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We explored the dynamics of Taylor—Couette flows within square enclosures, focusing
primarily on the turbulence regime and vortex behaviour at varying Reynolds numbers.
Laboratory experiments were conducted using particle image velocimetry for Reynolds
numbers Re, € [0.23, 4.6] x 10 based on the minimum gap A/d = 1/16, 1/8 and 1/4,
where d is the cylinder diameter, or Re € [1.8, 9.8] x 10° based on d /2. At lower Re,
the flow was dominated by well-defined Taylor and Gortler vortices, while higher Re led
to a turbulent state with distinct motions. Space—time radial velocity analysis revealed
persistent Taylor vortices at lower Re, with larger gaps but increased turbulence, and
irregular motions at higher Re, with smaller gaps. Velocity spectra reveal that the
energy distribution is maintained at frequencies lower than the integral-type frequency f;
across varying A due to the dominance of large vortices. However, there is a monotonic
increase in energy at higher frequencies beyond f;. The reduced characteristic frequency
f1A/wir; ~1/10 indicates that these motions scale linearly with angular velocity, and
inversely with the gap. Proper orthogonal decomposition (POD) and spectral POD were
used to distinguish between Taylor and Gortler vortices, showing the effects of gap size
and the associated energy cascade. Linear stability analysis included as complementary
support revealed primary instability of the Taylor vortex, which is similar to the circular
enclosure, along with multiple corner modes that are unique to the geometry.
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1. Introduction

Taylor—Couette (TC) flows typically refer to the fluid motion that occurs between two
concentric, coaxial cylinders. Early investigations of these flows aimed to measure fluid
viscosity (Mallock 1889, 1896; Couette 1890). Associated flow phenomena have attracted
considerable attention following the work by Taylor (1923), which established the critical
conditions for the emergence of axial vortices, known as Taylor vortices. Over time,
various studies have extensively explored distinct flow patterns and dynamics. The most
common geometry involves the inner cylinder rotating while the outer cylinder remains
stationary, with several geometric parameters influencing the flow conditions.

The TC flows demonstrate various distinct behaviours influenced by the relative rotation
speeds of the cylinders and the fluid properties (Andereck, Liu & Swinney 1986).
These flows are instrumental in understanding fundamental phenomena, including the
transition from the laminar to the turbulent regime, the emergence of instabilities, and
the interactions among various flow regimes (Coles 1965; Hristova et al. 2002; Dou,
Khoo & Yeo 2008). At comparatively low rotation rates, the fluid undergoes concentric
motions. However, the flow becomes unstable above a critical rotation rate, developing
secondary flows and coherent patterns. These vortices result from the interplay between
centrifugal forces from the rotation and viscous forces. Andereck et al. (1986) described
various flow regimes present in TC flows, highlighting that standard flow transitions
are initiated through bifurcations, leading to distinct flow patterns. Beyond certain
critical conditions, flow patterns manifest, with counter-rotating stationary vortices (Taylor
vortices) emerging from the primary bifurcations. Secondary bifurcations give rise to
time-periodic structures, such as wavy vortex flow, wherein the Taylor vortices oscillate
periodically along the axial direction (Strogatz 2000). Also, particle migration and
preferential concentration in TC flow systems have significant implications in engineering,
such as particle segregation and filtration (Wereley & Lueptow 1999; Climent, Simonnet
& Magnaudet 2007). The TC flows also provide insights into the rheological properties of
complex fluids, including polymers (Watanabe, Sumio & Ogata 2005; Nicolas & Morozov
2012), suspensions (Majji & Morris 2018; Baroudi et al. 2023) and colloids (Yuan & Ronis
1993; Ortiz-Ambriz et al. 2018).

Recently, Wiswell et al. (2023) examined the influence of gap ratios, identifying
shared features with the classical findings of Taylor (1936). Jeganathan, Alba & Ostilla-
Mbénico (2023) investigated quasi-axisymmetric structures and the role of the Coriolis
parameter, contrasting the two-way coupling in TC flows with the one-way coupling
in Rayleigh—-Bénard convection. Oishi & Baxter (2023) used a generalised quasi-linear
approximation to analyse spiral turbulence (Coles 1965), highlighting its connection to
the non-normality of the linear operator. Kang et al. (2023) demonstrated that large
radial temperature gradients destabilise convective cells, inducing a travelling wave
pattern through subcritical bifurcation. Also, Crowley et al. (2023) introduced a refined
method for examining turbulent intervals, with findings consistent across simulations and
experiments, while Alam & Ghosh (2023) proposed a unified scaling for dimensionless
torque in neutrally buoyant suspensions of counter-rotating TC flows.

Several studies have examined TC flows in non-circular geometries, uncovering distinct
stability characteristics. DiPrima & Stuart (1972a,b) analysed eccentric configurations
using a bi-polar coordinate system, assessing the influence of eccentricity and clearance
ratio on flow stability. Esser & Grossmann (1996) derived an analytical stability criterion
for TC flows across various radius and speed ratios, while Shu et al. (2004) demonstrated
that eccentricity stabilises Taylor vortices when only the inner cylinder rotates. Oikawa,
Karasudani & Funakoshi (1989) employed a Chebyshev—Fourier approach to study the
stability of eccentric TC flow, and Mittal, Sidharth & Verma (2014) used a finite element
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Figure 1. Basic schematic illustrating possible types of vortices in the TC system with square enclosure:
(a) Taylor vortices driven by centrifugal instability, (b) Gortler vortices induced by curvature effects near the
concave boundaries, (¢) separation regions forming near the enclosure walls, and (d) Moffatt vortices appearing
at the corners due to secondary flow effects. The cross-section A—A’ indicates the spatial distribution of these
vortices along the radial and vertical directions.

framework for global stability analysis. Investigations into combined axial flow and
eccentricity effects include the work of Leclercq, Pier & Scott (2013, 2014), who identified
a transition from toroidal Taylor vortices to helical structures at higher eccentricities.
Kobine, Mullin & Price (1995) explored TC flow in a stadium-shaped geometry, while Luo
etal. (2023, 2024) studied TC flows with three-lobe multi-wedge clearance, noting delayed
transition due to separation bubbles, and the emergence of unique vortical structures. Also,
several studies have addressed the stability of TC systems under heating and gravitational
effects (e.g. Eagles & Soundalgekar 1997; Kedia, Hunt & Colonius 1998; White & Muller
2000; Al-Mubaiyedh, Sureshkumar & Khomami 2002; Jenny & Nsom 2007).

Early numerical studies by Lewis (1979) demonstrated that increasing the gap
between cylinders in square enclosures weakens corner eddies. Mullin & Lorenzen
(1985) examined transitions between four-cell and six-cell states, identifying geometric
asymmetries that led to time-dependent behaviour, distinguishing square-enclosed TC
flow from its circular counterpart. Kobine & Mullin (1994) and Kobine et al. (1995)
extended this analysis to finite length effects, showing that anomalous 40-cell states
remained disconnected from the primary flow up to 2.7 times the critical Reynolds
number, with stability primarily dictated by end cells rather than cylinder length. Their
findings highlighted the sensitivity of TC flows to both geometry and boundary effects.
The present study builds on these insights by investigating vortex interactions and
turbulence modulation within a square enclosure, providing a detailed analysis under
various scenarios.

In general, TC flow in non-canonical systems typically features various types of vortices.
Taylor vortices, which are prevalent in both steady and periodic flow regimes, arise from
centrifugal instabilities. Gortler vortices, occurring at relatively high Reynolds numbers,
are often linked to the route to turbulence (Floryan 1991; Saric et al. 1994). These vortices
develop due to the convex curvature of the inner surface of the cylinder, and are observed
primarily in the radial outflow region between Taylor cells. Similarly, vortices may also
form as a result of flow separation near the venturi-like cross-section, or at the corner
region of the square enclosure. In the presence of sharp corners, the formation of Moffatt
vortices is also likely. While there may be additional paths of eddy formation within the
flow field that have yet to be analysed, Moffatt vortices — which form in corners — are
the exception among these four types. Figure 1 shows a basic schematic illustrating these
distinct vortex types.
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Various complex interactions may occur in TC flows within square enclosures, poten-
tially expanding upon the insights from Mullin & Lorenzen (1985). Their experiments
primarily targeted lower Reynolds numbers and used variable height configurations to
study aspect ratio effects. At higher Reynolds numbers, new flow structures emerge,
leading to a critical area for further research. Also, the influence of the gap size between
the rotating cylinders on flow instability and vortex dynamics remains underexplored.
A linear stability analysis of this geometry could offer insights into transition mechanisms,
particularly at higher Reynolds numbers, uncovering new flow behaviours.

In this study, we explore various turbulence conditions, with emphasis on the
dynamics of turbulent Taylor vortices. Specifically, the dominant coherent motions and
the modulation of the inner—outer wall gap were examined with various gap ratios and
Reynolds numbers spanning an order of magnitude. Although the parameter space is vast,
the selected conditions provide a critical understanding of the flow dynamics under these
distinct conditions. The experimental set-up is described in § 2, the results are provided in
§ 3, a discussion is given in § 4, and key conclusions are summarised in § 5. Also, a linear
stability analysis using a meshless numerical approach (Shahane, Radhakrishnan & Vanka
2021; Unnikrishnan et al. 2024b), is included in Appendix B.

2. Experimental set-up

Three distinct TC systems, each with outer square enclosures, were constructed using
4.8 mm thick transparent acrylic sheets. The systems shared a concentric rotating inner
cylinder with diameter d =80 mm and height H =450 mm, while the square cross-
section enclosures had sides 90 mm, 100 mm and 120 mm. These values resulted in
minimum gaps between the outer enclosure and inner cylinder A =5, 10 and 20 mm, or
gap ratios A/d =1/16, 1/8 and 1/4. The associated slenderness ratio, defined as the ratio
of the tank’s height to the minimum gap between the cylinder and the square walls, was
H/A =90,45 and 22.5. A higher slenderness ratio is preferable as it reduces the impact of
end effects of the tank on the flow features within the observation area. The inner cylinder
was affixed to a steel shaft with diameter 5 mm, which in turn was connected to a stepper
motor mounted coaxially. This motor was installed atop the stationary square tank. A small
clearance of 2 mm between the rotating cylinder and square tank was left at the bottom
and top to prevent contact and potential wear.

Characterisation of the flow within the TC systems was conducted by varying the
angular velocity of the inner cylinder, with £2 ranging from 27/5 to 27 rad s~! (12,
24, 36, 48 and 60 revolutions per minute, rpm). This range enabled the exploration of
Reynolds numbers based on the minimum gap, spanning an order of magnitude from
Rep =[2r0] x A/v=230to 4.6 x 103, capturing the shear-dominated dynamics within
the gap region. Given the azimuthal variability in the gap, leading to changes in mean
shear and pressure gradient, we also consider the Reynolds number based on the inner
radius. This alternative definition has been used in studies with similar outer square cross-
section configurations, such as Mullin & Lorenzen (1985) and Kobine & Mullin (1994),
to investigate low-dimensional bifurcation phenomena. In alignment with these studies,
we report Reynolds numbers based on the inner radius, spanning Re = [£2rg] X ro/v =
1.8 x 103 t0 9.1 x 10%. To mitigate the formation of bubbles caused by dissolved oxygen
in the water, the fluid was preheated prior to being introduced into the square cylinder.
The tank was then allowed to cool overnight, ensuring that the fluid reached ambient
temperature 25 °C before conducting the experiments.

The experiments used a Nema 23 stepper motor with maximum holding torque 3 Nm
and 200 steps per revolution, yielding resolution 1.8° per step. This motor was driven by an
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Figure 2. Schematic of the TC system with outer square cylinder illustrating the parameter range for the gap
A/d, and rotational velocity of the inner cylinder £2;.

Arduino board paired with a DMS566T stepper driver module. A 10 min period was allotted
for the flow to stabilise before initiating measurements, with a tachometer employed to
verify the motor’s speed, ensuring the specified rpm setting. Flow field characterisation
around the mid-height of the system was achieved through particle image velocimetry,
using a 2 MP CMOS camera. The field of view was centred vertically on the cylinder
and aligned with the radial section corresponding to the minimum radial gap. For cases
with A/d =1/4, 1/8, the field of view spanned vertically approximately 70 mm, and for
A/d =1/16, it covered around 40 mm. Data were captured over duration 100 s, adjusting
frame rate between 100 Hz and 300 Hz.

3. Results

Characterising vortices in the turbulent regime is challenging due to the coexistence
of vortices with varying strengths and scales. There are various vortex identification
techniques (e.g. Jeong & Hussain 1995; Dubief & Delcayre 2000; Chu & Laurien 2016).
Here, we use the approach proposed by Graftieaux, Michard & Grosjean (2001), who
introduced the function I for vortex centre identification. For an axisymmetric vortex, I
is bounded by 1 and peaks at the vortex centre, given by

1 PyuAUy) -k 1
Fl(P)=—/ MdS:—/sin ©nr) dS. 3.1
S Ives I1Pull- UM S Js

where P represents the point under examination, M is any point within the two-
dimensional region S surrounding P, k is the unit vector perpendicular to S, and 6y is the
angle between the position vector P s and the velocity vector Uy at M.

To analyse vortex dynamics, we first tracked the motion of identified vortex centres
across consecutive frames within a radius of three times the vector resolution. Connecting
these centres across frames yielded distinct vortex trajectories. A Gaussian filter spanning
five frames (0.05 s) was applied to enhance clarity and reduce noise.

Figure 3 illustrates the vertical motion projections of a dominant vortex for various
gap sizes A/d and Reynolds numbers Re. This figure highlights the influence of Re
on vortex oscillatory motions. At lower Reynolds numbers (figure 3a), vortex motion
remains relatively steady with minor fluctuations. As Re increases to 6 x 10° (figure 3b),
vertical motions become more pronounced, indicating unsteady loading from turbulence.
At Re = 10* (figure 3c¢), the vortex motion exhibits significant fluctuations, particularly in
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Figure 3. Vertical motions of a dominant vortex in the A/d = 1/4, 1/8 and 1/16 scenarios under approximate
Re values (a) 2 x 103, (b) 6 x 10? and (c) 10*. Refer to the figure 20 in Appendix A for cases with shared Rea.
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Figure 4. Instantaneous tangential velocity profile about the centre of a vortex from the I” function contour in
the A/d = 1/8 case at Re ~2 x 10°. The light blue contour highlights the vortex core.

smaller gaps (A/d =1/8 and 1/16), where irregular and rapid position changes suggest
enhanced turbulence and vortex interactions. Vortex motion remains more regular and
stable in larger gaps, even at higher Reynolds numbers. For additional insight, Appendix A
presents related figures for cases sharing the same Rea. Interestingly, vortex motion
exhibits distinct behaviour when compared at the same Re s with different minimum gap
sizes A/d, suggesting that the strong variability in the mean shear gradient — resulting
from azimuthal gap variations — plays a key role in shaping vortex dynamics.

Vortex characterisation was performed using a conventional approach that defines the
vortex core as a region with solid body rotation (Hamed, Jin & Chamorro 2015). After
identifying vortex centres using the I7 function, the asymmetry of each vortex was
assessed by analysing its major and minor axes. This analysis was conducted using the
eigenvectors of the covariance matrix, computed from the positions of points where I
exceeded a predefined threshold, to establish the vortex axes. To refine the analysis, the
velocity data were interpolated along these axes using spline interpolation, allowing for
a detailed examination of the velocity distribution around the vortex centres. Figure 4
presents the tangential velocity profile along a radial line across the centre of a vortex
for a configuration with gap width A/d =1/8 at Re =2 x 103. The light blue contour
delineates the vortex core, illustrating the tangential velocity variation, and confirming the
assumption of solid body rotation within the core region.

Instantaneous velocity fields presented in figure 5 reveal distinct flow patterns that vary
significantly in the different scenarios. From here on, the normalised radial coordinate
is defined as 7 = (r —r;)/ A, where 7 = 0 corresponds to the cylinder surface, and 7 = 1
represents the outer rectangular enclosure, all referred to the minimum gap. At a lower
Reynolds number, the velocity fields exhibit well-defined Taylor vortices for narrower
gaps, consistent with the classical flow structure of TC systems. As the gap size increases,
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Figure 5. Instantaneous in-plane flow field for gap sizes (@) A/d =1/4 and (b) A/d = 1/16, with increasing
Reynolds number from left to right (Re =2 x 103, 4 x 103, 6 x 103, 8 x 103, 104).

smaller vortices emerge alongside the dominant Taylor cells, causing their deformation,
and amplifying velocity fluctuations.

The in-plane streamlines presented in figure 6 provide further insight into the bulk flow
structures across different gap sizes. In general, for the largest gap case (A/d = 1/4), the
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Figure 6. In-plane streamlines for gap sizes (a) A/d =1/4, (b) A/d =1/8 and (¢) A/d =1/16, progressing
from left to right with Re =2 x 103, 4 x 103, 6 x 103, 8 x 103, 10*.

mean flow exhibits Taylor vortices with a skewed-oval shape, likely due to the influence
of the square enclosure imposing geometric constraints on the vortex formation. While
the overall structure remains consistent, the aspect ratio of these Taylor cells appears
to be influenced by the proximity of the outer square walls. In the intermediate gap
scenario (A/d =1/8), the Taylor vortices retain their fundamental structure, but their
count within a given axial span varies with Reynolds number. The spatial extent of
these mean flow Taylor cells scales with the gap size, with each counter-rotating vortex
pair spanning approximately 3—4 times the gap width A. At higher Reynolds numbers,
subtle modulations in the streamlines suggest the increasing presence of smaller-scale
vortices, which interact with the dominant Taylor cells, leading to the emergence of wave-
like distortions. These perturbations indicate a transition towards a more dynamically
modulated flow, where smaller vortices begin to influence the large-scale structures.
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Figure 7. Space-time features of the radial velocity parallel to the system axis at 7 = 0.5 for Reynolds numbers
Re=2x10%,4 x 10° and 8 x 10?, and gaps A/d = 1/4, 1/8 and 1/16. The white-dashed boxes at A /d = 1/4
and 1/8 for Re = 2 x 10? highlight vortex break-up and reconnection instance later described in figures 8 and 9.

For the smallest gap case (A/d =1/16), figure 6(c) reveals a markedly different
behaviour. The Taylor cell structures become increasingly irregular and less dominant
across the vertical span, suggesting a loss of coherence in their organisation. This
behaviour likely arises due to the strongest mean shear gradient imposed by the narrow
gap, which amplifies small-scale fluctuations and suppresses the formation of well-defined
Taylor vortices. As Re increases, these irregular structures are further disrupted by
turbulence, reinforcing the trend towards more disorganised, less stable flow patterns.

The space—time evolution of the radial velocity at 7 = 0.5, parallel to the axis, is shown
in figure 7 for selected cases. This visualisation highlights the temporal persistence and
regularity of Taylor vortices and their dependence on both Re and A. The degree of
regularity in Taylor cell structures reduces with increasing Re and decreasing gap size,
highlighting the limitations of characterising the flow using either Re or Re, alone.
Specifically, while Re does not explicitly account for the influence of gap size, Re o does
not fully capture the continuous variation in the mean shear gradient across different
configurations. Appendix A further illustrates key differences at shared Re, values.
Also, figure 7 reveals several key dynamic processes, including vortex breakdown and
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Figure 8. Consecutive instantaneous in-plane velocity vectors indicating the mechanism of formation of Taylor
cells from the Gortler cells to replace the existing Taylor vortices. The total time representing this series of
frames is approximately 6 s. The case presented here is for the gap A/d = 1/4 and Re =2 x 10°.

reconnection, deformation, variations in vortex lifespan, turbulence-induced fluctuations,
and axial variability across different time scales. The emergence of irregular motions
at higher Re and smaller A further reinforces the role of geometric confinement and
shear-induced instabilities in modulating the flow.

Of particular relevance are vortex oscillations, which are examined next to elucidate the
underlying mechanisms governing these behaviours. Figure 8 presents a few consecutive
images capturing the interactions between Gortler and Taylor vortices with both opposite
and identical rotational senses. In general, counter-rotating vortices tend to elongate and
eventually break up, whereas co-rotating vortices exhibit a tendency to merge, though this
process remains inconsistent. Gortler vortices typically form in pairs along the surface
of the inner circular cylinder, particularly at the radial outflow boundaries between Taylor
cells. These outflows facilitate the transport of vortices towards the outer square enclosure,
where they may evolve into new Taylor cells by extracting energy from the surrounding
flow.

Regarding vortex formation mechanisms, Gortler vortices initially remain stable when
positioned between counter-rotating Taylor cells. However, this stability is susceptible to
minor perturbations that induce shear forces, leading to uneven stretching, splitting, and
potential merging of the vortices. Extended sequences indicate that vortices in contact
generally exhibit opposite rotation. However, perturbations can occasionally facilitate
interactions between Gortler vortices and Taylor cells rotating in the same direction,
potentially leading to vortex merging. While Gortler vortices may contribute to the
formation of new Taylor cells, Taylor cells tend to maintain their structure at lower
Reynolds numbers due to their inherent stability. For a broader discussion on vortex
interactions, see Dritschel (1995) and Saffman & Baker (1979). Also, supplementary
movie 1 provides a visualisation of interactions where new Taylor cells emerge from
Gortler vortices.

Another distinctive mechanism is observed in the sequential images of figure 9
(A/d =1/8, Re=2 x 10%), which captures a switching process between two distinct
sets of cell structures. In this process, Gortler vortices evolve into a new set of Taylor
cells without merging with the pre-existing ones. As a result, the number of Taylor cells
increases in the vertical direction while maintaining a constrained axial length, forming
smaller-scale Taylor vortices. This behaviour suggests the coexistence of multiple Taylor
cell scales within the system. Similar switching dynamics and the presence of multiple
Taylor cells were previously documented by Mullin & Lorenzen (1985), reinforcing the
complex interplay of vortex interactions in TC flows. A complementary visualisation of
this phenomenon is provided in supplementary movie 2.
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Figure 9. Consecutive instantaneous in-plane velocity vectors indicating the mechanism of formation of a new
set of Taylor cells from the Gortler cells. The total time representing this series is approximately 5 s. The case
presented here is for the gap A/d = 1/8 and Re =2 x 10°.

The distinct vortex dynamics in these systems lead to energy redistribution across
different scales, which is examined through spectral distributions. Figure 10 presents
the compensated spectra of the axial velocity component at radial position 7 =0.5,
for Re =8 x 103 and 10*. The spectra are averaged along the axial direction and are
compared across three different gap ratios, A/d =1/4, 1/8 and 1.16. In figure 10(a), at
Re =8 x 103, the compensated spectra show that the energy distribution across scales
is influenced by the gap ratio. The A/d =1/4 case exhibits a broader peak at lower
frequencies, approximately associated with integral scales, indicating the presence of
larger coherent structures. The A/d =1/8 and 1/16 cases show a shift of energy towards
higher frequencies, suggesting the dominance of smaller-scale structures induced by the
restricted space. In figure 10(b), at Re = 10*, the energy distribution across all scales
increases, as evidenced by the higher peaks in the spectra compared to the Re = 8 x 103
case. This increase in energy at higher frequencies indicates enhanced turbulence levels.
The A/d =1/4 gap again shows a prominent peak at lower frequencies, but the spectra
for A/d =1/8 and 1/16 now display a more pronounced energy presence at even higher
frequencies.

It is worth highlighting a tendency to maintain energy at lower frequencies due to the
dominance of larger vortices, which is evidenced by the comparatively similar spectral
distribution at scales larger than f a2 Hz for the Re =8 x 10° case, and f~1 Hz
for the Re=10* case. In contrast, smaller gaps and higher Reynolds numbers shift
the energy towards higher frequencies, indicating the breakdown of larger structures
into smaller motions. Also, spectral distributions with the reduced frequency fA/$2;r;
in figure 10(c,d) for Re =8 x 10° and 10* indicate that representative large scales are
approximately encapsulated by f;A/$2;r; ~1/10. This indicates that the characteristic
frequency associated with that integral-type motion (f7) scales approximately linearly
with the angular velocity £2;r;, and is inversely proportional to the gap A.

To further investigate the underlying flow structures and their interactions, we employ
proper orthogonal decomposition (POD) to extract the dominant coherent structures
from the velocity field. While previous analyses of instantaneous velocity fields and
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Figure 10. Compensated spectra of the axial velocity component, averaged along the axial direction at
7 =0.5 for various gap ratios A/d =1/4, 1/8 and 1/16: (a) Re =8 x 103, (b) Re =10%, (¢) counterpart of
Re =8 x 10% with reduced frequency, (d) counterpart of Re = 10* with reduced frequency.

vortex tracking have provided qualitative insights into vortex formation, interactions and
transitions, they do not quantitatively decompose the energy content across scales. The
POD allows us to systematically identify the most energetic modes, offering a clearer
understanding of how Taylor and Gortler vortices evolve and interact at different Reynolds
numbers and gap sizes.

The POD is a well-established modal analysis technique for identifying dominant
spatial structures. Here, we apply the snapshot POD method introduced by Sirovich
(1987), which is particularly suited for analysing large datasets efficiently. The POD
technique decomposes the velocity field u(r, z, ¢) into deterministic, spatially correlated
modes ¢" (r, z) (POD modes) and their corresponding time-dependent coefficients a” (¢)
(Vanderwel et al. 2019):

N
u(r,z, t)=Y_a"(t) ¢"(r.2), (3.2)

n=1

where N is the number of snapshots, and u represents the matrix of velocity fluctuations.

The normalised POD modes for A/d = 1/16, 1/8 and 1/4 at Re =2 x 10° are presented
in figure 11, with superimposed velocity vectors to visualise vortical structures. The vortex
core locations are marked by ‘4’ symbols. The first two POD modes successfully capture
the dominant Taylor cells, as seen in figure 11(a,c,e), whereas weaker Gortler vortices
appear only in the higher modes (figure 115,d,f). Note that POD is unable to isolate Gortler
vortices because of the dominance of Taylor cells. A blend of Taylor and Gortler vortices is
observed in the higher-order POD modes, highlighting their interaction. This interaction
can be seen at z/A =1.7 in figure 11(b), z/A =1 and 5 in figure 11(d), and z/A =0.5
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Figure 11. The POD modes with the largest Taylor vortices for A/d values (a) 1/16, (c) 1/8 and (e) 1/4,
alongside POD modes identifying Gortler vortices for A/d values (b) 1/16, (d) 1/8 and (f) 1/4. Here,
Re=2x 103.

z/A z/A

Figure 12. Comparison of the most dominant POD modes between Re =2 x 103 for A/d values (a) 1/16,
(c) 1/8 and (e) 1/4, and Re = 10* for A/d values (b) 1/16, (d) 1/8 and (f) 1/4. The elliptical regions highlight
the identified core areas of Taylor cells in each case.

and 2.5 in figure 11(f). In these regions, Gortler vortices grow from the surface, breaking
down a single large-scale Taylor cell into smaller cells, consistent with interactions shown
in figures 8 and 9. For complementary insight, refer to the supplementary movies.

Figure 12 illustrates the POD modes containing the largest Taylor cell for the lowest and
highest Re at different gap sizes, demonstrating the effect of these factors on the dominant
Taylor cell dimension. Here, the vortex core areas are identified by their maximum
tangential velocity magnitude (see figure 4). The normalised tangential velocity profiles
along the major and minor axes of the POD modes in figure 13 further highlight the
effects of gap size and Re. At low Re, figure 13(a) shows the longest major axis for the
smallest gap. At higher Re, this trend reverses. Figure 13(c) shows that the major axis
length increases with increasing gap size at Re = 10*. The minor axis length also increases
with gap size for all Re values, though with less significant changes compared to the major
axis (figure 13b,d), indicating that radial expansion is limited mainly by the gap size.

While POD effectively identifies dominant energy structures, it faces limitations in
distinguishing large-scale Taylor cells from smaller-scale Gortler vortices due to its lack
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Figure 13. Profiles of tangential velocity for Taylor cells in the most dominant POD mode along the major
and minor axes for A/d =1/16, 1/8 and 1/4 at Re =2 x 10° and 10*.

of frequency and wavenumber resolution. As demonstrated in figures 11 and 12, the POD
modes exhibit a combined structure that is predominantly influenced by Taylor cells,
making it challenging to isolate and capture smaller-scale features such as Gortler vortices.
To address such limitations, we applied spectral POD (SPOD) to two selected cases,
demonstrating how SPOD effectively captures both spatial and temporal coherence.
Unlike traditional POD, SPOD integrates the benefits of dynamic mode decomposition
(DMD) and space-only POD, enabling finer separation of coherent structures. This method
retains the energy ranking and orthogonality features of POD-based approaches, as
introduced by Lumley (1970). By producing optimal, averaged DMD modes, SPOD offers
a more detailed view of structure interactions across scales (Tu et al. 2014). The SPOD
implementation follows the methodology by Sieber, Paschereit & Oberleithner (2016).
The first step of SPOD is to apply Welch’s method, which divides a single time series of
Nt snapshots into overlapping segments of Nrpr snapshots to capture statistical variabil-
ity. Here, Nrp7 is set to 512, providing frequency resolution 0.2 Hz. A discrete Fourier
transform is applied to each segment g*( T;), yielding the Fourier coefficient G5 (fn):

. Nrpr—1 o
ag) =Y W@ e rmNeer, (33)
j=0
For each frequency f,,, we construct Q fn = [c}gn), 6}5‘31) ceey c}}fj")], Q € CM*Nr where

M is the number of spatial points, and N, is the number of realisations. Singular value
decomposition is applied to Q, as in traditional POD. For more SPOD details, see Schmidt
& Colonius (2020).

The first SPOD modes for the two selected cases A/d =1/4 and 1/8 at Re =2000 are
shown in figures 14 and 15, illustrating three mode frequencies: f =0, 0.4 and 0.6 Hz.
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Figure 14. The first SPOD modes for Re =2 x 103 and A/d = 1/4 at frequencies (a) f =0 Hz,
(b) f =0.4Hz, and (¢) f =0.6 Hz.
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Figure 15. The first SPOD modes for Re =2 x 10% and A /d = 1/8, for (a) f =0 Hz, (b) f = 0.4 Hz, and
(¢) f=0.6 Hz.

With the additional frequency information, SPOD effectively separates different scales of
coherent structures. The zero-frequency mode captures the largest-scale Taylor vortices in
both cases (figures 14(a) and 15(a)). However, differences appear in the higher-frequency
modes. For the largest gap, A /d = 1/4 (figure 14), higher-frequency modes reveal multiple
Gortler vortices emerging near the wall with its vortex centre forming between the Taylor
cells, whereas in the A/d =1/8 case (figure 15), the Gortler cells coexist with smaller
Taylor vortices, evidencing the role of the gap size.

The SPOD energy spectrum shown in figure 16 demonstrates a scaling behaviour across
frequencies, indicating energy exchange between Taylor and Gortler vortices through the
mechanism shown in figure 9. This mechanism is visualised in supplementary movie 2.
For both cases, scaling extends from the lowest frequencies to a saturation frequency f =2
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Figure 16. The SPOD energy spectrum for (@) Re =2 x 10% and A/d = 1/4, and (b) Re =2 x 10° and
Ald=1/8.

Hz, aligning with the Kolmogorov inertial subrange, implying a cascade process. The
larger gap case exhibits two scaling regimes: 8 ~ —5/3 for the low-frequency range, and
B =~ —3 for smaller structures. In contrast, the A/d =1/8 case shows the latter scaling.
The —3 scaling is likely related to the anisotropic energy transfer mechanism in rotating
turbulence demonstrated in Zakharov, L’vov & Falkovich (2012), and the difference in
SPOD spectrum further highlights the influence of gap size on vortex dynamics and energy
distribution.

4. Discussion

This study provides new insights into the dynamics of TC flows within square enclosures,
particularly regarding the influence of geometry and gap size on vortex evolution. Unlike
circular TC systems, the square enclosure introduces additional constraints and flow
interactions that alter the development and stability of vortices.

A key finding is the role of the square enclosure in modifying the mean velocity
gradient, particularly near the corners, where Moffatt vortices are expected to develop.
These vortices, interacting with Taylor and Gortler structures, could introduce additional
complexity to the flow dynamics. However, confirming their exact influence requires
further investigation.

A central challenge in characterising these flows is selecting an appropriate Reynolds
number definition. While the conventional Reynolds number based on the inner cylinder
radius Re = .Qrg /v is useful for comparing with classical TC studies, it does not account
for variations in shear across the domain. Conversely, the shear-based Reynolds number
Rep = $2rpA /v captures the influence of the minimum gap. However, it does not
incorporate the strong azimuthal variability of the mean shear gradient induced by the
square enclosure. This variability results in alternating regions of favourable and adverse
pressure gradients, affecting vortex stability and interactions in a manner not captured by
either Reynolds number alone.

In the turbulence regime studied, a critical observation is the modulation of Taylor
vortices by Gortler vortices, particularly in wider gaps. These interactions suggest a
mechanism for energy transfer between scales, where Gortler vortices may bridge the gap
between large-scale Taylor vortices and smaller-scale turbulent eddies. High-resolution
simulations or targeted experiments could further elucidate this mechanism, and quantify
its contribution to energy redistribution.

1013 A38-16


https://doi.org/10.1017/jfm.2025.10251

https://doi.org/10.1017/jfm.2025.10251 Published online by Cambridge University Press

Journal of Fluid Mechanics

The study also shows the significance of radial outflow boundaries in shaping vortex
interactions. The interaction of radial flows with the square enclosure leads to periodic
vortex formation and decay, a behaviour less pronounced in circular geometries. This
phenomenon has practical implications for applications requiring controlled turbulence,
such as mixing and transport systems. The modulation of Taylor and Gértler vortices by
the square geometry presents opportunities for flow manipulation, which could be explored
further in polygonal enclosures with different aspect ratios.

The linear stability analysis presented in Appendix B provides additional context for the
observed flow behaviour. The primary instability remains a Taylor vortex mode similar to
that in circular enclosures, but lower-growth-rate corner modes emerge due to the square
geometry. These modes, influenced by the separation regions at the enclosure’s corners,
may interact with other instability mechanisms and contribute to a bypass transition to
turbulence (Schmid & Henningson 2001). The variation in cross-sectional area across
the square geometry introduces pressure gradients that alternate between favourable and
adverse regions, affecting flow stability. The critical Reynolds number (Re,) for the square
enclosure is lower than that for a circular system. For example, at radius ratio 0.5, the
circular case has critical Reynolds number Re. = 68.19 with axial wavenumber o, = 3.16
(Fasel & Booz 1984), whereas the square system yields a lower Re, = 56.7 at o, = 2.62.

Before the onset of fully developed turbulence, the flow undergoes successive
bifurcations. Higher-order instabilities, such as wavy Taylor vortices, are observed in
narrow-gap TC systems (d/(d + A) > 0.75). Although the present stability analysis
(Appendix B) focuses primarily on the first instability modes, the presence of secondary
bifurcations suggests a structured transition to turbulence. In circular TC flows, azimuthal
disturbances influence these transitions, while in square enclosures, the discrete symmetry
imposes constraints on their development. Further work is required to characterise the role
of these intermediate flow states and their impact on the transition process.

The findings presented here highlight the complex interplay between geometry,
instability mechanisms and turbulence dynamics in square TC systems. Future work
should focus on extending experimental and computational efforts to capture finer details
of vortex interactions, particularly in the presence of dynamically evolving Gortler
structures. Investigating alternative polygonal enclosures, such as hexagonal or octagonal
cross-sections, may offer further insights into the role of boundary constraints on vortex
evolution. Also, real-time flow control strategies could be explored to manipulate vortex
interactions and modulate the transition to turbulence, opening new avenues for flow
engineering applications.

5. Conclusions

We explored the dynamics of Taylor—Couette (TC) flows within square enclosures,
focusing primarily on the characteristics of dominant turbulent motions and the effects
of varying gap sizes and Reynolds numbers on vortex formation and flow patterns.
Vortex formation and dynamics were examined using various identification methods
and modal analysis techniques, including POD and SPOD. Vortices with opposite rotations
tended to strengthen and elongate each other, often leading to break-up, while vortices with
the same rotation generally merged, although some dissipated due to nearby influences.
The interactions between vortical structures are confirmed by the SPOD spectrum, which
exhibits scaling within the frequency range f =0—2 Hz, indicating the presence of
a cascade process. The space—time evolution of radial velocity at 7 = 0.5 highlighted
the persistence and variability of Taylor vortices, with larger gaps and lower Reynolds
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numbers exhibiting more persistent structures, whereas higher Reynolds numbers and
smaller gaps displayed increased turbulence and irregular motions. The compensated
spectra of the axial velocity component revealed distinct flow dynamics. At Re =2 x 103,
the energy distribution indicated a nearly laminar flow, whereas higher Reynolds numbers
showed a broadband energy distribution with increased energy across all measured scales.
A consistent shift of the compensated spectral peak to higher frequencies with increasing
Reynolds number was observed across all gap sizes. The study also highlights the role of
Gortler vortices in forming new Taylor cells, particularly in the presence of radial outflow
boundaries. These interactions led to the formation of smaller-scale vortices, indicating a
complex interplay of vortex structures within the flow.

The POD mode shapes are used to characterise how variations in Re and gap size
influence the largest Taylor vortices, highlighting that the radial expansion of these vortices
is constrained primarily by the gap size. It is worth highlighting the role of Re and gap size
in the spectral distribution of velocity fluctuations. For a given Re, the energy distribution
of larger motions exhibited a similar pattern across varying gaps. However, there was a
monotonic increase in energy at higher frequencies beyond the integral-type frequency f7.
The reduced form of this frequency, fA/$2;r;, was approximately 1/10. SPOD further
revealed the impact of gap size on the spectral scaling regimes, with the larger gap size
displaying two distinct scaling behaviours, while the smaller gap size exhibited a single
scaling regime.

Finally, the linear stability analysis described in Appendix B identified the primary
instability mechanism linked to interactions between Taylor vortices. Eigenvalue spectra
for different gap sizes highlighted the critical Reynolds numbers and wavenumbers where
instability occurs, providing insights into the initial vortex onset. Laboratory experiments,
conducted over Reynolds numbers ranging from 2 x 10% to 10%, and gap sizes A /d = 1/16,
1/8 and 1/4, revealed that lower Reynolds numbers exhibited well-defined Taylor vortices.
As the Reynolds number increased, the flow transitioned to a turbulent state characterised
by multi-scale vortices. The interactions between Taylor and Gortler vortices significantly
influenced the flow dynamics, especially at higher Reynolds numbers.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10251.
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Appendix A. Comparison of selected cases sharing Rex

In classical TC flow, the gap between concentric cylinders serves as a natural length scale
over which shear develops. However, in the present configuration with a square outer
cylinder, this length scale is not well defined, as the gap A varies with the angular position
6, as shown in figure 17. This variation imposes continuous changes in the mean shear gra-
dient, with alternating regions of favourable and adverse pressure gradients. Consequently,
selecting a single characteristic gap length — whether the minimum, maximum, or an
average — is insufficient to fully capture the low dynamics. To illustrate this, we compare
selected cases that share the Reynolds number based on the minimum gap, Rex.

Among the cases examined, a shear Reynolds number Res & 460 is shared between
A/d=1/16 and A/d =1/8. The mean velocity profiles in figure 18(a) show a well-
defined Taylor cell structure for A /d = 1/8, whereas the velocity profile for A/d =1/16
appears irregular. The instantaneous velocity fields in figure 18(d) confirm the presence
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Figure 17. Variation of the (radial) gap over a quarter of the domain as a function of 6, where 6 =0
corresponds to the minimum gap.
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Figure 18. (a) Streamlines and () instantaneous velocity vectors at shared Re = 460 for the A/d =1/8 and
1/16 systems.

of Taylor cell structures in both cases, though they exhibit irregular temporal behaviour in
the A/d = 1/16 case, leading to their absence in the time-averaged velocity field.

Further insight is provided in figure 17, which shows that the ratio of maximum to
minimum gap width is approximately 4.72 for A /d =1/16, 3.07 for A/d =1/8, and 2.24
for A/d = 1/4. This trend suggests that as the gap narrows, the flow experiences stronger
adverse pressure gradients. At sufficiently small gap ratios, these pressure effects may
outweigh centrifugal instabilities, suppressing coherent Taylor cell formation. Identifying
a critical gap ratio beyond which adverse pressure gradients dominate centrifugal effects
would be an important avenue for future research. Also, investigating the temporal
dynamics of the irregular motion at A/d =1/16 could provide further insight into the
mechanisms governing Taylor cell breakdown in highly confined flows.
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Figure 19. (a) Streamlines and (b) instantaneous velocity vectors at shared Re 4 ~ 920 for the A/d =1/4, 1/8
and 1/16 systems.
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Figure 20. Vertical motions of a dominant vortex for (a) Rex =~ 460 and (b) Rea ~ 920 for different A /d.

Another shear Reynolds number, Re s =917, shared among A/d =1/16, 1/8 and 1/4,
exhibits similar trends. The mean and instantaneous velocity profiles for these cases,
shown in figure 19, align with observations from the lower Re case. While Taylor cells
are clearly present in the instantaneous velocity fields, their absence in the mean velocity
profile for A/d = 1/16 suggests that adverse pressure gradients may be disrupting their
long-term stability.

Unlike the lower Re, case, the Taylor cell size, when non-dimensionalised by the
minimum gap, remains comparable in the mean velocity profiles for A/d =1/4 and 1/8.
Finally, the dominant vortex motion, as illustrated in figure 20(a), highlights the distinct
influence of the gap size A at given Rex.

Appendix B. Linear stability analysis
Here, we explore the unstable modes in the linear transition regime of the flow. A meshless
approach (Shahane et al. 2021) is used to compute the two-dimensional base flow, which
is then analysed using global linear stability methods (Unnikrishnan et al. 2024b).

Let the field variables be of the form ¢ = Q + ¢, where Q =[U, V, W, P]T represents
the base flow field, g = [u, v, w, p]T represents the instantaneous counterpart, and
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q' =[u', v, w, p']T represents the perturbations. Subtracting the mean continuity and
momentum equations from their instantaneous counterparts, and linearising them,
provides the basis for the linear stability equations, written in Cartesian coordinates as
follows:

8_u’+8_v’+8w’= (Bla)
ox ay 0z ’
N L L A LW LA A & (82"/ LN 82"/)
at dx dx Ay dy 9z dx  Re \ 0x2 = 9y?  3z2 )’
(B1b)
W Y g Yy (821/ N 821)/)
ot ox dx dy dy 0z dy  Re \ 3ax2  9y?  09z2 )’
(Blc)
8w’+U8w/+V8w’=_8_p’+L(82w’+82w/+82w’) (B1d)
at dx Ay dz  Re \ ax2 =~ 8y2 = 9z2 )

Here, (u, v, w) corresponds to the (x, y, z) coordinates (figure 2). We also use (u,, ug, u;)
corresponding to the (7, 8, z) coordinates. A normal mode analysis is performed, assuming
perturbations of the form

g ' =q(x,y)expi(az — ), (B2)

where o is the wavenumber, and w is a complex number, w, +iw;. The real part
(wy) represents the frequency of the wave, and the imaginary part (w;) represents the
temporal growth rate. The hat symbol indicates the Fourier amplitude of the normal
mode corresponding to each of the field variables. The velocity components U and V are
computed using the meshless method with a semi-implicit algorithm (Unnikrishnan et al.
2022). The axial velocity component of the base flow (W) is zero. Also, the gradients of
base velocity in the axial direction, dU /dz, 9V /dz, are also zero. Substituting the normal
mode form into the equations, we obtain

iwit =Dy p + (L +D,U)ii + (D,U)0, (B3a)
iwd =Dy p + (Dy V)it + (£ + Dy V)i, (B3b)
i =ap+ L, (B3¢)

0=D,i +Dy,0 —aw, (B3d)

where L= (UD, + VDy) — (1/Re)(D; +D; —«?), W =i, and D denotes the
derivative in the directions mentioned by the subscript.
This linear system of equations can be written in matrix-vector form as

L+DU DU 0 D, 1 00 07r4
D,V L£+Dyv 0 D,||o| . |o 1 0 o0||s
0 0 £ olllw|=@lo o1 0w BY
D, D, ol 0]lp 000 0]|p
A =iwBg, (B5)

where A and B are linear operators on ¢, and iw is the eigenvalue corresponding to the
eigenvector § = [, 0, W, p]'.

Impermeability and no-slip conditions are used at the walls (u = v =w =0). These
boundary conditions are imposed by adjusting the coefficients of the A and B matrices
corresponding to the boundary points. Compatibility equations derived from linearised
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(b)

(@)

Figure 21. First modes at the critical Reynolds number Re. = 116.4 and critical wavenumber o =4.82 for
A/d=1/4 mm. (a) Eigenvalue spectrum of complex frequencies w = w, + iw;, with the imaginary axis
corresponding to the growth rate of the mode, and the real axis representing frequency. (b) Eigenmodes
governed by the cylinder rotation represented with contours of normalised axial velocity. (¢) Corner modes
governed by the secondary flow (separation region) at the corners of the square outer cylinder.

Navier—Stokes equations are collocated at the wall (Theofilis 2003). These conditions are
given by

ap 1 R ou ou
o eV U Ve (B62)
ap 1 R a0 D)

The governing equations are invariant under complex conjugation, so only positive
values of o need to be investigated. Here, we focus on the temporal growth, i.e. « is
a real number. The problem is also invariant to axial reflection, resulting in pairs of
eigenvalues symmetric about the imaginary axis. The temporal modes w are sought for
given (o, Re, A/d), where A is the minimum radial gap between cylinders, and d is the
diameter of the inner cylinder. This requires varying the parameters (o, Re) in an R? space
for a given A /d, with separate solutions of the eigenvalue problem for each case.

The eigenvalue spectrum corresponding to the A/d =1/4 case at critical Reynolds
number Re. = 116.4 and critical axial wavenumber o« = 4.82 is illustrated in figure 21
along with the mode shapes of the first four modes. These modes, represented by nor-
malised axial velocity, exhibit a rotational symmetry (figure 215). The first mode, which
is the most unstable mode, is a Taylor-vortex-type mode that fills the gaps and corners,
expanding and contracting with the available space. The radial and tangential velocity pro-
files at multiple radial and angular locations are shown in figure 22. The first mode closely
resembles the axisymmetric mode from the canonical case, although there is a difference
in the tangential velocity profile along the azimuthal direction with wave-like features.
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Figure 22. (a) Normalised tangential velocity iy, at multiple radial locations. (b) Radial velocity #,, at
multiple angular locations. (c¢) Isosurfaces of axial velocity at w, = £0.2, at the critical Reynolds number
for A/d =1/4.

Figure 23 shows the modes present in the minimum gap case A/d = 1/16. The critical
Reynolds number was Re. = 586.7 at a critical axial wavenumber o, = 15.3. The variation
of the area from corner to corner of the square significantly affects the magnitude of the
axial velocity. Similar to the A/d =1/4 case, the A/d =1/16 case also exhibits modes
with azimuthal wavenumbers of integer values for the first four modes (figures 21 and 23)
at radial locations close to the cylinder. This spectrum closely resembles that of the simple
TC flow between concentric cylinders.

The most unstable modes, marked as modes 1 to 4 on the spectrum, belong to the
inverted U-shaped spectrum curve and are identified as wall modes governed by the
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Figure 23. Eigenvalue spectrum and mode shapes for A/d =1/16 mm at the critical Reynolds number
Re. =586.7 and critical wavenumber «. = 15.3. (a) Eigenvalue spectrum of complex frequencies w = w, +
iw;, with the imaginary axis corresponding to the growth rate of the mode, and the real axis representing
frequency. (b) Eigenmodes represented by contours of normalised axial velocity.
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Figure 24. Eigenvalue spectrum at critical Reynolds number for the Couette flow between (a) concentric
cylinders, (b) eccentric circular cylinders with eccentricity e = 0.5, (c) an elliptical enclosure and concentrically
placed inner circular cylinder, (d) an elliptical enclosure and an eccentrically placed inner cylinder of
eccentricity e = 0.5r;, and (e) a circular cylinder and square enclosure. (Refer to Unnikrishnan et al. (2024b)
for details about the circular and elliptical enclosures.) All the cases have outer cylinder kept stationary.

rotation of the cylinder. The other modes present in the inner part of the spectrum are
observed to be corner modes, governed by secondary flow or flow close to the outer
cylinder. This new spectral branch was previously observed in the stability analysis of
TC flows in circular and elliptical enclosure (Unnikrishnan et al. 20245). From figure 24,
it could be deduced that the introduction of eccentric placement of the inner cylinder or
the ellipticity of the outer cylinder brings about a major change in the spectral branches in
comparison to the Couette flow between concentric cylinders. These changes introduce a
secondary flow within the domain in the form of a recirculation region. With eccentricity
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and ellipticity, an adverse pressure gradient is induced between the cylinders in the flow
direction, creating the recirculation region. The square enclosure introduces a similar
separation region at the corners. It seems that the symmetric nature of the flow within
a square enclosure produces a similar spectrum compared to the spectrum of modes for
Couette flow between concentric cylinders — however, with the additional modes generated
by the separation region similar to the spectrum for eccentric and elliptical cases. A closer
look is required to understand this spectral branch, which will be studied in future work.
These different sets of modes are similar to the presence of different lines (wall modes and
centre modes) in the eigenvalue spectrum from the stability analysis of Hagen—Poiseuille
flow (Schmid & Henningson 2001).

Appendix C. Meshless interpolation

Meshless methods do not involve element or node connectivity. Such a method represents
a complex geometry only by a set of scattered points, and interpolates variables using
radial basis functions (RBF). The absence of a shape parameter makes the polyharmonic
spline (PHS) attractive for interpolation (Flyer et al. 2016; Bayona et al. 2017). This method
does not require control volumes and element connectivity; its accuracy is not adversely
affected by the skewness of the grid (Shahane & Vanka 2023). Further, the PHS-RBF
is appended with a polynomial, which controls the order of interpolation accuracy and
the spatial derivatives (Shahane et al. 2021). A cloud-based interpolation is used with the
PHS-RBF (Bartwal et al. 2022; Unnikrishnan et al. 2022; Unnikrishnan et al. 2024a) for
the present analysis. An arbitrary variable s(x) is interpolated as

q m
s)=Y_Aid(lx —xill) + > vi Pix), (C1)
i=1 i=1

where ¢ (r) = r2atl 4 €N, is the PHS-RBF, m is the number of monomials (P;) up to

maximum degree [, and (4;, y;) are g + m coefficients. We use a =1, and ¢ equations
are obtained by collocating (C1) over the g cloud points. The power of the PHS function
is found to have only a weak effect on the accuracy of interpolation. The m additional
equations required to close the linear system are imposed as constraints on the polynomials
(Flyer et al. 2016):

q
> A Pj(x))=0 forl1<j<m. (C2)
i=1

In a matrix—vector form, we can write these equations as

% 20-a)-E)

where transpose is denoted by the superscript T, A =[Ay, ..., /lq]T, Y= ..., ym]T,
s=[s(xy1),..., s(xq)]T, and 0 is the vector of zeros. Dimensions of the submatrices @
and P are g x g and g x m, respectively.

In two-dimensional problems with appended polynomial of degree 2, there are m =6
polynomial terms, given as [1, x, y, xZ, Xy, yz]. For our computations, we have used
appended polynomials of degree 5. The accuracy of the first derivative is the same as the
polynomial degree, and the accuracy of the second derivative is 1 less than the polynomial
degree (Shahane er al. 2021). With the fifth degree of appended polynomial, the first
derivative has order of accuracy 5, and the second derivative has order of accuracy 4. The
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differential operators (D) can be obtained by differentiating the RBF and the polynomials:

q m
DIs(x)]=Y_ A4 Dl¢(llx = xill)]+ Y _ vi DIPi(x)]. (C4)

i=1 i=1

Equation (C4) applied to all the points in the cloud leads to a rectangular matrix—vector
system given by

D[s]=[D[®] D[P]] [)’}] , (C5)

where D[@®] and D[ P] are matrices of sizes g x g and g x m, respectively. Substituting
(C3) in (C5) results in

Disi=([p1e1 Drpi)[c] ™) m =[0] [(s)]

S (Co)
=[G G3] [0] =[G11[s]1+ [G2][0] = [G1][s].

From (C6), any differential operator D is approximated by a matrix G that multiplies the
discrete values of the variable s. By substituting the expressions for the operators in (B1),
we can now generate the complete A and B matrices for given values of wavenumber o
and Re.
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