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ON TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE 

BY 

M. A. BASHIR 

ABSTRACT. The 6-dimensional sphere S6 has an almost complex struc­
ture induced by properties of Cayley algebra. With respect to this structure 
S6 is a nearly Kaehlerian manifold. We investigate 2-dimensional totally 
real submanifolds in S6. We prove that a 2-dimensional totally real sub-
manifold in S6 is flat. 

1. Introduction. A Riemannian submanifold (M, *¥) of an almost Hermitian mani­
fold (M, / , (,)) is called totally real if Jx¥(P)(dx¥P(X)) belongs to the normal bundle v 
for any XeTpM, PeM. The almost Hermitian manifold (M, / , (, )) is called a nearly 
Kaehlerian manifold provided that (VuJ)U = 0 for any UeX(M). 

The six-dimensional sphere S6 is the most typical example of nearly Kaehlerian 
manifolds. The existence of such a nearly Kaehlerian structure for the 6-sphere was 
proved by Fukami and Ishihara [2] by making use of the properties of the Cayley 
division algebra. The almost complex submanifolds of the 6-dimensional sphere were 
studied by Gray and Sekigawa. A. Gray [3] proved that with respect to the Canonical 
nearly Kaehlerian structure, S6 has no 4-dimensional almost complex submanifolds. 
On the other hand Sekigawa studied the 2-dimensional almost complex submanifolds 
of S6; [4]. He proved, among other things, that a 2-dimensional almost complex 
submanifold of S6 with Gaussian curvature K < 1 is either diffeomorphic to a 2-
dimensional torus or a 2-dimensional sphere. 

Concerning totally real submanifolds of S6, on which this paper is about, N. Ejiri 
proved the following [1]: 

THEOREM 1. A 3-dimensional totally real submanifold of S6 is orientable and mini­
mal. 

THEOREM 2. Let M be a 3-dimensional totally real submanifold of constant curva­
ture C in S6. Then either C — \ (i.e., M is totally geodesic) or C — 1/16. 

In this paper we consider the 2-dimensional totally real submanifolds of S6. For 
these submanifolds we obtain the following: 

THEOREM. Let M be a complete, 2-dimensional totally real submanifold of the 
6-dimensional sphere S6. Then M is flat. 
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2. The canonical nearly Kaehlerian structure on S6. The 6-dimensional unit 
sphere S6 does not admit any Kaehlerian structure. However, it admits a nearly Kaehle­
rian structure [2]. The Riemannian metric g on S6 induced from %J, is a Hermitian 
metric with respect to the nearly Kaehlerian structure / . 

Let V be the covariant derivative with respect to the Riemannian connection on 
S6. Then we have the following 

LEMMA 1. For all vector fields X on S6 (VxJ)X = 0. 

Define a skew-symmetric tensor field G of type (1, 2) by 

(2.1) G(X,r) = (Vx/)F. 

Then one can see that 

(2.2) G(X,JY) = -JG(X, Y). 

3. 2-dimensional totally real sub manifold s of S6. Let M be a 2-dimensional 
totally real submanifold of S6. Let V be the Riemannian connection on M and R be 
the Riemannian curvature tensor of M in S6. Then the Gauss formula, Weingarten 
formula are given respectively by 

(3.1) a(XJ) = VxY-VxY 

(3.2) VxC = -A^X + V££ X, YeX(M) 

where £ is a local field of normal vector to M, and — A$X (resp. V^O denotes the 
tangential part (resp. normal part) of V*£-

The tangential part A^X is related to the second fundamental form a as follows: 

(3.3) <<r(X,rU> = (AzX,Y) XJeX{M) 

We denote by RL the curvature tensor of the normal connection i.e. RL(X, Y) — 
[V^, Vy ] — Vj-y Yy Then the Gauss equation is given by 

(3.4) (R(X1Y)Z,W) = (XJZ)(Y1W)-(X,W)(Y1Z) + (a(X,Z)1cj(Y,W)) 

-(a(x,w),(T(y,z)) 

Write the normal bundle v as v — fi 0 J(TM) where J \x = /i (// is an invariant 
subbundle of v). Then we have the following 

LEMMA 2. Let X, Y be tangent to M. Then the vector G(X, F)e/i. 
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PROOF. It suffices to prove the lemma for tangent basis vectors. So for the time 
being assume that X and Y are tangent basis vectors for M. In order to prove the 
above lemma one needs to show that 

((VxJ)Y,X) = ((VxJ)Y,Y) = 0 

and 
(ÇVxJ)Y,JX) = (ÇVxJ)Y,JY) = 0. 

This is because M is 2-dimensional totally real in S6 and the normal bundle v is 
spanned by orthonormal frame field of the form {/X, JY, N\, N2}, for some unit vectors 
Nu N2ef2. Note that ((VXJ)Y,X) = -(Y1(VXJ)X) = 0, using the fact that W is 
skew-symmetric with respect to (,) and the skew symmetry of G. For the same reason 
we also have 

((VXJ)Y, Y) = -{(VYJ)XJ) = (X, (VYJ)Y) = 0 

Now using (2.1) and the skew symmetry of G we get 

(ÇVXJ)Y,JX) = -(Y,(VXJ)JX) = (Y,J(VXJ)X) = 0 

and 

(çvxJ)Y,JY) = -< (V r / ) x ,yy ) = ( x , ( V y / y y ) 

= -(x,/(Vy/)r) = o 
which completes the proof of the lemma. • 

4. Proof of the theorem. Using equation (3.2) with £ = JY we have 

(4.1) JVXY + (VXJ)Y = -AJYX + X?£JY 

and using equations (3.1) and (2.1) in equation (4.1) we get 

(4.2) Ja(X, Y) = -AJYX + VirJY - G(X, Y) - JVXY 

Assume now, in particular, that {X, Y } is an orthonormal frame field for M, chosen in 
such a way that V*X = 0. The existence of such a frame for our complete submanifold 
M is possible. This follows from Gauss Lemma [5] which is in fact valid for any 
complete Riemannian manifold. To construct our orthonormal frame field {X, Y} in 
this case, we may just choose X to be any unit vector field on M satisfying VxX = 0. 
and then we apply Gram-Schmidt to any frame field orthogonal to X to obtain Y. For 
the frame field {X, Y} we first prove that 

(i) (v^ jy ,yy ) = o 
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and 

(ii) (V£JY,JX)=0 

(i) is trivial since the frame field is orthonormal. For (ii) note that (,) is Hermitian. 
Then using the fact that (X,7) = 0, VXX = 0 and (V*/)(X) = 0, equation (ii) 
follows. 

Since the normal bundle v = ii®J(TM), the vector Ja(X, Y)e/j, 0 (TM). Thus the 
vector in the right hand side of equation (4.2) namely — AJYX+S7xJY— G(X, Y)— JVXY 
belongs to \i 0 (TM). From lemma (2) G(X, y)e/i, and we have just proved that 
VxJYefi. Since — AJYXe(TM) we have to have 

(4.4) VXY = 0 

Switching X and Y in (4.2) we also get 

(4.5) VyX = 0 

By virtue of the frame being orthonormal and equation (4.5) we get 

(4.6) (VYYJ) = 0 

and 

(4.7) (VyF,X) = 0 

Then it follows from (4.6) and (4.7) that 

(4.8) VyF = 0 

The sectional curvature K of M is given by 

(4.9) K(x, Y) = R(x, y, r,x) = (vxvFr - VYVXY - v[x,nr ,x) 

Hence it follows from (4.3), (4.4), (4.5), (4.8) and (4.9) that M is flat. • 

As an immediate consequence of the above theorem, we have the following: 

COROLLARY. A 2-dimensional sphere S2 is not totally real in S6. 
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