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ON TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE

BY
M. A. BASHIR

ABSTRACT.  The 6-dimensional sphere $© has an almost complex struc-
ture induced by properties of Cayley algebra. With respect to this structure
5% is a nearly Kaehlerian manifold. We investigate 2-dimensional totally
real submanifolds in S®. We prove that a 2-dimensional totally real sub-
manifold in S° is flat.

1. Introduction. A Riemannian submanifold (M, V) of an almost Hermitian mani-
fold (M,J, (,)) is called totally real if Jypy(d¥p(X)) belongs to the normal bundle v
for any XeTpM, PeM. The almost Hermitian manifold (M,J, (,)) is called a nearly
Kaehlerian manifold provided that (VyHU = 0 for any UeX (M).

The six-dimensional sphere S® is the most typical example of nearly Kaehlerian
manifolds. The existence of such a nearly Kaehlerian structure for the 6-sphere was
proved by Fukami and Ishihara [2] by making use of the properties of the Cayley
division algebra. The almost complex submanifolds of the 6-dimensional sphere were
studied by Gray and Sekigawa. A. Gray [3] proved that with respect to the Canonical
nearly Kaehlerian structure, S® has no 4-dimensional almost complex submanifolds.
On the other hand Sekigawa studied the 2-dimensional almost complex submanifolds
of S8 [4]. He proved, among other things, that a 2-dimensional almost complex
submanifold of S® with Gaussian curvature K < 1 is either diffeomorphic to a 2-
dimensional torus or a 2-dimensional sphere.

Concerning totally real submanifolds of S®, on which this paper is about, N. Ejiri
proved the following [1]:

THEOREM 1. A 3-dimensional totally real submanifold of S® is orientable and mini-
mal.

THEOREM 2. Let M be a 3-dimensional totally real submanifold of constant curva-
ture C in S8. Then either C = 1 (i.e., M is totally geodesic) or C = 1/16.

In this paper we consider the 2-dimensional totally real submanifolds of S°. For
these submanifolds we obtain the following:

THEOREM. Let M be a complete, 2-dimensional totally real submanifold of the
6-dimensional sphere S®. Then M is flat.
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2. The canonical nearly Kaehlerian structure on S°. The 6-dimensional unit
sphere S¢ does not admit any Kaehlerian structure. However, it admits a nearly Kaehle-
rian structure [2]. The Riemannian metric ¢ on § % induced from R 7, is a Hermitian
metric with respect to the nearly Kaehlerian structure J.

Let V be the covariant derivative with respect to the Riemannian connection on
§6. Then we have the following

LeEmMA 1. For all vector fields X on S® (VxJ)X = 0.

Define a skew-symmetric tensor field G of type (1, 2) by
.1 GXX,Y)= (VxJ)Y.
Then one can see that

(2.2) G(X,JY) = —JG(X,Y).

3. 2-dimensional totally real submanifolds of S6. Let M be a 2-dimensional
totally real submanifold of S°. Let V be the Riemannian connection on M and R be
the Riemannian curvature tensor of M in S°. Then the Gauss formula, Weingarten
formula are given respectively by

(3.1 o(X,Y) = VyxY —VxY

(3.2) Vi€ =—AX+V5€ X, YeX (M)

where £ is a local field of normal vector to M, and —A¢X (resp. Vi) denotes the
tangential part (resp. normal part) of Vy¢.
The tangential part AX is related to the second fundamental form o as follows:

(3.3) (0X,Y),6) = (AX,Y)  X,YeX (M)

We denote by R1 the curvature tensor of the normal connection i.e. R*(X,Y) =
Vi, Vi]— V[LX’Y]. Then the Gauss equation is given by

3.4 (RX,Y)Z,W)=(X,Z)Y W)= (X,W)Y,Z)+(0(X,Z),0(Y ,W))
- <U(X7W)9U(sz)>

Write the normal bundle v as v = p @ J(TM) where Jpu = p (p is an invariant
subbundle of v). Then we have the following

Lemma 2. Let X,Y be tangent to M. Then the vector G(X, Y )epu.
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Proor. It suffices to prove the lemma for tangent basis vectors. So for the time
being assume that X and Y are tangent basis vectors for M. In order to prove the
above lemma one needs to show that

(Vx)Y,X) = ((VxJ)Y,Y) =0

and
(Vx)Y,JX) = (VxJ)Y,JY) = 0.

This is because M is 2-dimensional totally real in S® and the normal bundle v is
spanned by orthonormal frame field of the form {J/X,JY ,N;, N, }, for some unit vectors
Ni, Naep. Note that (VxJ)Y,X) = —(Y,(VxJ)X) = 0, using the fact that VJ is
skew-symmetric with respect to (,) and the skew symmetry of G. For the same reason
we also have

(VxDY,Y) = —((VyDX,Y) = (X,(VyJ)Y) =0
Now using (2.1) and the skew symmetry of G we get

(VY JX) = —(Y,(Vx)IX) = (Y, J(Vx))X) =0

and _ _ _
(VxY,JY) = =((VyDX,JY) = (X, (VyJ)Y)
= —(X,J(VyJ)Y)=0
which completes the proof of the lemma. O

4. Proof of the theorem. Using equation (3.2) with £ = JY we have
@.1) JVXY +(VxJ)Y = —AyX + VyJY
and using equations (3.1) and (2.1) in equation (4.1) we get
4.2) Jo(X,Y) = —AyX +V3JY —GX,Y)—JVxY

Assume now, in particular, that {X, Y } is an orthonormal frame field for M, chosen in
such a way that VxX = 0. The existence of such a frame for our complete submanifold
M is possible. This follows from Gauss Lemma [5] which is in fact valid for any
complete Riemannian manifold. To construct our orthonormal frame field {X,Y } in
this case, we may just choose X to be any unit vector field on M satisfying VxX = 0.
and then we apply Gram-Schmidt to any frame field orthogonal to X to obtain Y. For
the frame field {X,Y } we first prove that

(i) (V¥JY,JY) =0
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and
(ii) (ViJY ,JX) =0

(i) is trivial since the frame field is orthonormal. For (ii) note that (,) is Hermitian.
Then using the fact that (X ,YYy =0, VxX = 0 and (VXJ )X) = 0, equation (ii)
follows.

Since the normal bundle v = p @ J(TM), the vector Jo(X,Y )eu & (TM). Thus the
vector in the right hand side of equation (4.2) namely —A;y X+V3JY —G(X,Y)—J VyxY
belongs to p @ (TM). From lemma (2) G(X,Y )ey, and we have just proved that
VsJY ep. Since —A;yXe(TM) we have to have

4.4) VxY =0
Switching X and Y in (4.2) we also get
4.5) VyX =0

By virtue of the frame being orthonormal and equation (4.5) we get

4.6) (VyY,Y)=0
and
4.7) (VyY,X) =0

Then it follows from (4.6) and (4.7) that

(4.8) VyY =0

The sectional curvature K of M is given by

4.9 KX,Y)=RX,Y,Y,X)=(VxVyY —VyVxY —Vixy1¥,X)

Hence it follows from (4.3), (4.4), (4.5), (4.8) and (4.9) that M is flat. O
As an immediate consequence of the above theorem, we have the following:

COROLLARY. A 2-dimensional sphere S? is not totally real in S°.
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