn (nodeAn node) esn
Sc (nodeAn node) (tyvarAn) esn = addn (nodeAn node) esn
Sc (nodeAn node) esn = adds (nodeAn node) esn
Sc (constypeAn (a,n)) (constypeAn (a’,n’)) esn = Sc a a’ esn,

if n = n’
Sc (rectypeAn r) (rectypeAn r’) esn = Sc r r’ esn
Sc (arrowAn (a,r)) (arrowAn (a’,r’)) esn = Sc r r’ (Sc a a’ esn)
Sc (tyvarAn tv)a (tyvarAn tv’) esn = esn,

if tv = tv’
Sc nilAn nilAn esn = esn
Sc (rowRecAn (l,a,r)) (rowRecAn (l’,a’,r’)) esn = Sc r r’ (Sc a a’ esn),

if l = l’

a Since the absnets have been unified, tyvars which match can be discarded, others are errors.

Fig. 4. Schema Sc: Compare instance of HOF with definition.

later during the traversal. In handling sequenced objects it is necessary to preload

the Context with bindings from all objects in the sequence prior to traversal. The

absnets for these bindings are merely derived from the semantics types of the

objects. This applies to valbinds. Patterns do not, as such, have abstract network

types and are not included in the T schema. These are scanned separately by the

patabsnets routine, giving absnets for bound identifiers. Syntax types are handled

in exactly the same manner as semantics types.

5.2.6 Stripping the abstract network type

The second phase of analysis is a cleanup operation in which irrelevant type

information is stripped out leaving the “parallel” structure of the program suitable

for further analysis.

The main part of the algorithm is in deciding which constructs are nested and

which are sequenced. The scheme adopted here is that the instantiated HOF abstract

network type is compared with the abstract network type of the original HOF

definition. Where functional types or type variables in the original definition match

nodeAns in the elaborated and analysed AST the node is considered to be nested.

All other occurrences of nodes are sequenced. This includes tuples, records and

constructors where internal nodes are assumed to be evaluated in a predictable

order. Note that although the alternation information is gathered during the first

phase it is not processed during the cleanup operation other than to check that the

alternation in the program is within the restrictions already outlined.

The algorithm is divided into two mutually recursive parts. The schema Sc

(Figure 4) compares the instance absnet with the original HOF absnet, generating

a list of nested constructs and a list of sequenced constructs. The schema St

(Figure 5) takes an absnet and strips out non-essential type information, calling Sc

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 629

St : absnet → absnet
St (errorAn msg)a = baseAn
St baseAn = baseAn
St (nodeAn {hof,hofAn,nest}) = skelAn, if s = []

= seqAn (skelAn::s), otherwise
where skelAn = nodeAn {hof,hofAn,n}
and instAn = L (nest @ (E hofAn))

and (e,s,n) = Sc instAn defAnb ([],[],[])
St (seqAn ans) = baseAn, if St ans = seqAn []c

= St ans, otherwise

St (constypeAn ([],)) = baseAnd

St (constypeAn (ans,name)) = seqAn(St ans)e

St (rectypeAn r) = baseAn, if St r = baseAn
or St r = seqAn []

= St r, otherwise
St (arrowAn (a,r)) = baseAn, if St a = baseAn

and St r = baseAnf

= arrowAn(St a,St r), otherwise
St (tyvarAn tv) = tyvarAn tvg

St nilAn = baseAn
St (rowRecAn (lab,an,r)) = seqAn((St an) @ (St r))

a The error is accumulated in a separate list.
b defAn is the abstract network type derived from the HOF SML type.
c baseAn values are removed from the list.
d Nullary constructors cannot contain nodeAn.
e If St ans only contains baseAn then the result is baseAn.
f Functions involving only baseAn types are themselves baseAn.
g Type variables are retained to give meaning to partially applied nodes.

Fig. 5. Schema St: Strip out unnecessary type information.

when a node is encountered. In addition, both functions accumulate errorAn types

into a separate list, replacing them with baseAn abstract network types.

Figure 4 outlines the Sc schema. Prior to scanning two absnets they are unified

with appropriate abstract network type substitutions. This is to match up type

variables which could have been renamed during analysis.

Note that:

1. The triple esn is a tuple of three absnet lists, the accumulated errors, sequenced

constructs and nested constructs. The functions adde, adds and addn add a

new member to the error, sequenced and nested construct lists, respectively.

Initially, this contains empty lists.

2. seqAn does not appear in the rules for this schema. This would only be

required if the HOF definition required tuples or records to be matched with

abstraction points. None of the standard HOFs so far require this feature.

The final network is generated by the St schema, shown in Figure 5. Mostly, this

involves stripping out unnecessary type information. More is stripped out than is

required by the subsequent analysis but it is intended to give human-readable results

when the final abstract network type is printed out. Note that:

1. The schema L turns a list of absnets into a function type:

L [a,b,c] = arrowAn (a,arrowAn (b,c))

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

630 N. Scaife et al.

2. The schema E removes all node wrappers, recursively, from an absnet and is

applied to the result type of nodeAns prior to comparison with the original

definition.

5.2.7 Abstract network examples

The simple example of section 5 results in the following abstract network types:

val x :: base

val ff :: base

val result :: node(fold,[base])

In the second phase the abstract network type for each skeleton implemented in

parallel is stripped of extraneous type information yielding an abstract description

of the parallel constructs contained within the program. For example:

fun ff x = x + 1

val ff :: base

fun gg lst = map ff lst

val gg :: (base->node(map,[base]))

val ggv = gg [1,2,3]

val ggv :: node(map,[base])

fun hh llst = map gg llst

val hh :: (base->node(map,[node(map,[base])]))

val hhv = hh [[1],[2],[3]]

val hhv :: node(map,[node(map,[base])])

5.3 Free: Free-value analysis

For free value lifting, functions are augmented with additional formal parameters for

their free variables and calls to those functions are extended with the corresponding

free variables as the actual parameters. Our approach is closely related to Johnsson’s

lambda lifting (Johnsson, 1985) which was developed for the combinator-based

implementation of Lazy ML.

There are two distinct problems associated with our execution model. Firstly,

non-functional free values in skeleton instantiation functions have to be detected

and transmitted prior to running those functions remotely. Secondly, functional free

values have to made available to the remote instance. Since we cannot transmit

functional values this means lifting the free functions to the top level of the code,

allowing them to be registered for remote use.

The problem of non-functional free values is relatively simple to solve and some

optimisation can be performed upon exactly which values need to be transmitted for

a given skeleton. For instance, in the simple example in section 5, the value x does

not need to be transmitted since it is generated on all processors during program

startup.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 631

fun ff1 (y,ff) = let val ff = named_value ff in ff y end

val _ = register "ff1" ff1

fun inner ff y l =

(register "ff1_fvs"

(y,let val _ = register "ff" ff in "ff" end);

(pmap : string -> ’a list -> ’a list) "ff1" l)

fun ff y x = x + y : int

val y = 1

fun ff2 (y,ff) = let val ff = named_value ff in inner ff y end

val _ = register "ff2" ff2

val _ = register "ff" ff

val result =

(register "ff2_fvs" (y,"ff");

(pmap : string -> int list list -> int list list) "ff2" ll)

Fig. 6. Example showing transmission of free values.

However, for the nested case, when the outer skeleton is reached, the worker

processors are no longer generating values needed by the inner skeletons. For

example, in the following, nested map program:

fun inner ff y l = map (ff y) l

fun ff y x = x + y : int

val y = 1

val result = map (inner ff y) ll

the non-functional value y and the functional value ff are free in the expression

(inner ff y). When the outer pmap is launched, the worker processors sit in a loop

waiting for data and tasks to be sent from the master. They return to the Objective

Caml code at the body of the function ff where the value y is bound as a function

argument. Similarly for the intermediate-level processors, the values ff and y are

arguments to the inner function.

The example in Figure 6 illustrates how this is handled in our approach. The

Objective Caml foreign function interface provides a function (register) to register

Caml values on the Caml side with the runtime system under a string name.

A function (named value) is provided to access these values in C. We use this

mechanism to allow communication of values between the executing Caml program

and our parallel skeletons. Thus the anonymous expression is lifted to the top level

with its free values as formal parameters (function ff2). The non-functional value y

is handled without loss of generality by registering under the name "ff2 fvs". These

values are passed to the instance function ff2 as additional parameters received

from the root processor by the pmap function. These are then propagated from the

intermediate processors to the lowest-level processors by re-registering as additional

parameters to the ff1 function.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

632 N. Scaife et al.

The problem of functional free values is much harder to solve. In the above case,

the functional free value ff is handled by exploiting its presence at the top level of the

code and its full application in the pmap instance under the same bound name as at

the top level. This is registered separately under the name "ff" and this handle is

used as a substitute for the functional value. There is a loss of generality, however,

since even renaming the function causes the registered handle to become invalid, for

example, if the inner function had been defined as:

fun inner ff’ y’ l = map (ff’ y’) l

One possible approach would be to use inlining whereby formal functional

parameters to functions are substituted for their bound values at the point of

application. This method was used in the Ektran skeleton compiler (Hamdan, 2000)

for a small functional language. It is not viable in a wider context, however. Firstly,

it results in an explosion of code size for deeply nested functions. Secondly, it results

in duplicated computation even for sequential code. Finally, it is extremely difficult

to get bindings for values in the general case. Consider, for example, a higher-order

function, taking a function as argument and returning a pair of functions:

fun ff x y = x + y

fun gg ff = (ff 1,ff 2)

val (hh,ii) = gg ff

The argument function would have to be substituted in the body of the HOF

and the HOF scanned (through match constructs, if necessary) for the correct

set of matches leading to the returned functions. Generation of bindings for

functions by inlining was partially implemented but subsequently replaced with

defunctionalisation where all values can be treated as for the non-functional free

value y in the example above.

5.4 Tddf: Defunctionalisation

Defunctionalisation is based on an idea by John Reynolds (Reynolds, 1972) for

encoding functional arguments. It has been further developed (Chin & Darlington,

1996), and subsequently generalised to cover a full functional language (Bell

et al., 1997). Defunctionalisation has also been used in the HDC compiler project

(Herrmann & Lengauer, 2000), also motivated by the need to handle free functionals

in a skeletal functional language.

In this technique, closures (in the sense of partially applied functions) are lifted

to the top level of the language and represented by datatypes. This allows free

functionals to be handled in the same way as free data but creates a global overhead

of a datatype dereference for every function application.

There is, however, a problem associated with defunctionalisation of SML. All of

the previous algorithms make use of forward references in the code. To implement

this algorithm for SML would require runtime registration of functions with

attendant jump tables. The solution adopted here is to turn the entire program

into a single mutually-recursive block. This has some problems, for instance it slows

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 633

(* Type hash map

1=({1 : int, 2 : int} -> int)

7=(({1 : int, 2 : int} -> int) -> (int -> (int list -> int)))

*)

datatype T_1 = C_1_1 of int

fun apply_1 F tddf4 =

case F of

C_1_1 x => ff x tddf4

and ff (x) (y,z) = x + y + z

and fold_7 tddf1 tddf2 tddf3 =

(fn _ =>

(pfold : string -> int -> int list -> int) "ff1" tddf2 tddf3)

(register "ff1_fvs" tddf1)

fun ff1 tddf5 = apply_1 tddf5

val _ = register "ff1" ff1

val x = 1

val result = fold_7 (C_1_1 x) (~x) [1,2,3]

Fig. 7. Defunctionalisation example illustrating a fold skeleton wrapper.

down the backend analysis and does not exactly preserve the semantics of the

original program.

We do not present any details of our analysis which is directly implemented from

previous work. Instead, we present a simple example of the output from our analysis.

Figure 7 shows the example of section 5 with a functional fold and the wrapper

code generated for it.

This method of defunctionalisation is able to extend the usefulness of the

skeletons in the sense that they can be used in the presence of partial evaluation

and free functional values. The global execution overhead introduced by datatype

dereferencing is tolerable, a typical slowdown of about 10–20% is observed which

can be counterbalanced by parallel speedup. However, some classes of programs can

be handled by free-value analysis alone. The selection of these two, complementary

methods has not been automated in our compiler.

5.5 Analyse: Backend analysis

Once the abstract network has been deduced and free values have been handled

by appropriate transformations the nominated HOFs have to be replaced by calls

to their parallel equivalents. These parallel constructs are implemented in C and

MPI and are linked into our program using the Objective Caml foreign function

interface. We use the register/named value mechanism described in section 5.3

to allow communication of values between the executing Caml program and our

parallel skeletons. There are several complications in generating the correct code to

launch a parallel skeleton. In particular, HOFs must be nominated by the signature

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

634 N. Scaife et al.

HOFS mechanism, type information has to be reconstructed at the point of call, and

anonymous expressions have to be lifted and given names.

When a skeleton HOF is encountered, the type of the unapplied HOF, the type

of the parallel equivalent function and the instance expression are compared. If a

string type in the parallel HOF type signature matches a functional type in the

sequential HOF type signature then that function argument is a skeleton instance

function. To see this, consider the simple example in section 5 where the following

situation arises:

fold : (’a*’a->’a) -> ’a -> ’a list -> ’a

pfold: string -> ’a -> ’a list -> ’a

<exp>: (int*int->int) -> int -> int list -> int

<exp>: ff (~x) [1,2,3]

At the first function argument, (’a*’a->’a) matches string so ff is the instance

expression. The instance expression is bound to a new unique function name, say

ff1, and registered with the runtime system under a unique name ("ff1"). The

instance expression (ff) is replaced by this string.

Furthermore, the type of the parallel function can be deduced by unifying the

type of the HOF with the type of the expression and substituting in the type of the

parallel equivalent. Thus in the example the instance expression type (int*int->int)

and HOF type (’a*’a->’a) are unified giving the substitution {int/’a} which is

applied to the pfold type giving: string -> int -> int list -> int.

This type is explicitly applied to the parallel equivalent function name. Finally,

free values are passed to the runtime system using the register mechanism under

the string name for the argument function with " fvs" appended. The free values’

string names are picked up in the skeleton implementation, the values are accessed

using named value and transmitted to the remote instance function where they are

added to the function’s call. This means that no structural changes are required to the

parallel equivalent function which would invalidate the signature HOFS mechanism.

The resulting code for the simple example would be as follows, although note that

in this case no free value passing is actually required:

val x = 1

fun ff1 (x) (y,z) = x + y + z

val _ = register "ff1" ff1

val result =

(fn _ =>

(pfold : string -> int -> int list -> int) "ff1" (~x) [1,2,3])

(register "ff1_fvs" (x))

5.6 Conclusion

We have described in some detail the phases of the PMLS compiler, focusing on

network abstraction and the handling of free values through lifting or defunctional-

isation.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 635

Table 1. MIMD target systems

System CPU PEs Speed CRa OS MPI

Fujitsu AP3000 UltraSparc 16 300 MHz 1.50 Solaris 2.6 MPIAP

IBM RS/6000 SP2 Power PC 16 332 MHz 2.21 AIX 3.4 MPCC

Beowulf Celeron 32 533 MHz 5.33 Linux 2.2.16 LAM

Sun StarCat 15000 UltraSparc III 32 900 MHz 0.06 Solaris 2.8 MPICH

a Communications/computation ratio (MHz/(MB/s)).

The construction of PMLS proved a major Software Engineering activity. This

required the integration of extant systems with new language processors, both

through component modification and the production of specialised transducers. The

success of PMLS is, in part, a tribute to the ML Kit and Objective Caml, which

have proved robust and reliable foundations.

In the next section, we discuss the performance of SML programs for Euler totient,

matrix multiplication, genetic algorithm, linear equation solving and molecular

dynamics, parallelised through PMLS and run Fujitsu AP3000 and run on IBM SP2,

Beowulf and Sun StarCat architectures. These exemplars display good performance

consistency across platforms and illuminate both advantages and limitations of

PMLS.

6 Example applications

The following sections present results for several example applications on four

MIMD parallel machines, three distributed memory and one shared memory. Target

machine characteristics are shown in Table 1. The CR column gives a rough estimate

of the ratio of processing speed to peak communications speed. The three distributed

memory machines are broadly similar but the shared memory machine has very

different characteristics and cannot be directly compared with the others.

None of the examples requires defunctionalisation so free-value analysis was used

in all cases. The runtimes are the average of three executions of each program and

the speedup is based on the single processor runtimes.

6.1 Euler totient function

Here we illustrate the use of the fold skeleton. This application sums the Euler

numbers of a list of integers (Hammond & Michaelson, 1999) and we are able

to define several versions using different combinations of map and fold (Scaife

et al., 2002a). It turns out, however, that the method with the best performance is

a single non-nested fold, this having been determined by hand-modification and

direct measurement. The sequential algorithm can be expressed as:

fun gcd x 0 = x

| gcd x y = gcd y (x mod y)

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

636 N. Scaife et al.

Fig. 8. Runtime and speedup for sum of Euler numbers. The input list is 7900 arbitrary

precision integers from 100 to 8000.

fun relprime x y = gcd x y = 1

fun euler n = if n < 1 then 0 else zfilter (relprime n) n

val result = fold (op +) 0 (map euler nList)

where nList is the input list of integers and zfilter p n counts the number

of elements for which the predicate p is true in the integer list [1,...,n]. This is

structured as a sequence of a map followed by a fold but gives very poor parallel

performance. However, the two operations can be combined into a single fold by

using a datatype to mark Euler computation:

datatype EI = E of int | I of int

fun eiplus (I i1,I i2) = E ((euler i1) + (euler i2))

| eiplus (I i,E e) = E ((euler i) + e)

| eiplus (E e,I i) = E (e + (euler i))

| eiplus (E e1,E e2) = E (e1 + e2)

val (E result) = fold eiplus (E 0) (seqmap I nList)

The function seqmap is an implementation of map which is not parallelised by our

compiler. One additional overhead is the creation, transmission and deletion of the

datatypes but this is offset by combining the two HOFs into one. The performance

of the fold version is presented for each of the target architectures in Figure 8.

The runtimes are very similar, given the different speeds of the processors and the

relative speedups are identical apart from the Enterprise which tails off badly at

higher numbers of processors.

6.2 Matrix multiplication

There are many approaches to matrix multiplication in parallel including block-

structured and systolic algorithms (Golub & van Loan, 1989). Näıve approaches

using functional maps over elements and submatrices have been implemented

(N.Scaife et al., 2002a) but give poor speedup.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 637

open Bigarray

val acc = Genarray.create kind c_layout [|n,2,r,c|]

val res = Array2.create kind c_layout r c

fun ff (cnt,isfirst,mydata,shiftbuf,shiftright,shiftdown) =

let

fun accumulate data = <add data to accumulator acc>

in

if isfirst then accumulate mydata else ();

shiftright 0 1; shiftdown 1 1; accumulate shiftbuf;

if cnt >= Int.min (m,n) - 1

then (<sum accumulator acc data into result res>; (true,res))

else (false,res)

end

val result = torus ff AB

Fig. 9. Implementation of Gentleman’s algorithm using ptorus.

We have developed a torus skeleton which implements Gentleman’s Algorithm

(Gentleman, 1978). This is a systolic method where the matrices are distributed

across a square array of processors. Each processor receives the blocks associated

with that processor’s local block and maintains an accumulator of the result block

for that co-ordinate. In addition, this skeleton makes use of the Objective Caml

Bigarray module which allows C-compatible data to be accessed from within

Objective Caml. This means that communications are much faster because there

is no marshalling of data or copying of buffers but has a significant overhead for

accessing the array elements in Objective Caml.

Figure 9 illustrates the top level code. The r × c matrices have to be built into

the four-dimensional array AB where each matrix is divided up into m× n sub-

matrices. The torus skeleton provides the instance function ff with two functions,

shiftright and shiftdown which move the blocks around within the grid, keeping

track of the original indices of the data and providing the current data in shiftbuf.

The skeleton then repeatedly calls the ff function until it returns true plus the local

result. Finally, the torus skeleton uses MPI’s collective communications to gather

the local results into the final matrix product. Figure 10 shows the performance

of this skeleton. Here, we get slightly slower runtimes than with the näıve versions

but for a 2 × 2 array of processors the new skeleton gives very good speedup. The

problem size is not large enough for any further improvement on a 3 × 3 array.

6.3 Genetic algorithm

Genetic algorithms are an evolutionary computing approach to traversing very large

search spaces. Candidate solutions to problems are represented as genomes consisting

of a sequence of gene codings. A genome may be interpreted to derive a fitness value

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

638 N. Scaife et al.

Fig. 10. Runtime and speedup for matrix multiplication. The input is a 300 × 300 matrix of

random native integers from 0 to 65535.

indicating how good a solution it represents. Poor solutions may be discarded and

promising solutions may be refined through the evolutionary operators of mutation,

which randomly changes a genome, and cross-over, which swaps random portions

of genomes. Genetic algorithms are rich in potential parallelism for processing both

individual genomes and genome pools.

We have implemented a subset of the libraries for RPL2 (Reproductive Plan

Language) for developing parallel genetic algorithms. It is based around a simple

flat imperative language with data-parallel iterators for manipulating genome pools.

RPL2 was developed originally at the Edinburgh Parallel Computing Centre in a

joint project with British Gas (Surry, 1993) investigating pipe-network optimisation

problems. It is now maintained and distributed by Quadstone Ltd. In this subset we

have implemented a linear equation solver applied to data generated by our profiler

(Michaelson & Scaife, 2000). Here we have a triply-nested map structure; mapping

over genome lists, mapping over genomes and calculating the fitness function itself.

The innermost map is far too fine-grained for efficient parallel execution:

fun nextgeneration gsPop = map pfitness (breed gsPop)

fun run population =

<until convergence> run (map nextgeneration population)

There is a lengthy sequential initialization cost which takes about 10 times as long

as a single generation (iteration) but convergence takes about 50 to 100 generations

so the iteration time dominates. We present the results for 10 generations. This is

sufficient to reach a steady-state and also for the initialization costs to be counter-

balanced. There is still a significant bottleneck between iterations, however, since

the entire population is effectively redistributed between generations. This could

be mitigated since the only reason for this data redistribution is to allow all the

processors to terminate on the same iteration since the global fitness function needs

to be computed at a central processor. A better solution would be to define an

iterative map skeleton which retains the data on each processor between generations.

Figure 11 shows the performance for this application. Again, reasonable speedups

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 639

Fig. 11. Runtime and speedup for parallel GA. The input is profiling data consisting of 184

measurements of 38 parameters, the GA runs for 10 iterations.

are observed for small numbers of processors but the poor scalability of this method

is apparent in the relative speedup profile.

6.4 Linear equation solver

This algorithm finds an exact solution of a linear system of equations of the form

Ax = b, where all values are in the integer domain, and has been discussed in

detail (Loidl et al., 1999). The original algorithm was coded in Haskell and has been

translated into SML. The method is to map the problem onto multiple homomorphic

images, i.e. modulo a prime number, and solve in the homomorphic domain. The

final solution is generated by applying the Chinese Remainder Algorithm to the

homomorphic solutions. Parallelism is a single map over the images (the forward

mapping phase) since nested parallelism within the image was found to be too

fine-grained:

fun g_hS p = get_homSol aN bN p

val (xList:big_int list list) = map g_hS boundPrimes

The function get homSol solves the equation (aN x = bN) modulo prime number

p, the value boundPrimes is a list of prime numbers estimated to be the number

of primes required for a solution. Note that the selection of prime numbers is

problematical for this implementation since some prime numbers will result in

singular matrices during image solution (so called unlucky primes). The technique

adopted is to iteratively add more prime numbers until the estimated number of

non-singular solutions is obtained. Successive iterations require fewer primes and the

degree of parallelism becomes constrained. Luckily, the number of unlucky primes

is small relative to the total number of estimated primes.

Figure 12 shows runtimes and speedups for a dense 40 × 40 matrix of positive

arbitrary precision integers. Again we see the familiar pmap profile with good speedup

for small numbers of processors tailing off for larger numbers of processors.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

640 N. Scaife et al.

Fig. 12. Runtime and speedup for linsolv. This input is a 40 × 40 matrix of randomly

generated, arbitrary precision integers from 0 to 1010.

6.5 Parallel molecular dynamics

Molecular dynamics (MD) is an important area of physics and chemistry in which

parallel computing has been able to make an impact (Heermann, 1990). MD is

a computationally intensive method of studying the time-evolution of a system of

particles. For such systems, the particles’ motion is governed by interatomic forces

that depend on the location of the rest of the atoms in the system. Positions and

velocities are updated subject to this field of interatomic forces, leading to a step-wise

estimate of the particle trajectories over time. With this technique, the kinetic and

thermodynamic behavior of particle assemblies may be studied.

Parallel molecular dynamics (PMD) covers a wide range of computational

situations and there have been a large number of methods published in the literature

(Beazley et al., 1995). Factors which influence the choice of algorithm and data

storage/locality include;

• the range over which particle interactions are significant,

• the number of atoms/particles in the simulation, and

• whether a domain decomposition or a particle decomposition is used.

In addition, the data structures and indexing mechanisms play an important role

in the success of the chosen algorithm. The optimal data locality can also change as

the simulation proceeeds, so load balancing is an important issue (Kalé et al., 1998).

We have translated a näıve O(N2) all-pairs algorithm implemented in FOR-

TRAN90 (Hayashi & Horiguchi, 1997) into parallel SML suitable for analysis by

our compiler (Scaife et al., 2002b). Note that we are at a disadvantage in numerical-

intensive applications, compared to FORTRAN90. The additional cost of imperative

constructs plus factors such as boxed floating-point values means there is an inherent

execution cost for equivalent imperative code between FORTRAN90 and SML. In

addition, functional languages are usually optimized for symbolic applications rather

than numeric ones, since this is where most successful functional programs have

been deployed.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 641

fun fc (acc,(qi,vi,fi),(qj,vj,fj)) =

let

val qq = limit3 (sub3 (qi,qj),~s2,s2)

val rr = ssq3 qq

val (r6,r12) = (rr*rr*rr,rr*rr*rr*rr*rr*rr)

val frr = 1.0/(r12*rr)-0.5/(r6*rr)

val ff = smul3 (frr * dt22) qq

in

(acc’,ff,neg3 ff)

end

fun ca (acc1,acc2) = sumacc (acc1,acc2)

fun addqvf (delta,(q,v,f)) = (q,v,add3 (f,delta))

val ((epot,vir),qvf) = fpairs ca add3 addqvf fc nullacc qvf

Fig. 13. Functional implementation of PMD simulation.

Here, we present two implementations. The first is purely functional using a new

skeleton which computes all the inter-particle interactions (pfpairs). This is derived

from our associative fold skeleton but cannot be expressed using fold itself because

of the two-way interaction between list elements in which symmetry is used to reduce

the complexity of the algorithm by a factor of 2.

Figure 13 shows the central code for this implementation. The fc function

computes the force between particle pairs and also sums an accumulator acc

between all pairs which is used in computing the physical properties of the system.

The ca function sums the accumulators and the addqvf function updates the force

component in the position (q), velocity (v) and force (f) triple which describes

the particle ensemble. The pfpairs skeleton farms out groups of pairs of particle

descriptions and uses the auxiliary functions to compute the final result. This skeleton

sits within the outer simulation loop which iterates over a preset number of time

increments.

Figure 14 (dn2mdf2.sml) shows the performance of this program for 216 particles

over 16 time-steps. Again, since we are using a master-slave model there is good

speedup for small numbers of processors but with poor scalability. We do not

compare favourably with FORTRAN90, however, which takes 142s compared to

2383s for SML, sequentially on the SP2. This is a slowdown of 16.8 which is not

entirely unexpected for this type of application.

We have also developed a ring topology skeleton (ptr) and applied it to this

problem. This skeleton also uses the Bigarray module interface to C-compatible

data as described for the ptorus skeleton in section 6.2. The functional interface

to this essentially imperative skeleton is problematical but, briefly, requires two

functions as parameters. One function is passed the position and force data for

its own section of the particle ensemble along with a second set of position/force

data (from another processor). On output this is required to compute the forces

between the two sets of particles. A flag is provided to denote when both sets of

data represent the same set of particles (for computation of forces between local

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

642 N. Scaife et al.

Fig. 14. Runtime and speedup for parallel molecular dynamics simulation. The upper plots

(dn2mdf2.sml) are for the functional code with 216 particles and 16 time steps. The lower

plots (dn2mdbatr.sml) are for the ring topology implementation for 512 particles over 200

time steps.

particles). The second function is required to update local forces with force data

computed remotely. The ptr skeleton divides the particles among the processors

and manages the communication pattern required to compute the force interaction

between all pairs of particles.

Figure 14 (dn2mdbatr.sml) shows the performance of this method for 512 particles

over 200 time steps. We could not execute the two programs on the same machine

because of a problem with Bigarray on the SP2 and the lack of a FORTRAN90

compiler on the other architectures. The FORTRAN90 takes 913s sequentially and

216s on 4 processors on the SP2 whereas the SML gives 799s sequential and 256s

on 4 processors on the Beowulf. There is good speedup up to 8 processors (the

number of processors must be a divisor of the cube root of the number of particles)

speedups are 4.23s for FORTRAN90 and 3.13s for SML.

6.6 Summary

The examples discussed above are from widely different applications and show

good performance with small numbers of processors but with poor scalability to

larger processor counts. The reasons for the modest performance are discussed in

section 4 and relate to the relatively poor communcation to computation ratio of

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 643

Table 2. Fastest runtime T (seconds) and peak speedup SP for all applications

Program Beowulf SP2 AP3000 StarCat

T SP T SP T SP T SP

sumeulerm 2.606 23.94 5.831 24.60 11.22 13.66 3.360 14.74

matrixtorus 18.22 2.937 N/A N/A 29.47 3.334 0.845 3.481

gafit 15.09 6.970 16.84 6.268 16.70 5.623 8.076 4.605

linsolvcm 9.368 10.89 12.86 12.03 18.38 9.916 6.003 9.210

dn2mdf2 6.340 9.054 9.430 9.563 8.160 9.434 3.553 6.857

dn2mdbatr 12.43 6.647 N/A N/A 29.61 6.423 13.41 5.034

our skeletons. Table 2 shows the fastest parallel runtime and the speedup for the

number of processors at which that time was achieved for each program. Overall,

most applications give reasonable performance in terms of relative speedup.

Our experience suggests that while the development of even relatively simple

parallel skeletons such as pmap and pfold is difficult and error-prone, it is eminently

worthwhile. As these example applications show, significant automatic skeleton

re-use can be achieved, with consistent behaviour across a variety of MIMD

architectures.

7 Related approaches

Glasgow Parallel Haskell (GpH) (Loidl et al., 1999) is a conservative extension of

the Haskell language. The primitives ’par’ and ’seq’ are provided and results in

a thread-based execution. Co-ordination is expressed independently from the main

algorithm using evaluation strategies (Trinder et al., 1998). GPH has the ability

to transmit function closures by the expedient of providing a global heap and

free-values are provided by the runtime system so this compiler does not have the

complications encountered by our compiler. Within this framework skeletons such

as parallel map can easily be expressed but can sometimes require explicit control

of granularity and data locality using user-defined strategies.

The HDC compiler project (Herrmann & Lengauer, 2000) is a skeletons-based

compiler founded on a strict subset of Haskell. Unlike GPH, however, a global

heap is not provided, giving skeleton implementations a cleaner semantics in the

sense of communication-closed blocks. This means that, like our compiler, HDC

cannot transmit function closures resulting in many similarities with our work. A

transformational approach to compilation is used and compilation output is to C

with MPI calls. Several skeletons are provided, including map, red (fold), filter

and scan. Special emphasis is given to divide-and-conquer skeletons, for which several

variants are provided. HDC uses the same lambda-lifting method as our compiler.

Defunctionalisation is also used but works using a monomorphization approach to

handling polymorphism. HDC is slightly more expressive than our compiler, for

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

644 N. Scaife et al.

instance list comprehensions are transformed into loops and filters which can be

exploited by skeleton compilation. Nesting is not explicitly mentioned.

Skeletons have been implemented in Eden (Klusik et al., 2000), a Haskell extension

with primitives to allow the creation of processes and where co-ordination is

expressed explicitly by the use of channels. Within this framework skeletons such

as parallel map and fold can be defined but the application of such skeletons is

controlled explicitly by the programmer.

The P3L compiler (Bacci et al., 1995) allows the construction of parallel programs

from a set of task and data parallel skeletons. Data parallel skeletons include map and

reduce and task parallel skeletons include pipe and farm but there are restrictions

upon which type of skeleton can be nested within each other, for example task

parallel skeletons cannot be nested within data parallel ones. A cost model is also

provided which mirrors the compositional nature of the compiler. It is intended

that the cost model be used to fine tune the implementation which requires the cost

model to be congruent, ie. accurate across optimizations. The cost model is quite

simple, modelling communications as a linear function of data size and the costs for

task parallel skeletons are divided into execution time and service time which is the

average steady-state cost of an individual task. This compiler also has many features

in common with our work but the programmer is expected to construct parallel

programs using only the skeletons provided whereas our compiler is expected to

deduce the skeletons from within arbitrary SML code.

The SKiPPER language (Coudarcher et al., 2001) provides skeletons which are

built using Objective Caml and MPI. Here, co-ordination is carried out using

a dataflow model and skeletons such as task farm and data farm are provided.

Arbitrary nesting of skeletons is possible and recently, CASE tools have been used

to map the dataflow structure of the program onto target architectures (Serot, 2001).

This method is intended to allow irregular parallelism to be handled. One potential

problem is that free-values have to be transmitted upon each instance.

We are currently engaged in empirical comparisons of PMLS with GpH and Eden.

Preliminary results suggest that our HOF/skeleton approach achieves faster absolute

times and similar speedups on the same tests on the same parallel architectures (Loidl

et al., 2003). Whether this is due to the performance of Objective Caml or to our

static analysis methods is not clear from this comparison.

8 Conclusions

We think that PMLS represents considerable progress in the achievement of

our overall objective of an automatic parallelising compiler for practical parallel

functional programming. There are, however, many areas in which our compiler

could be improved and further extended. We finally assess the main achievements

and limitations of PMLS, and consider future directions for its development.

8.1 Achievements

We have constructed a complete system for the selection of nominated HOFs

for parallel realisation. As it stands, the compiler implements a mostly-implicit

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 645

(Skillicorn & Talia, 1998) parallel programming system for a significant subset of

Standard ML. Using the compiler to implement functional maps and folds in parallel

is extremely simple.

The major contributions of PMLS over other compilers for parallel functional

programming are the automatic extraction of the abstract network which is in-

tegrated with the runtime system and the porting onto a range of architectures

over which consistent behaviour is attained. Our methods are more static than

others such as GpH and are therefore less flexible but the use of aggressively static

methods allows optimizations which can give an edge in performance for some

cases.

The relatively free hand which PMLS gives to programmers in placing skeleton

constructs within arbitrary functional code is also an advantage over systems such

as P3L which constructively build skeleton programs from skeletal primitives. Our

compiler analysis supports the programmer by automatically handling free-values

and generating support code for launching parallel constructs. This gives our system

significant advantages over explicit imperative and functional programming methods

for parallel systems.

We are able to use our skeletons constructively to build new skeletons from

existing ones, an example being the pfilter skeleton, to filter elements of a list,

which is built upon pmap. Furthermore, the programmer is at liberty to define

and implement new skeletons. Although adding new skeletons for our system is

relatively complex, we can demonstrate potential for a high level of re-usability for

such code, depending upon the degree of specialisation of the skeleton’s application.

For example, we have experimental implementations of general divide-and-conquer

skeleton, a function composition skeleton implemented as a processor pipeline, and

tuple parallelism built upon the pmap skeleton.

We have developed applications from a wide variety of domains and have

demonstrated good speedup for small numbers of processors. Several variants of

dedicated parallel machines and general-purpose networks of workstations have been

targetted by our compiler. Our skeleton deployment is architecturally-independent,

within the range of Unix-based machines for which an implementation of MPI

exists.

A common objection to HOF-based system development is that programmers

find their use forced and unnatural. Much research into skeletons has been directed

towards automated derivations of specific classes of problems. As part of our

compiler project we have also been investigating the automatic synthesis of HOFs

in programs that lack them, using proof planning. For example, in the matrix

multiplication program discussed above we are able to automatically find 14 different

combinations of map and fold, from a version written without HOFs (Cook et al.,

2001). Thus, our compiler is also a suitable testbed for trying out ideas for the

automated synthesis and optimization of skeletal programs.

Although these achievements do not conclusively demonstrate the general applic-

ability of our methods to parallel processing, we think that they indicate good

potential for evolving PMLS into a robust and flexible parallel programming

system.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

646 N. Scaife et al.

8.2 Limitations

We do not cover the full Standard ML language. While we can compile the full

Core language, the implementation of the type system is effectively the intersection

of the ML Kit and Objective Caml type systems. We also only have limited support

for the module system: unconstrained, non-nested structures are the only constructs

handled.

Our compiler is whole-program with long compilation times which hamper

program development. Separate compilation would be hard to implement because

of the high volume of additional data attached to grammatical objects.

The network analysis phase uses type theoretic arguments to extract the topology

of the parallel execution. Unfortunately, the type information alone is not sufficient

to handle higher levels of polymorphism, such as two polymorphic functions applied

to each other within a third polymorphic function, for example function composition.

A dataflow analysis would be able to handle this.

The defunctionalisation method is also partial, for example, we cannot handle

higher-order constructors. Furthermore, the decision between lambda-lifting and

defunctionalisation has, at present, to be made manually.

Our skeletons use generic communications which result in high communications

loads, so our system is most useful for coarse-grained parallelism. Specialised packing

routines such as those from GpH and HDC could be deployed. Alternatively,

datatypes which do not require packing are provided by Objective Caml (for instance

the Bigarray module). The ptr and ptorus skeletons briefly described above make

use of this facility.

We currently use simple, hardwired heuristics for process placement. However, we

have implemented a dynamic profiling technique which leads to sequential and paral-

lel performance predictions. Preliminary results suggest that the predictions are suffi-

ciently accurate to allow elimination of non-viable HOF instances. Furthermore, we

are currently developing a transformation system for optimising the performance of

HOF-based implementations. Integrating the sequential and parallel performance

prediction into a feedback loop with this transformation system will provide a metric

for program improvements.

Finally, PMLS is currently restricted to a small set of simple skeletons. Many

generic and domain specific skeletons have been presented in the literature: our

compiler could be generalized by the implementation of a more comprehensive set

of skeletons.

In summary, while these limitations pose significant challenges, we do not think

that they present fundamental obstacles to the general applicability of the skeletons

method or our interpretation of it.

8.3 Current position and future direction

Our compiler design recapitulates all the stages in hand-based skeleton program-

ming: work with a sequential prototype; identify potentially useful parallelism in

HOF use through analysis and instrumentation; try to optimise HOF parallelism

through transformation; realise HOF parallelism as skeletons. To this extent we

have advanced the concept of algorithmic skeletons into a practical and usable tool.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 647

Furthermore, seeking parallelism latent in the standard constructs of a major

language avoids the pitfalls of building yet another language or retrofitting an

existing language with non-standard extensions. Our realisation of this concept

within a working parallelising compiler persuades us that functional programming is

a good basis for parallel programming, that implicit parallel functional programming

is achievable, and that the skeletons approach is plausible and principled.

While we think that PMLS shows that parallel functional programming through

skeletons has an engaging if challenging future, our project highlights a number of

well-known general problems associated with fully automated parallel programming.

First of all, an arbitrary program may not offer sufficient potential for achieving

scalable parallel performance. Methods are needed for analysing arbitrary programs

with a view to classifying code according to its potential for parallelism. We think that

there may be benefit in marrying static analysis with dynamic sequential profiling

information at compile time. We are investigating the development of profiling tools

within PMLS which should aid such integrated analysis.

Furthermore, inter-processor communication bedevils all parallel programming.

We think that static analysis augmented with dynamic profiling is also applicable

to minimising data movements between processing elements when parallelising

arbitrary programs.

Finally, näıve identification of parallelism can offer poor performance gains but

optimising parallelism is very hard. We are currently engaged in developing a

transformation methodology for arbitrary programs driven by profiling. At present

this identifies our base skeletons using pattern matching: we would like to implement

more sophisticated transformations for exposing and optimizing parallelism.

The parallel functional programming community makes strong claims about

the benefits of functional languages for parallel programming. We think that our

compiler represents a valuable step in justifying those claims.

Acknowledgements

This work was supported by grant number GR/L42889 from the UK’s Engineering

and Physical Sciences Research Council (EPSRC) and Postdoctoral fellowship

P00778 of the Japan Society for the Promotion of Science (JSPS). We wish to

thank the Imperial College Fujitsu Parallel Computing Research Centre for the use

of the AP3000 and Quadstone Ltd for access to RPL2. Major compiler components

were developed by the University of Copenhagen (ML Kit) and by the Caml

Group at INRIA (Objective Caml). We would also like to thank Ryoko Hayashi

for the FORTRAN implementation of the Parallel Molecular Dynamics Simulation

and Hans-Wolfgang Loidl for the linsolv application program and for helpful

comments on an earlier draft of this paper.

References

Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S. and Vanneschi, M. (1995) P(3)L – A Struc-

tured High-level Parallel Language and its Structured Support. Concurrency: Practice &

Exper. 7(3), 225–255.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

648 N. Scaife et al.

Backus, J. (1978) Can Programming be Liberated from the Von Neumann style? A Functional

Style and its Algebra of Programs. Comm. ACM, 21(8), 613–641.

Bailey, P. and Newey, M. (1993) Implementing ML for Distributed Memory Multiprocessors.

ACM SIGPLAN Notices, 28(1), 59–63.

Beazley, D. M., Lomdahl, P. S., Gronbech-Jensen, N., Giles, R. and Tamayo, P. (1995) Parallel

Algorithms for Short-range Molecular Dynamics. Ann. Rev. Computational Phys. 3, 119–175.

Bell, J. M., Bellegarde, F. and Hook, J. (1997) Type-driven defunctionalization. Proceedings

ACM SIGPLAN ICFP ’97, pp. 25–37. ACM.

Bird, R. and de Moor, O. (1997) Algebra of Programming. Prentice-Hall.

Birkedal, L., Rothwell, N., Tofte, M. and Turner, D. N. (1993) The ML Kit (Version 1).

Technical report 93/14, Department of Computer Science, University of Copenhagen.

Bratvold, T. (1994) Skeleton-based Parallelisation of Functional Programmes. PhD thesis,

Department of Computing and Electrical Engineering, Heriot-Watt University.

Chailloux, E., Manoury, P. and Pagano, B. (2000) Développement d’applications avec Objective

Caml. Paris: O’Reilly.

Chin, W.-N. and Darlington, J. (1996) A Higher-Order Removal Method. Lisp & Symbolic

Computation, 9(4), 287–322.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K.,

Walker, D. and Whaley, R. (1996) Scala-pack: A portable linear algebra library for distributed

memory computers – design issues and performance: LNCS 1041, pp. 95–106. Springer.

Cole, M. I. (1989) Algorithmic Skeletons: Structured management of parallel computation.

Pitman.

Cook, A., Ireland, A. and Michaelson, G. (2001) Higher-order Function Synthesis through

Proof Planning. Proceedings of 16th Annual International Conference on Automated Software

Engineering (ASE 2001), pp. 307–310. San Diego, USA: IEEE Computer Society.

Coudarcher, R., Serot, J. and Derutin, J.-P. (2001) Implementation of a Skeleton-based Parallel

Programming Environment Supporting Arbitrary Nesting. In: Meuller, F. (ed), High-Level

Parallel Programming Models and Supportive Environments: LNCS 2026. Springer.

Darlington, J., Guo, Y.-K. and To, H. W. (1996) Structured Parallel Programming: Theory

meets Practice. In: Wand, I. and Milner, R. (eds.), Computing Tomorrow: Future Research

Directions in Computer Science, pp. 49–65. CUP.

Gentleman, W. M. (1978) Some Complexity Results for Matrix Computations on Parallel

Processors. J. ACM, 25, 112–115.

Golub, G. H. and van Loan, C. F. (1989) Matrix Computations. Johns Hopkins University

Press.

Hamdan, M. (2000) A Combinational Framework for Parallel Programming Using Algorithmic

Skeletons. PhD thesis, Department of Computing and Electrical Engineering, Heriot-Watt

University.

Hammond, K. and Michaelson, G. (1999) Research Directions in Parallel Functional

Programming. Springer.

Hayashi, R. and Horiguchi, S. (1997) Domain Decomposition Scheme for Parallel Molecular

Dynamics Simulation. Proc. of High Performance Computing Asia ’97, pp. 595–600. IEEE

CS Press.

Heermann, D. D. (1990) Computer Simulation Methods in Theoretical Physics. 2nd edition

edn. Springer, Tokyo.

Herrmann, C. A. and Lengauer, C. (2000) The HDC Compiler Project. In: Darte, A., Silber,

G.-A. and Robert, Y. (eds.), Proc. Eighth Int. Workshop on Compilers for Parallel Computers

(CPC 2000), pp. 239–254. LIP, ENS Lyon.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

Parallel SML with skeletons 649

Johnsson, T. (1985) Lambda lifting: Transforming programs to recursive equations. In:

Jouannaud, J.-P. (ed), Functional Programming Languages and Computer Architecture: LNCS

201, pp. 190–302. Springer.

Kalé, L. V., Bhandarkar, M. and Brunner, R. (1998) Load Balancing in Parallel Molecular

Dynamics. Fifth International Symposium on Solving Irregularly Structured Problems in

Parallel: LNCS 1457. Springer-Verlag.

Kesseler, M. (1995) Constructing Skeletons in Clean The Bare Bones. In: Wim Böhm, A. P.

and Feo, J. T. (eds.), High Performance Functional Computing, pp. 182–192.

Klusik, U., Loogen, R., Priebe, S. and Rubio, F. (2000) Implementation Skeletons in Eden:

Low-Effort Parallel Programming. 12th Int. Workshop on Implementation of Functional

Languages (IFL 2000): LNCS. Springer.

Loidl, H.-W., Trinder, P. W., Hammond, K., Junaidu, S. B., Morgan, R. G. and Peyton Jones,

S. L. (1999) Engineering Parallel Symbolic Programs in GPH. Concurrency – Practice &

Exper. 11, 701–752.

Loidl, H-W., Rubio, F., Scaife, N., Hammond, K., Horiguchi, S., Klusik, U., Loogen, R.,

Michaelson, G. J., Peña, R., Portillo, Á. J. Rebón, Priebe, S. and Trinder, P. W. (2003)

Comparing Parallel Functional Languages: Programming and Performance. Higher-order

and Symbolic Computation, 16(3). To Appear.

McColl, W. F. (1993) General Purpose Parallel Computing. In: Gibbons, A. M. and Spirakis, P.

(eds.), Lectures on parallel computation. proc. 1991 ALCOM spring school on parallel

computation, pp. 337–391. Cambridge University Press.

Message Passing Interface Forum (1994) MPI: A Message-Passing Interface Standard. Int. J.

Supercomputer Applic. & High Perf. Comput. 8(3/4).

Michaelson, G. and Scaife, N. (2000) Parallel Functional Island Model Genetic Algorithms

through Nested Skeletons. In: Mohnen, M. and Koopman, P. (eds.), Proceedings of 12th

International Workshop on the Implementation of Functional Languages, pp. 307–313.

Michaelson, G., Ireland, A. and King, P. (1997) Towards a Skeleton Based Parallelising

Compiler for SML. In: Clack, C., Davie, T. and Hammond, K. (eds.), Proceedings of 9th

International Workshop on Implementation of Functional Languages, pp. 539–546.

Michaelson, G., Scaife, N., Bristow, P. and King, P. (2001) Nested Algorithmic Skeletons from

Higher-Order Functions. Parallel Algorithms and Applications (special issue on High Level

Models and Languages for Parallel Processing) 16(2–3), 181–206.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. MIT Press.

Pelegatti, S. (1998) Structured Development of Parallel Programs. Taylor & Francis.

Pierce, B. C. and Turner, D. N. (2000) Pict: A Programming Language Based on the Pi-

Calculus. In: Plotkin, G., Stirling, C. and Tofte, M. (eds.), Proof, Language and Interaction:

Essays in Honour of Robin Milner. MIT Press.

Reynolds, J. C. (1972) Definitional Interpreters for Higher-order Programming Languages.

ACM National Conference, pp. 717–740.

Scaife, N., Bristow, P., Michaelson, G. and King, P. (1998) Engineering a Parallel Compiler for

SML. In: Clack, C., Davie, T. and Hammond, K. (eds.), Proceedings of 10th International

Workshop on Implementation of Functional Languages, pp. 213–226.

Scaife, N., Michaelson, G. and Horiguchi, S. (2002a) 13th International Workshop,

Implementation of Functional Languages: LNCS 2312, pp. 138–154. Springer.

Scaife, N., Hayashi, R. and Horiguchi, S. (2002b) Parallel Molecular Dynamics in a

Parallelizing SML Compiler. The Third International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT’02), pp. 447–454.

Serot, J. (1999) Explicit Parallelism. In: Hammond, K. and Michaelson, G. (eds.), Research

Directions in Parallel Functional Programming, pp. 379–396. Springer.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

650 N. Scaife et al.

Serot, J. (2001) Tagged-token Data-flow for Skeletons. HLPP 2001: International Workshop

on High-Level Parallel Programming and Applications. Parallel Processing Letters. World

Scientific Publishing.

Skillicorn, D. B. and Talia, D. (1998) Models and Languages for Parallel Computation.

Computing Surveys, June.

Surry, P. (1993) RPL2 Functional Specification. Technical report EPCC-PAP-RPL2-FS 1.0,

University of Edinburgh/British Gas.

Trinder, P. W., Hammond, K., Loidl, H.-W. and Peyton-Jones, S. L. (1998) Algorithm +

Strategy = Parallelism. J. Funct. Program. 8(1), 23–60.

https://doi.org/10.1017/S0956796804005489 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005489

