SUMS OF WEIGHTED COMPOSITION OPERATORS ON COP

KEI JI IZUCHI

Department of Mathematics, Niigata University, Niigata 950-2181, Japan e-mail: izuchi@m.sc.niigata-u.ac.jp

KOU HEI IZUCHI

Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan e-mail: izuchi@yamaguchi-u.ac.jp

and YUKO IZUCHI

Aoyama-Shinmachi 18-6-301, Nishi-ku, Niigata 950-2006, Japan e-mail: yfd10198@nifty.com

(Received 17 January 2012; accepted 18 May 2012; first published online 2 August 2012)

Abstract. Let $\text{COP} = \mathcal{B}_0 \cap H^\infty$, where \mathcal{B}_0 is the little Bloch space on the open unit disk \mathbb{D} , and $A(\overline{\mathbb{D}})$ be the disk algebra on $\overline{\mathbb{D}}$. For non-zero functions $u_1, u_2, \ldots, u_N \in A(\overline{\mathbb{D}})$ and distinct analytic self-maps $\varphi_1, \varphi_2, \ldots, \varphi_N$ satisfying $\varphi_j \in A(\overline{\mathbb{D}})$ and $\|\varphi_j\|_{\infty} = 1$ for every *j*, it is given characterisations of which the sum of weighted composition operators $\sum_{i=1}^N u_i C_{\varphi_i}$ maps COP into $A(\overline{\mathbb{D}})$.

2000 Mathematics Subject Classification. Primary 47B38, 46J20; Secondary 30D55.

1. Introduction. Let *D* be a domain in \mathbb{C} , and *X*, *Y* be the Banach spaces consisting of analytic functions on *D*. Let φ be an analytic self-map of *D*. Suppose that $f \circ \varphi \in Y$ for every $f \in X$. Then we may define the composition operator $C_{\varphi} : X \to Y$ by $C_{\varphi}f = f \circ \varphi$ for $f \in X$. In the recent four decades, there has been much work on composition operators on various spaces of analytic functions (see [2, 14]).

Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disk \mathbb{D} with the supremum norm $\|\cdot\|_{\infty}$ and $M(H^{\infty})$ be the space of non-zero multiplicative linear functionals on H^{∞} with a weak-*topology. We identify a function in H^{∞} with its Gelfand transform. For $x, y \in M(H^{\infty})$, let

$$\rho(x, y) = \sup\{|f(y)| : f \in H^{\infty}, f(x) = 0, \|f\|_{\infty} \le 1\}$$

and

$$P(x) = \{ \zeta \in M(H^{\infty}) : \rho(x, \zeta) < 1 \}.$$

The set P(x) is called the Gleason part containing x. We have $\rho(z, w) = |z - w|/|1 - \overline{w}z|$ for $z, w \in \mathbb{D}$.

The first author is partially supported by Grant-in-Aid for Scientific Research (No. 21540166), Japan Society for the Promotion of Science.

Let $A(\overline{\mathbb{D}})$ be the disk algebra on $\overline{\mathbb{D}}$, that is $A(\overline{\mathbb{D}})$ is the Banach algebra of continuous functions on $\overline{\mathbb{D}}$, which are analytic in \mathbb{D} . We denote by \mathcal{B}_0 the little Bloch space consisting of analytic functions f on \mathbb{D} , provided

$$\lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0.$$

Then $f \in \mathcal{B}_0 \cap H^\infty$ if and only if f is constant on any Gleason part in $M(H^\infty) \setminus \mathbb{D}$, and for this reason M. Behrens (see [3, p. 442]) called this space COP, for constant on parts, that is

$$COP = \mathcal{B}_0 \cap H^{\infty}.$$

We also identify a function in H^{∞} with its radial limit function $f(e^{i\theta}) = \lim_{r \to 1} (re^{i\theta})$ a.e. on $\partial \mathbb{D}$. Sarason in [11] proved that $H^{\infty} + C$ is a closed subalgebra of $L^{\infty}(\partial \mathbb{D})$, where *C* stands for the space of continuous functions on $\partial \mathbb{D}$. Let

$$QA = \overline{(H^{\infty} + C)} \cap H^{\infty}.$$

It is known that

$$QA = VMO \cap H^{\infty}$$

(see [12]). We have

$$A(\overline{\mathbb{D}}) \subsetneqq \operatorname{QA} \subsetneqq \operatorname{COP} \subsetneqq H^{\infty}$$

(see [3, 5, 12, 13]).

We denote by $S(\mathbb{D})$ the set of analytic self-maps of \mathbb{D} . For $u \in H^{\infty}$ and $\varphi \in S(\mathbb{D})$, we may define the weighted composition operator uC_{φ} on H^{∞} by $(uC_{\varphi})f = u(f \circ \varphi)$ for $f \in H^{\infty}$. It is known that if $\varphi \in QA$, then C_{φ} maps QA into QA (see [15]), and if $\varphi \in COP$, then C_{φ} maps COP into COP (see [9]).

Let $\varphi_1, \varphi_2, \dots, \varphi_N$ be distinct functions in $\mathcal{S}(\mathbb{D})$. Let \mathcal{Z} be the family of sequences $\{z_n\}_n$ in \mathbb{D} satisfying the following three conditions:

(a) $\{z_n\}_n$ is a convergent sequence,

(b) |φ_j(z_n)| → 1 as n → ∞ for some 1 ≤ j ≤ N and {φ_j(z_n)}_n is a convergent sequence for every 1 ≤ j ≤ N,

(c)
$$\left\{\frac{\varphi_i(z_n) - \varphi_j(z_n)}{1 - \overline{\varphi_i(z_n)}\varphi_j(z_n)}\right\}_n$$
 is a convergent sequence for every $1 \le i, j \le N$.

Let

$$I(\{z_n\}) = \{j : 1 \le j \le N, |\varphi_j(z_k)| \to 1 \ (k \to \infty)\}.$$

For each $t \in I(\{z_n\})$, we write

$$I_0(\{z_n\}, t) = \{j \in I(\{z_n\}) : \rho(\varphi_j(z_k), \varphi_t(z_k)) \to 0 \ (k \to \infty)\}.$$

Then there is a subset $\{t_1, t_2, \ldots, t_\ell\}$ of $I(\{z_n\})$ such that

$$I(\{z_n\}) = \bigcup_{p=1}^{\ell} I_0(\{z_n\}, t_p)$$

and $I_0(\{z_n\}, t_p) \cap I_0(\{z_n\}, t_q) = \emptyset$ for $p \neq q$. Izuchi and Ohno in [7] gave a characterisation of compactness of the linear sum of composition operators $\sum_{j=1}^{N} a_j C_{\varphi_j}$ on H^{∞} . For non-zero functions $u_1, u_2, \ldots, u_N \in H^{\infty}$, Izuchi and Ohno in [8] have recently shown that $\sum_{j=1}^{N} u_j C_{\varphi_j}$ is compact on H^{∞} if and only if

$$\lim_{k \to \infty} \sum_{j \in I_0(\{z_n\}, t)} u_j(z_k) = 0$$
(1.1)

for every $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$. Condition (1.1) is called an interior condition, for (1.1) is a condition given in the interior of $\overline{\mathbb{D}}$.

Izuchi and Ohno [8] also showed essentially that if $u_j \in A(\overline{\mathbb{D}})$ and $\varphi_j \in S(\mathbb{D})$ with $\varphi_j \in A(\overline{\mathbb{D}})$ for every $1 \le j \le N$, then $(\sum_{j=1}^N u_j C_{\varphi_j})$ $(f) \in A(\overline{\mathbb{D}})$ for every $f \in H^{\infty}$ if and only if (1.1) holds (see also [1, 10]). Since QA and COP are the most important spaces between $A(\overline{\mathbb{D}})$ and H^{∞} , we are interesting in properties of weighted composition operators on QA and COP. Motivated by the above, we have questions when $(\sum_{j=1}^N u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ holds for every $f \in \text{COP}$ (or QA). In this paper, we answer these questions.

In Section 2, we give interior conditions, and in Section 3 we give boundary conditions.

2. Sum of weighted composition operators. Let $\varphi_1, \varphi_2, \ldots, \varphi_N$ be distinct functions in $\mathcal{S}(\mathbb{D})$ satisfying that $\varphi_j \in COP$ and $\|\varphi_j\|_{\infty} = 1$ for every $1 \le j \le N$. Let $u_1, u_2, \ldots, u_N \in COP$ be non-zero functions. Since C_{φ_j} maps COP into COP, $\sum_{j=1}^N u_j C_{\varphi_j}$ is an operator on COP. Suppose that $\sum_{j=1}^N u_j C_{\varphi_j}$: COP \rightarrow COP is compact. Then,

$$\sum_{j=1}^N u_j C_{\varphi_j} : A(\overline{\mathbb{D}}) \to \operatorname{COP} \subset H^\infty$$

is compact. By [8], this condition holds if and only if (1.1) holds. Moreover, if $u_j, \varphi_j \in QA$, then similarly $\sum_{i=1}^{N} u_i C_{\varphi_i} : QA \to QA$ is compact if and only if (1.1) holds.

In the rest of this paper, we assume that $\varphi_j \in A(\overline{\mathbb{D}})$ for every $1 \le j \le N$. Let \mathcal{Z} be the family of sequences $\{z_n\}_n$ in \mathbb{D} satisfying conditions (a), (b) and (c). Let $\{z_n\}_n \in \mathcal{Z}$. By conditions (a) and (b), $z_n \to e^{i\theta_0}$ as $n \to \infty$ for some $e^{i\theta_0} \in \partial \mathbb{D}$. We have

$$I(\{z_n\}) = \{j : 1 \le j \le N, |\varphi_j(e^{i\theta_0})| = 1\}.$$

By (c), we write

$$\beta_{i,j} = \lim_{k \to \infty} \frac{\varphi_i(z_k) - \varphi_j(z_k)}{1 - \overline{\varphi_i(z_k)}\varphi_j(z_k)}, \quad 1 \le i, j \le N.$$

We have

$$\lim_{k\to\infty}\rho(\varphi_i(z_k),\varphi_j(z_k))=|\beta_{i,j}|.$$

For each $t \in I(\{z_n\})$, let

$$I_1(\{z_n\}, t) = \{j \in I(\{z_n\}) : |\beta_{t,j}| < 1\}.$$
(2.1)

For z_0, z_1, z_2 in \mathbb{D} , we have

$$\rho(z_0, z_1) \le \frac{\rho(z_0, z_2) + \rho(z_2, z_1)}{1 + \rho(z_0, z_2)\rho(z_2, z_1)}$$

(see [3, p. 4]). Hence, for $i, j, t \in I(\{z_n\})$ if $|\beta_{t,i}| < 1$ and $|\beta_{t,j}| < 1$, then $|\beta_{i,j}| < 1$. This shows that for s, $t \in I(\{z_n\})$, we have either $I_1(\{z_n\}, s) = I_1(\{z_n\}, t)$ or $I_1(\{z_n\}, s) \cap$ $I_1(\{z_n\}, t) = \emptyset$, so there is a subset $\{t_1, t_2, \dots, t_\ell\}$ of $I(\{z_n\})$ such that $I(\{z_n\}) =$ $\bigcup_{p=1}^{\ell} I_1(\{z_n\}, t_p) \text{ and } I_1(\{z_n\}, t_p) \cap I_1(\{z_n\}, t_q) = \emptyset \text{ for } p \neq q. \text{ We note that } |\beta_{t_p, t_q}| = 1$ for $p \neq q$.

THEOREM 2.1. Let $u_1, u_2, \ldots, u_N \in A(\mathbb{D})$ be non-zero functions and $\varphi_1, \varphi_2, \ldots, \varphi_N \in$ $\mathcal{S}(\mathbb{D})$ be distinct functions satisfying that $\varphi_i \in A(\overline{\mathbb{D}})$ and $\|\varphi_i\|_{\infty} = 1$ for every $1 \le j \le N$. Then the following conditions are equivalent.

- (i) $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in \text{COP}$. (ii) $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in \text{QA}$. (iii) $\lim_{k \to \infty} \sum_{j \in I_1(\{z_n\}, t)} u_j(z_k) = 0$ for every $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$.

To prove our theorem, we need some lemmas. By [6] (see also [3]), one can easily see the following.

LEMMA 2.2. Let $f \in H^{\infty}$. Then the following conditions are equivalent:

- (i) $f \in \text{COP}$.
- (ii) For any sequences $\{z_n\}_n$, $\{w_n\}_n$ in \mathbb{D} satisfying that $|z_n| \to 1$ and $\sup_n \rho(z_n, w_n) < 1$, then $f(z_n) - f(w_n) \to 0$ as $n \to \infty$.

A sequence $\{z_n\}_n$ in \mathbb{D} is called sparse (or thin) if

$$\lim_{k\to\infty}\prod_{n;n\neq k}\rho(z_n,z_k)=1.$$

In [4], Gorkin showed that for a sequence $\{z_n\}_n$ in \mathbb{D} satisfying $|z_n| \to 1$ as $n \to \infty$, there exists a sparse subsequence of $\{z_n\}_n$. By appropriate modifications of it, we may prove the following.

LEMMA 2.3. Let $\{z_{t,n}\}_n$ be a sequence in \mathbb{D} satisfying $|z_{t,n}| \to 1$ as $n \to \infty$ for every $1 \le t \le \ell$. Suppose that $\rho(z_{t,n}, z_{s,n}) \to 1$ as $n \to \infty$ for $t \ne s$. Then there is a subsequence $\{n_i\}_i$ such that $\{z_{t,n_i}: 1 \le t \le \ell, i \ge 1\}$ is a sparse sequence.

In [16], Sundberg and Wolff proved the following.

LEMMA 2.4. If $\{z_n\}_n$ is a sparse sequence in \mathbb{D} , then for every bounded sequence $\{a_n\}_n$ of complex numbers there is $f \in QA$ such that $f(z_n) = a_n$ for every $n \ge 1$.

Proof of Theorem 2.1. (i) \Rightarrow (ii) follows from QA \subset COP.

Suppose that (ii) holds. Let $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$. We may write $z_n \to e^{i\theta_0} \in$ $\partial \mathbb{D}$. There is a subset $\{t_1, t_2, \dots, t_\ell\}$ of $I(\{z_n\})$ such that $I(\{z_n\}) = \bigcup_{p=1}^{\ell} I_1(\{z_n\}, t_p)$ and $I_1(\{z_n\}, t_p) \cap I_1(\{z_n\}, t_q) = \emptyset$ for $p \neq q$. By (ii), for every $f \in QA$ we have $\sum_{j=1}^N u_j(z) f(\varphi_j(z)) \in A(\overline{\mathbb{D}})$. Then the above function is continuous at $z = e^{i\theta_0}$. For each $j \notin I(\{z_n\})$, we have $|\varphi_j(e^{i\theta_0})| < 1$, so $u_j(z) f(\varphi_j(z))$ is continuous at $z = e^{i\theta_0}$. Hence,

$$\sum_{i \in I(\{z_n\})} u_j(z) f(\varphi_j(z)) = \sum_{p=1}^{\ell} \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z) f(\varphi_j(z))$$
(2.2)

is continuous at $z = e^{i\theta_0}$.

For each $j \in I_1(\{z_n\}, t_p)$, by (2.1) we have $|\beta_{t_p,j}| < 1$, so

$$\lim_{k\to\infty}\rho(\varphi_{t_p}(z_k),\varphi_j(z_k))=|\beta_{t_p,j}|<1.$$

Since QA \subset COP, by Lemma 2.2 we have $f(\varphi_j(z_k)) - f(\varphi_{t_p}(z_k)) \rightarrow 0$ as $k \rightarrow \infty$ for every $f \in QA$. By (2.2), there exists the following limit

$$\lim_{k \to \infty} \sum_{p=1}^{\ell} \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z_k) f(\varphi_j(z_k)) = \lim_{k \to \infty} \sum_{p=1}^{\ell} f(\varphi_{t_p}(z_k)) \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z_k)$$

for every $f \in QA$. Since $|\beta_{t_p,t_q}| = 1$, we have $\rho(\varphi_{t_p}(z_k), \varphi_{t_q}(z_k)) \to 1$ as $k \to \infty$ for $p \neq q$. Since $|\varphi_{t_p}(z_k)| \to 1$ as $k \to \infty$, by Lemma 2.3 considering a subsequence we may assume that $\{\varphi_{t_p}(z_k) : k \ge 1, 1 \le p \le \ell\}$ is a sparse sequence.

Since $t \in I(\{z_n\})$, $t \in I_1(\{z_n\}, t_{p_0})$ for some $1 \le p_0 \le \ell$. By Lemma 2.4, there is $f \in$ QA such that $f(\varphi_{t_p}(z_k)) = 0$ for every $p \ne p_0$, $f(\varphi_{t_{p_0}}(z_{2k})) = 1$ and $f(\varphi_{t_{p_0}}(z_{2k+1})) = -1$ for every $k \ge 1$. Then there is the following limit

$$\Big(\sum_{j\in I_1(\{z_n\},t_{p_0})}u_j(e^{i\theta_0})\Big)(-1)^k\quad (k\to\infty).$$

Consequently we have

$$0 = \sum_{j \in I_1(\{z_n\}, t_{p_0})} u_j(e^{i\theta_0}) = \sum_{j \in I_1(\{z_n\}, t)} u_j(e^{i\theta_0}).$$

Thus, we get (iii).

Next, suppose that (iii) holds. To prove (i), let $f \in \text{COP}$ and $\{z_n\}_n$ be a sequence in \mathbb{D} such that $z_n \to e^{i\theta_0} \in \partial \mathbb{D}$. It is sufficient to prove that $\lim_{n\to\infty} \sum_{j=1}^N u_j(z_n)f(\varphi_j(z_n))$ has a limit involving only the point $e^{i\theta_0}$. We may assume that $\{z_n\}_n \in \mathbb{Z}$. There is a subset $\{t_1, t_2, \ldots, t_\ell\}$ of $I(\{z_n\})$ such that $I(\{z_n\}) = \bigcup_{p=1}^\ell I_1(\{z_n\}, t_p)$ and $I_1(\{z_n\}, t_p) \cap$ $I_1(\{z_n\}, t_q) = \emptyset$ for $p \neq q$. We note that $|\varphi_j(e^{i\theta_0})| = 1$ for $j \in I(\{z_n\})$ and $|\varphi_j(e^{i\theta_0})| < 1$ for $j \notin I(\{z_n\})$. We have

$$\sum_{j=1}^{N} u_j(z_k) f(\varphi_j(z_k)) = \sum_{j \in I(\{z_n\})} u_j(z_k) f(\varphi_j(z_k)) + \sum_{j \notin I(\{z_n\})} u_j(z_k) f(\varphi_j(z_k))$$

and

$$\lim_{k\to\infty}\sum_{j\notin I(\{z_n\})}u_j(z_k)f(\varphi_j(z_k))=\sum_{j\notin I(\{z_n\})}u_j(e^{i\theta_0})f(\varphi_j(e^{i\theta_0})).$$

We also have

$$\limsup_{k\to\infty}\Big|\sum_{j\in I(\{z_n\})}u_j(z_k)f(\varphi_j(z_k))\Big|=\limsup_{k\to\infty}\Big|\sum_{p=1}^\ell\sum_{j\in I_1(\{z_n\},t_p)}u_j(z_k)f(\varphi_j(z_k))\Big|.$$

Since $f \in \text{COP}$, by Lemma 2.2 we have $f(\varphi_i(z_k)) - f(\varphi_{i_n}(z_k)) \to 0$ $(k \to \infty)$ for $j \in$ $I_1(\{z_n\}, t_p)$. Hence,

$$\begin{split} & \limsup_{k \to \infty} \left| \sum_{j \in I(\{z_n\})} u_j(z_k) f(\varphi_j(z_k)) \right| \\ &= \limsup_{k \to \infty} \left| \sum_{p=1}^{\ell} f(\varphi_{t_p}(z_k)) \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z_k) \right| \\ &\leq \limsup_{k \to \infty} \sum_{p=1}^{\ell} \| f \circ \varphi_{t_p} \|_{\infty} \left| \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z_k) \right| \\ &= 0 \quad \text{by (iii).} \end{split}$$

Thus, we have

$$\lim_{k\to\infty}\sum_{j=1}^N u_j(z_k)f(\varphi_j(z_k)) = \sum_{j\notin I(\{z_n\})} u_j(e^{i\theta_0})f(\varphi_j(e^{i\theta_0})),$$

so we get (i).

Under the assumptions of Theorem 2.1, generally $\sum_{j=1}^{N} u_j C_{\varphi_j} : \text{COP} \to A(\overline{\mathbb{D}})$ is not compact in spite of that condition (i) holds. But it is considered that condition (i) leads compactness of $\sum_{j=1}^{N} u_j C_{\varphi_j} : \text{COP} \to A(\overline{\mathbb{D}})$ in some weak sense. We denote by B(COP) the closed unit ball of COP. We have the following.

THEOREM 2.5. Let $u_1, u_2, \ldots, u_N \in A(\overline{\mathbb{D}})$ be non-zero functions and $\varphi_1, \varphi_2, \ldots, \varphi_N \in$ $\mathcal{S}(\mathbb{D})$ be distinct functions satisfying that $\varphi_j \in A(\overline{\mathbb{D}})$ and $\|\varphi_j\|_{\infty} = 1$ for every $1 \le j \le N$. Then the following conditions are equivalent. (i) $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in \text{COP}$. (ii) $\lim_{k \to \infty} \sum_{j \in I_1(\{z_n\}, t)} u_j(z_k) = 0$ for every $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$.

- (iii) If $\{f_m\}_m$ is a sequence in B(COP), which converges uniformly to zero on any compact subset of \mathbb{D} , then

$$\lim_{m\to\infty}\limsup_{k\to\infty}\left|\left(\sum_{j=1}^N u_j C_{\varphi_j}\right)(f_m)(z_k)\right|=0$$

for every $\{z_n\}_n \in \mathbb{Z}$.

Proof. By Theorem 2.1, we have (i) \Leftrightarrow (ii). Suppose that (ii) holds. To show (iii), let $\{f_m\}_m$ be a sequence in B(COP), which converges uniformly to zero on any compact

234

subset of \mathbb{D} and $\{z_n\}_n \in \mathbb{Z}$. We have

$$\sum_{j=1}^{N} u_j(z_k) f_m(\varphi_j(z_k)) = \sum_{j \in I(\{z_n\})} u_j(z_k) f_m(\varphi_j(z_k)) + \sum_{j \notin I(\{z_n\})} u_j(z_k) f_m(\varphi_j(z_k)).$$

By the assumption on $\{f_m\}_m$,

$$\lim_{m\to\infty}\sup_{k\geq 1}\Big|\sum_{j\notin I(\{z_n\})}u_j(z_k)f_m(\varphi_j(z_k))\Big|=0.$$

Let $\{t_1, t_2, \ldots, t_\ell\} \subset I(\{z_n\})$ such that $I(\{z_n\}) = \bigcup_{p=1}^{\ell} I_1(\{z_n\}, t_p)$ and $I_1(\{z_n\}, t_p) \cap I_1(\{z_n\}, t_q) = \emptyset$ for $p \neq q$. Since $f_m \in \text{COP}$, we have $f_m(\varphi_j(z_k)) - f_m(\varphi_{t_p}(z_k)) \to 0$ as $k \to \infty$ for $j \in I_1(\{z_n\}, t)$. Then

$$\begin{split} &\limsup_{m \to \infty} \limsup_{k \to \infty} \left| \left(\sum_{j=1}^{N} u_j C_{\varphi_j} \right) (f_m)(z_k) \right| \\ &= \limsup_{m \to \infty} \sup_{k \to \infty} \left| \sum_{p=1}^{\ell} \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z_k) f_m(\varphi_j(z_k)) \right| \\ &\leq \limsup_{k \to \infty} \sum_{p=1}^{\ell} \left| \sum_{j \in I_1(\{z_n\}, t_p)} u_j(z_k) \right| \\ &= 0 \qquad \text{by (ii).} \end{split}$$

Thus, we get (iii).

Suppose that (iii) holds. To show (ii), let $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$. Take $\{t_1, t_2, \ldots, t_\ell\}$ in $I(\{z_n\})$ such that $I(\{z_n\}) = \bigcup_{p=1}^{\ell} I_1(\{z_n\}, t_p)$ and $I_1(\{z_n\}, t_p) \cap I_1(\{z_n\}, t_q) = \emptyset$ for $p \neq q$. Let $\{f_m\}_m$ be a sequence in B(COP), which converges to 0 uniformly on any compact subset of \mathbb{D} . In the same way as the first paragraph of this proof, we have

$$\limsup_{k\to\infty}\Big|\Big(\sum_{j=1}^N u_j C_{\varphi_j}\Big)(f_m)(z_k)\Big|=\limsup_{k\to\infty}\Big|\sum_{p=1}^\ell f_m(\varphi_{t_p}(z_k))\sum_{j\in I_1(\{z_n\},t_p)}u_j(z_k)\Big|.$$

By Lemma 2.3, considering a subsequence we may assume that $\{\varphi_{t_p}(z_k) : k \ge 1, 1 \le p \le \ell\}$ is a sparse sequence. Note that $t \in I_1(\{z_n\}, t_{p_0})$ for some $1 \le p_0 \le \ell$. By Lemma 2.4, there exists $h \in QA$ such that $h(\varphi_{t_p}(z_k)) = 0$ for every $p \ne p_0$ and $h(\varphi_{t_{p_0}}(z_k)) = 1$ for every $k \ge 1$. We may put $\varphi_{t_{p_0}}(z_k) \rightarrow e^{i\theta_0} \in \partial \mathbb{D}$ as $k \rightarrow \infty$. Let $q(z) \in A(\overline{\mathbb{D}})$ satisfy $q(e^{i\theta_0}) = 1$ and |q(z)| < 1 for $z \in \overline{\mathbb{D}} \setminus \{e^{i\theta_0}\}$. For each positive integer m, let $f_m = hq^m \in A(\overline{\mathbb{D}})$. Then $\{f_m\}_m$ is a bounded sequence in COP and $f_m \rightarrow 0$ uniformly on any compact subset of

 \mathbb{D} . Thus, we get

$$\begin{split} &\lim_{m \to \infty} \sup_{k \to \infty} \left| \left(\sum_{j=1}^{N} u_j C_{\varphi_j} \right) (f_m)(z_k) \right| \\ &= \lim_{m \to \infty} \sup_{k \to \infty} \left| f_m(\varphi_{t_{p_0}}(z_k)) \sum_{j \in I_1(\{z_n\}, t_{p_0})} u_j(z_k) \right| \\ &= \lim_{m \to \infty} \sup_{k \to \infty} \left| q^m(\varphi_{t_{p_0}}(z_k)) \sum_{j \in I_1(\{z_n\}, t_{p_0})} u_j(z_k) \right| \\ &= \lim_{k \to \infty} \sup_{k \to \infty} \left| \sum_{j \in I_1(\{z_n\}, t_{p_0})} u_j(z_k) \right| \\ &= \lim_{k \to \infty} \sup_{k \to \infty} \left| \sum_{j \in I_1(\{z_n\}, t)} u_j(z_k) \right|. \end{split}$$

By conditon (iii), we obtain (ii).

We denote by *m* the normalised Lebesgue measure on $\partial \mathbb{D}$. In the same way as the proof of Corollary 2.4 in [8], we have the following.

COROLLARY 2.6. Let $u_1, u_2, \ldots, u_N \in A(\overline{\mathbb{D}})$ be non-zero functions and $\varphi_1, \varphi_2, \ldots, \varphi_N \in S(\mathbb{D})$ be distinct functions satisfying that $\varphi_j \in A(\overline{\mathbb{D}})$ and $\|\varphi_j\|_{\infty} = 1$ for every $1 \le j \le N$. Let $\Gamma(\varphi_j) = \{e^{i\theta} \in \partial \mathbb{D} : |\varphi_j(e^{i\theta})| = 1\}$. If $(\sum_{j=1}^N u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in COP$, then $m(\Gamma(\varphi_j)) = 0$ for every $1 \le j \le N$.

3. Boundary conditions. Let $\varphi_1, \varphi_2, \ldots, \varphi_N \in \mathcal{S}(\mathbb{D})$ be distinct functions satisfying that $\varphi_j \in A(\overline{\mathbb{D}})$ and $\|\varphi_j\|_{\infty} = 1$ for every $1 \le j \le N$. By Corollary 2.6, we may consider a similar concept of \mathcal{Z} on $\partial \mathbb{D}$. Suppose that $m(\Gamma(\varphi_j)) = 0$ for every $1 \le j \le N$. Let \mathcal{Y} be the family of sequences $\{e^{i\theta_n}\}_n$ in $\partial \mathbb{D}$ satisfying

- (d) $\{e^{i\theta_n}\}_n$ is a convergent sequence.
- (e) $|\varphi_j(e^{i\theta_n})| < 1$ for every $1 \le j \le N$ and $n \ge 1$, $\{\varphi_j(e^{i\theta_n})\}_n$ is a convergent sequence for every $1 \le j \le N$ and $|\varphi_j(e^{i\theta_n})| \to 1$ as $n \to \infty$ for some $1 \le j \le N$.

(f)
$$\left\{\frac{\varphi_i(e^{i\theta_n}) - \varphi_j(e^{i\theta_n})}{1 - \overline{\varphi_i(e^{i\theta_n})}}\varphi_j(e^{i\theta_n})\right\}_n$$
 is a convergent sequence for every $1 \le i, j \le N$.

Let

$$J(\lbrace e^{i\theta_n}\rbrace) = \lbrace j : 1 \le j \le N, |\varphi_j(e^{i\theta_k})| \to 1 \ (k \to \infty)\rbrace.$$

By (f), we write

$$\beta_{i,j} = \lim_{k \to \infty} \frac{\varphi_i(e^{i\theta_k}) - \varphi_j(e^{i\theta_k})}{1 - \overline{\varphi_i(e^{i\theta_k})}} \varphi_j(e^{i\theta_k}), \quad 1 \le i, j \le N.$$

We have $\lim_{k\to\infty} \rho(\varphi_i(e^{i\theta_k}), \varphi_j(e^{i\theta_k})) = |\beta_{i,j}|$. For each $t \in J(\{z_n\})$, let

$$J_1(\{e^{i\theta_n}\}, t) = \{j \in J(\{e^{i\theta_n}\}) : |\beta_{t,j}| < 1\}.$$

Then in the same way as in Section 2, there is a subset $\{t_1, t_2, \ldots, t_\ell\}$ of $J(\{z_n\})$ such that $J(\lbrace e^{i\theta_n}\rbrace) = \bigcup_{p=1}^{\ell} J_1(\lbrace e^{i\theta_n}\rbrace, t_p)$ and $J_1(\lbrace e^{i\theta_n}\rbrace, t_p) \cap J_1(\lbrace e^{i\theta_n}\rbrace, t_q) = \emptyset$ for $p \neq q$. In the similar way as the proof of Theorem 2.1, we may show the following.

THEOREM 3.1. Let $u_1, u_2, \ldots, u_N \in A(\overline{\mathbb{D}})$ be non-zero functions and $\varphi_1, \varphi_2, \ldots, \varphi_N \in$ $\mathcal{S}(\mathbb{D})$ be distinct functions satisfying that $\varphi_i \in A(\overline{\mathbb{D}})$ and $\|\varphi_j\|_{\infty} = 1$ for every $1 \le j \le N$. We assume that $m(\Gamma(\varphi_i)) = 0$ for every $1 \le j \le N$. Then the following conditions are equivalent:

- (i) $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in \text{COP}$. (ii) $\lim_{k \to \infty} \sum_{j \in I_1(\{z_n\}, t)} u_j(z_k) = 0$ for every $\{z_n\}_n \in \mathcal{Z}$ and $t \in I(\{z_n\})$.

(iii)
$$\lim_{k \to \infty} \sum_{j \in J_1(\{e^{i\theta_n}\}, t)} u_j(e^{i\theta_k}) = 0 \text{ for every } \{e^{i\theta_n}\}_n \in \mathcal{Y} \text{ and } t \in J(\{e^{i\theta_n}\}).$$

Proof. (i) \Leftrightarrow (ii) is proven in Theorem 2.1.

Suppose that (ii) holds. To show (iii), let $\{e^{i\theta_n}\}_n \in \mathcal{Y}$ and $t \in J(\{e^{i\theta_n}\}\})$. For each positive integer n, let $\{r_{n,k}\}_k$ be a sequence of numbers such that $0 < r_{n,k} < 1$ and $r_{n,k} \to 1$ as $k \to \infty$. Put $z_{n,k} = r_{n,k}e^{i\theta_n}$. We may choose a sequence $\{k_n\}_n$ such that

$$\lim_{n \to \infty} z_{n,k_n} = \lim_{n \to \infty} e^{i\theta_n}, \quad \lim_{n \to \infty} \varphi_j(z_{n,k_n}) = \lim_{n \to \infty} \varphi_j(e^{i\theta_n}) \quad (1 \le j \le N)$$

and

$$\lim_{n \to \infty} \frac{\varphi_i(z_{n,k_n}) - \varphi_j(z_{n,k_n})}{1 - \overline{\varphi_i(z_{n,k_n})}\varphi_j(z_{n,k_n})} = \lim_{n \to \infty} \frac{\varphi_i(e^{i\theta_n}) - \varphi_j(e^{i\theta_n})}{1 - \overline{\varphi_i(e^{i\theta_n})}\varphi_j(e^{i\theta_n})} \quad (1 \le i, j \le N).$$

Put $z_n = z_{n,k_n}$. Then $\{z_n\}_n \in \mathbb{Z}$, $t \in I(\{z_n\})$ and $I_1(\{z_n\}, t) = J_1(\{e^{i\theta_n}\}, t)$. By condition (ii), we have

$$\lim_{k \to \infty} \sum_{j \in J_1(\{e^{i\theta_n}\}, t)} u_j(e^{i\theta_k}) = \lim_{k \to \infty} \sum_{j \in I_1(\{z_n\}, t)} u_j(z_k) = 0.$$

Suppose that (iii) holds. To show (i), let $f \in COP$. We have

$$\Big(\sum_{j=1}^N u_j C_{\varphi_j}\Big)(f)(z) = \sum_{j=1}^N u_j(z)f(\varphi_j(z)), \quad z \in \overline{\mathbb{D}} \setminus \bigcup_{j=1}^N \Gamma(\varphi_j).$$

Hence, $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f)$ is well defined and continuous on $\overline{\mathbb{D}} \setminus \bigcup_{j=1}^{N} \Gamma(\varphi_j)$. To show $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$, since $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in H^{\infty}$, it is sufficient to show that the function $(\sum_{i=1}^{N} u_i C_{\varphi_i})(f)$ on $\partial \mathbb{D} \setminus \bigcup_{i=1}^{N} \Gamma(\varphi_i)$ is continuously extendable to $\partial \mathbb{D}$. Since $m(\Gamma(\varphi_j)) = 0$ for $1 \le j \le N$, it is sufficient to show that for a sequence $\{e^{i\theta_n}\}_n$ in $\partial \mathbb{D} \setminus$ $\bigcup_{j=1}^{N} \Gamma(\varphi_j) \text{ satisfying } e^{i\theta_n} \to e^{i\theta_0} \in \bigcup_{j=1}^{N} \Gamma(\varphi_j),$

$$\lim_{n\to\infty}\sum_{j=1}^N u_j(e^{i\theta_n})f(\varphi_j(e^{i\theta_n}))$$

has a limit involving only the point $e^{i\theta_0}$. The remaining is the same as the proof of Theorem 2.1. \square

We do not know a direct proof of (iii) \Rightarrow (ii).

The following is a boundary version of Theorem 2.5, which may be proven in the same way of it.

THEOREM 3.2. Let $u_1, u_2, \ldots, u_N \in A(\overline{\mathbb{D}})$ be non-zero functions and $\varphi_1, \varphi_2, \ldots, \varphi_N \in$ $\mathcal{S}(\mathbb{D})$ be distinct functions satisfying that $\varphi_j \in A(\overline{\mathbb{D}})$ and $\|\varphi_j\|_{\infty} = 1$ for every $1 \le j \le N$. We assume that $m(\Gamma(\varphi_i)) = 0$ for every $1 \le i \le N$. Then the following conditions are equivalent.

- (i) $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in \text{COP}$. (ii) $\lim_{k \to \infty} \sum_{j \in I_1(\{z_n\}, t)} u_j(z_k) = 0$ for every $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$.
- (iii) If $\{f_m\}_m$ is a sequence in B(COP), which converges uniformly on any compact subset of \mathbb{D} , then

$$\lim_{m\to\infty}\limsup_{k\to\infty}\left|\left(\sum_{j=1}^N u_j C_{\varphi_j}\right)(f_m)(e^{i\theta_k})\right|=0$$

for every $\{e^{i\theta_n}\}_n \in \mathcal{Y}$.

We may also give a boundary condition, which is equivalent to condition (1.1). Let $\{e^{i\theta_n}\}_n \in \mathcal{Y}$. For each $t \in J(\{e^{i\theta_n}\})$, let

$$J_0(\lbrace e^{i\theta_n}\rbrace, t) = \lbrace j \in J(\lbrace e^{i\theta_n}\rbrace) : \rho(\varphi_j(e^{i\theta_k}), \varphi_t(e^{i\theta_k})) \to 0 \ (k \to \infty) \rbrace.$$

Then there is a subset $\{t_1, t_2, \ldots, t_\ell\}$ of $J(\{e^{i\theta_n}\})$ such that $J(\{e^{i\theta_n}\}) = \bigcup_{p=1}^\ell J_0(\{e^{i\theta_n}\}, t_p)$ and $J_0(\{e^{i\theta_n}\}, t_p) \cap J_0(\{e^{i\theta_n}\}, t_q) = \emptyset$ for $p \neq q$.

THEOREM 3.3. Let $u_1, u_2, \ldots, u_N \in A(\overline{\mathbb{D}})$ be non-zero functions and $\varphi_1, \varphi_2, \ldots, \varphi_N \in$ $\mathcal{S}(\mathbb{D})$ be distinct functions satisfying that $\varphi_i \in A(\overline{\mathbb{D}})$ and $\|\varphi_i\|_{\infty} = 1$ for every $1 \le j \le N$. We assume that $m(\Gamma(\varphi_i)) = 0$ for every $1 \le j \le N$. Then the following conditions are equivalent.

- (i) $\sum_{j=1}^{N} u_j C_{\varphi_j}$ is compact on H^{∞} . (ii) $(\sum_{j=1}^{N} u_j C_{\varphi_j})(f) \in A(\overline{\mathbb{D}})$ for every $f \in H^{\infty}$. (iii) $\lim_{k \to \infty} \sum_{j \in I_0(\{z_n\}, t)} u_j(z_k) = 0$ for every $\{z_n\}_n \in \mathbb{Z}$ and $t \in I(\{z_n\})$.
- (iv) $\lim_{k \to \infty} \sum_{i \in J_n(te^{i\theta_n}) \cap I} u_j(e^{i\theta_k}) = 0 \text{ for every } \{e^{i\theta_n}\}_n \in \mathcal{Y} \text{ and } t \in J(\{e^{i\theta_n}\}).$

Sketch of Proof. In [8], equivalencies of (i) \Leftrightarrow (ii) \Leftrightarrow (iii) were proven. In the same way as the proof of Theorem 3.1, we may prove that (iii) \Rightarrow (iv) \Rightarrow (ii).

REFERENCES

1. H. Chandra and B. Singh, Compactness and norm of the sum of weighted composition operators on A(D), Int. J. Math. Anal. (Ruse) 4 (2010), 1945–1956.

2. C. Cowen and B. MacCluer, Composition operators on spaces of analytic functions (CRC Press, Boca Raton, FL, 1995).

3. J. Garnett, Bounded analytic functions (Academic Press, New York, 1981).

4. P. Gorkin, Decompositions of the maximal ideal space of L^{∞} , Trans. Am. Math. Soc. 282 (1984), 33-44.

5. P. Gorkin, Gleason parts and COP, J. Funct. Anal. 83 (1989), 44-49.

6. K. Hoffman, Bounded analytic functions and Gleason parts, Ann. Math. 86 (1967), 74-111.

7. K. Izuchi and S. Ohno, Linear combinations of composition operators on H^{∞} , J. Math. Anal. Appl. 378 (2008), 820–839.

8. K. Izuchi and S. Ohno, Sums of weighted composition operators on H^{∞} , J. Math. Anal. Appl. **384** (2011), 683–689.

9. K. Madigan and A. Matheson, Compact composition operators on the Bloch space, *Trans. Am. Math. Soc.* 347 (1995), 2679–2687.

10. S. Ohno, Differences of weighted composition operators on the disk algebra, *Bull. Belg. Math. Soc. Simon Stevin* **17** (2010), 101–107.

11. D. Sarason, Algebras of functions on the unit circle, Bull. Am. Math. Soc. 79 (1973), 286–299.

12. D. Sarason, Functions of vanishing mean oscillation, *Trans. Am. Math. Soc.* 207 (1975), 391–405.

13. D. Sarason, The Shilov and Bishop decompositions of $H^{\infty} + C$, in *Conference on harmonic analysis in honor of Antoni Zygmund*, Chicago, IL, 1981, vols. I, II (Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983), 461–474.

14. J. Shapiro, *Composition operators and classical function theory* (Springer-Verlag, New York, 1993).

15. W. Smith, Compactness of composition operators on BMOA, Proc. Am. Math. Soc. 127 (1999), 2715–2725.

16. C. Sundberg and T. Wolff, Interpolating sequences for QA_B , Trans. Am. Math. Soc. 276 (1983), 551–581.