GENERATING FUNCTIONS FOR A CLASS OF ARITHMETIC FUNCTIONS

A. A. Gioia and M. V. Subbarao ${ }^{1}$

(received March 3, 1966)

1. Introduction. In this note the arithmetic functions $L(n)$ and $w(n)$ denote respectively the number and product of the distinct prime divisors of the integer $n>1$, and $L(1)=0$, $\mathrm{w}(1)=1$. An arithmetic function f is called multiplicative if $f(1)=1$ and $f(m n)=f(m) f(n)$ whenever $(m, n)=1$. It is known ([1], [3], [4]) that every multiplicative function f satisfies the identity

$$
\begin{align*}
f(m n)= & \sum_{a \mid m} f(m / a) f(n / b) f^{\prime}(a b) C(a, b) \tag{1.1}\\
& b \mid n
\end{align*}
$$

where m and n are arbitrary positive integers, f^{\prime} is the Dirichlet inverse of f defined by the relation $\Sigma_{d \mid n} f(d) f^{\prime}(n / d)=[1 / n]$ (here as usual $[x]$ is the greatest integer not exceeding x), and

$$
C(m, n)= \begin{cases}(-1)^{L(n)}, & \text { if } w(m)=w(n) \\ 0, & \text { otherwise. }\end{cases}
$$

We apply the identity (1.1) to derive some results on the generating function for a class of arithmetic functions closely allied to those previously obtained in [2] by one of the authors.

[^0]Canad. Math. Bull. vol. 9, no. 4, 1966
2. Main results. An arithmetic function f is said to be unconditionally multiplicative if $f(1)=1$ and $f(\mathrm{mn})=$ $f(m) f(n)$ for all positive integers m and n. The arithmetic integral of an arithmetic function f is the function h defined by $h(n)=\Sigma_{d \mid n} f^{(d) .}$

Let us define

$$
\epsilon(a, n)= \begin{cases}1, & \text { if } a \mid n \\ 0, & \text { otherwise }\end{cases}
$$

THEOREM 1. Let $a>1$ be a fixed integer with $p_{1}, p_{2}, \ldots, p_{r}$ as its distinct prime divisors. Let $g(n)$ be a positive valued unconditionally multiplicative function and $h(n)$ its arithmetic integral. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} h(a n) x^{n}=\sum_{n=1}^{\infty} H(a, n) g(n) x^{n} /\left(1-x^{n}\right) \tag{2.1}
\end{equation*}
$$

where $H(a, n)$ is a periodic function of n with least period $w(a)$ and in fact
(2.2) $H(a, n)=h(a)-\sum_{p_{i}} h\left(a / p_{i}\right) \epsilon\left(p_{i}, n\right)+\sum_{p_{i}, p_{j}} h\left(a / p_{i} p_{j}\right) \epsilon\left(p_{i} p_{j}, n\right)-\ldots$.

Proof. Since $g(n)$ is unconditionally multiplicative, it is easily proved that for any prime $p, h^{\prime}\left(p^{2}\right)=g(p)$ and $h^{\prime}\left(p^{i}\right)=0$ for $i>2$, where h^{\prime} is the Dirichlet inverse of h. Hence from the identity (1.1) we obtain

$$
\begin{aligned}
& h(a n)= \sum_{d \mid a} h(a / d) h(n / d) g(d) \mu(d) \\
& d \mid n \\
&= h(a) h(n)-\sum_{p_{i}} h\left(a / p_{i}\right) h\left(n / p_{i}\right) \epsilon\left(p_{i}, n\right) g\left(p_{i}\right) \\
&+\sum_{p_{i}, p_{j}} h\left(a / p_{i} p_{j}\right) h\left(n / p_{i} p_{j}\right) \epsilon\left(p_{i} p_{j}, n\right) g\left(p_{i} p_{j}\right)-\ldots .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{n=1}^{\infty} h(a n) x^{n}= & h(a) \sum_{n=1}^{\infty} h(n) x^{n}-\sum_{p_{i}} h\left(a / p_{i}\right) g\left(p_{i}\right) \sum_{n=1}^{\infty} h(n) x^{n p_{i}}+\ldots \\
=h(a) & \sum_{n=1}^{\infty} g(n) x^{n} /\left(1-x^{n}\right) \\
& -\sum_{p_{i}} h\left(a / p_{i}\right) g\left(p_{i}\right) \sum_{n=1}^{\infty} g(n) x^{n p_{i}} /\left(1-x^{n p_{i}}\right)+\ldots .
\end{aligned}
$$

Remembering that g is unconditionally multiplicative, we have $g\left(p_{i}\right) g(n)=g\left(n p_{i}\right)$, so

$$
\begin{aligned}
\sum_{n=1}^{\infty} h(a n) x^{n} & =h(a) \sum_{n=1}^{\infty} g(n) x^{n} /\left(1-x^{n}\right) \\
-\sum_{p_{i}} h\left(a / p_{i}\right) & \sum_{n=1}^{\infty} g(n) \in\left(p_{i}, n\right) x^{n} /\left(1-x^{n}\right)+\ldots \\
& =\sum_{n=1}^{\infty} H(a, n) g(n) x^{n} /\left(1-x^{n}\right),
\end{aligned}
$$

where $H(a, n)$ is given by (2.2).
Since $\epsilon(a, n)$ is a periodic function of n with a as period, it follows that $H(a, n)$ has $w(a)=p_{1} p_{2} \cdots p_{r}$ as a period. That $w(a)$ is in fact the least period of $H(a, n)$ follows from Theorem 2 of [2].

Remark. A part of this theorem (that $H(a, n)$ is periodic with least period $w(a)$) was previously proved by one of us [2] by a different method. However, our theorem here gives an explicit form of $H(a, n)$. The function $g(n)$ need not necessarily be unconditionally multiplicative for $H(a, n)$ to be periodic in n with least period $w(a)$. That $g(n)$ can in fact belong to a wider class of functions is shown by

THEOREM 2. Let $g(n)$ be a positive valued multiplicative function and $h(n)$ its arithmetic integral. Let $H(a, n)$ be defined by

$$
\sum_{n=1}^{\infty} h(a n) x^{n}=\sum_{n=1}^{\infty} H(a, n) g(n) x^{n} /\left(1-x^{n}\right)
$$

where a is an arbitrary integer >1. Then $H(a, n)$, as a function of n, is periodic with least period $w(a)$ if and only if the function $F(n) \equiv g(n W) / g(W), W=w(n)$, is unconditionally multiplicative.

Proof. Applying Theorem 1 of [2] we have $\mathrm{H}(\mathrm{a}, \mathrm{n})=$ $h(r) g(s n) / g(n)$, where r is the largest divisor of a whichis prime to n and $a=r s$. For a given integer a it is clear that r and s are unaltered by replacing n by $n+w(a)$. Hence if for every a the function $H(a, n)$, as a function of n, has period $w(a)$, it follows by specializing a to be a prime power $p^{i}, i>0$, and taking $n=p^{j}, j>0$, that for all primes p and all $i, j>0, g\left(p^{i+j}\right) / g\left(p^{j}\right)$ is a function of p^{i} only and is independent of j. Thus

$$
\begin{aligned}
F\left(p^{i}\right) & =g\left(p^{i+1}\right) / g(p) \\
& =\left[g\left(p^{i+1}\right) / g\left(p^{i}\right)\right]\left[g\left(p^{i}\right) / g\left(p^{i-1}\right)\right] \ldots\left[g\left(p^{2}\right) / g(p)\right] \\
& =F(p) F(p) \ldots F(p)=(F(p))^{i} .
\end{aligned}
$$

This result together with the definition of $F(n)$ shows that $F(n)$ is unconditionally multiplicative, thus concluding the proof of the necessity of the condition.

We now proceed to establish the sufficiency. In view of the multiplicative property of $g(n)$ and the assumed properties of $F(n)$ we have, for any given $a>1$ and with r and s as previously defined,

$$
\begin{equation*}
H(a, n)=h(r) g(s n) / g(n)=h(r) F(s) . \tag{2.3}
\end{equation*}
$$

Since r and s are unaltered if n is replaced by $n+w(a)$, it follows that $H(a, n)$ has $w(a)$ as a period.

To prove that $w(a)$ is the least period of $H(a, n)$ we proceed as in [2]. Let R be the least period, so that $H(a, n)=$ $H(a, n+R)$ for all n. Taking $n=a$ and using (2.3), we get $h(1) F(a)=h(t) F(u)$, where t is the largest factor of a such
that $(t, a+R)=1$ and $a=t u$. Since $g(n)$ is positive and multiplicative, so is $h(n)$, and $h(1)=1$ since $g(1)=1$. Thus $h(t) F(u)=F(a)=F(u t)=F(u) F(t)$, giving $h(t)=F(t)$, so that

$$
\begin{equation*}
g(W) h(t)=g(W) F(t)=g(t W), \quad W=w(t) \tag{2.4}
\end{equation*}
$$

We assert that $t=1$. For otherwise, if $t=p_{1}{ }^{c}{ }_{1} p_{2}{ }^{c}{ }_{2} \ldots p_{q}{ }^{c}{ }_{q}$ is the prime factor decomposition of $t>1$, (2.4) gives

$$
\prod_{i=1}^{q} g\left(p_{i}\right)\left[1+g\left(p_{i}\right)+\ldots+g\left(p_{i}^{c}\right)\right]=\prod_{i=1}^{q} g\left(p_{i}^{c_{i}+1}\right) .
$$

Since $g(n)$ is positive valued, this is clearly impossible, unless $c_{1}=c_{2}=\ldots=c_{q}=0$. Thus $t=1$ and hence every prime factor of a is a prime factor of R, proving that $w(a)$ is the least period of $H(a, n)$.

Remark. The class of multiplicative functions $g(n)$ for which Theorem 2 holds may be characterized as follows. Starting with an arbitrary unconditionally multiplicative function $F(n)$, we define $g(p)$ for each prime p in an arbitrary manner, and then define for each $i>1, g\left(p^{i}\right)=g(p)(F(p))^{i-1}$. The particular choice $g(p)=F(p)$ for each prime p makes $g(n)$ unconditionally multiplicative.

REFERENCES

1. A. A. Gioia, On an identity for multiplicative functions. Amer. Math. Monthly 69, (1962), pages 988-991.
2. M.V. Subbarao, A generating function for a class of arithmetic functions. Amer. Math. Monthly 70, (1963), pages 841-842.
3. R. Vaidyanathaswamy, The identical equations of the multiplicative function. Bull. Amer. Math. Soc. 36, (1930), pages 762-772.
4. R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions. Trans. Amer. Math. Soc. 33, (1931), pages 579-662.

Texas Technological College and University of Alberta

[^0]: ${ }^{1}$ Work supported in part by National Science Foundation Grant Number GP 1222.

