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Abstract. Let A = ρ2 ∑
i,j Aijθi ⊗ θj and B = ρ2 ∑

i,j Bijθi ⊗ θj be the Blaschke
tensor and the Möbius second fundamental form of the immersion x. Let D = A + λB
be the para-Blaschke tensor of x, where λ is a constant. If x : Mn �→ Sn+1(1) is an
n-dimensional para-Blaschke isoparametric hypersurface in a unit sphere Sn+1(1) and
x has three distinct Blaschke eigenvalues one of which is simple or has three distinct
Möbius principal curvatures one of which is simple, we obtain the full classification
theorems of the hypersurface.
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1. Introduction. In Möbius differential geometry, Wang [18] studied invariants
of hypersurfaces in a unit sphere Sn+1(1) under the Möbius transformation group. Let
x : M �→ Sn+1(1) be an n-dimensional immersed hypersurface without umbilical points
in Sn+1(1). We choose a local orthonormal basis {ei} for the induced metric I = dx · dx
with dual basis {θi}. Let II = ∑

i,j hijθi ⊗ θj be the second fundamental form and H =
1
n

∑
i hii the mean curvature of the immersion x. By putting ρ2 = n

n−1 {∑i,j h2
ij − nH2},

Wang [18] defined the Möbius metric , the Möbius form, the Blaschke tensor and the
Möbius second fundamental form of the immersion x by g = ρ2dx · dx, � = ρ

∑
i Ciθi,

A = ρ2 ∑
i,j Aijθi ⊗ θj and B = ρ2 ∑

i,j Bijθi ⊗ θj, respectively, where

Ci = −ρ−2

⎧⎨
⎩H,i +

∑
j

(hij − Hδij)ej(log ρ)

⎫⎬
⎭ , (1.1)

Aij = −ρ−2{Hessij(log ρ) − ei(log ρ)ej(log ρ) − Hhij} (1.2)

− 1
2
ρ−2(|∇(log ρ)|2 − 1 + H2)δij,

Bij = ρ−1(hij − Hδij), (1.3)
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and Hessij, ∇ are the Hessian matrix and the gradient with respect to the induced
metric dx · dx. It was proved that g, �, A and B are the Möbius invariants (see [18]).
We should notice that it is one of the important aims to characterize submanifolds in
terms of Möbius invariants. Concerning this topic, there are many important results,
one can see [1, 2 and 5–20]. Recently, by making use of the two important Möbius
invariants, the Blaschke tensor A and the Möbius second fundamental form B of the
immersion x, Cheng, Li and Qi [6] and Zhong and Sun [19] defined a symmetric
(0, 2) tensor D = A + λB which is so-called the para-Blaschke tensor of x, where λ is
a constant. An eigenvalue of the Blaschke tensor is called a Blaschke eigenvalue of x,
an eigenvalue of the Möbius second fundamental form is called a Möbius principal
curvature of x and an eigenvalue of the para-Blaschke tensor is called a para-Blaschke
eigenvalue of x. It is reasonable to introduce the definition: A hypersurface x : M �→
Sn+1(1) without umbilical points is called a Blaschke isoparametric hypersurface, or
a Möbius isoparametric hypersurface, or a para-Blaschke isoparametric hypersurface,
if the Möbius form � ≡ 0 and the Blaschke eigenvalues, or the Möbius principal
curvatures, or the para-Blaschke eigenvalues of the immersion x are constants. In [11],
Li and Wang investigated and completely classified hypersurfaces x : M �→ Sn+1(1)
without umbilical points and with vanishing Möbius form � in Sn+1(1), which satisfy
A + λB + µg = 0. Li and Zhang [12] generalized this topic to general submanifolds.
It should be noted that the condition A + λB + µg = 0 implies that the para-Blaschke
eigenvalues of x are all equal. If x has two distinct constant para-Blaschke eigenvalues,
the classification theorem was obtained by Zhong and Sun [19].

Let Hn+1 be an (n + 1)-dimensional hyperbolic space defined by

Hn+1 = {
(y0, y1) ∈ R+ × Rn+1| − y2

0 + y1 · y1 = −1
}
.

Let σ : Rn+1 �→ Sn+1(1)\{(−1, 0)} and τ : Hn+1 �→ Sn+1
+ (1) be defined by

σ (u) =
(

1 − |u|2
1 + |u|2 ,

2u
1 + |u|2

)
, u ∈ Rn+1, (1.4)

τ (y0, y1) =
(

1
y0

,
y1

y0

)
, (y0, y1) ∈ Hn+1, (1.5)

respectively, where Sn+1
+ (1) is the open hemisphere in Sn+1(1) whose first coordinate is

positive.
If λ = 0, we notice that para-Blaschke isoparametric hypersurfaces reduce to

Blaschke isoparametric hypersurfaces. Li and Peng [13] obtained the following:

THEOREM 1.1. Let x be an n-dimensional immersed Blaschke isoparametric
hypersurface in a unit sphere Sn+1(1) with three distinct Blaschke eigenvalues one of
which is simple. Then, x is locally Möbius equivalent to

(1) CSS(p, q, r) for some constants p, q, r, p 	= q and r 	= 1√
2
, or

(2) Cartan’s non-minimal isoparametric hypersurfaces in S4 with three principal
curvatures, that is, the non-minimal tube of constant radius over a standard
Veronese minimal immersion of S2(

√
3) into S4, or

(3) one of the hypersurfaces as indicated in Example 3.4 where k = 3 and ỹ1 :
M1 �→ S4(r) is one of Cartan’s non-minimal isoparametric hypersurfaces with
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three principal curvatures µ1, µ2 and µ3 satisfying λµi = 1
r2 for some i ∈

{1, 2, 3}.
If λ 	= 0, we consider the immersed para-Blaschke isoparametric hypersurfaces

in a unit sphere Sn+1(1) with three distinct Blaschke eigenvalues. We may obtain the
following:

THEOREM 1.2. Let x : M �→ Sn+1(1) be an n(n ≥ 4)-dimensional immersed para-
Blaschke isoparametric hypersurface in a unit sphere Sn+1(1) and D = A + λB, (λ 	= 0),
be the para-Blaschke tensor of x. If x is of three distinct Blaschke eigenvalues one of
which is simple, then x is locally Möbius equivalent to:

(1) a hypersurface with constant mean curvature and constant scalar curvature in
Sn+1(1), or

(2) the image of σ of a hypersurface with constant mean curvature and constant
scalar curvature in Rn+1, or

(3) the image of τ of a hypersurface with constant mean curvature and constant
scalar curvature in Hn+1, or

(4) CSS(p, q, r) for some constants p, q, r, p 	= q and r 	= 1√
2
, or

(5) one of the hypersurfaces as indicated in Example 3.4 where k = 3 and ỹ1 :
M1 �→ S4(r) is one of Cartan’s non-minimal isoparametric hypersurfaces with
three principal curvatures satisfying λµi = 1

r2 for some i ∈ {1, 2, 3}.
For Möbius isoparametric hypersurface with three distinct Möbius principal

curvatures in a unit sphere Sn+1(1), Hu and co-authors [8] and [9] obtained the
following:

THEOREM 1.3. Let x : M �→ Sn+1(1) be an n(n ≥ 4)-dimensional immersed Möbius
isoparametric hypersurface with three distinct Möbius principal curvatures one of which
is simple. Then x is locally Möbius equivalent to

(1) CSS(p, q, r) for some constants p, q, r, or
(2) an open part of the image of σ of the cone x̄ : N3 × R+ �→ R5 defined by

x̄(ϕ, t) = tϕ, where t ∈ R+ and ϕ : N3 �→ S4 ↪→ R5 is minimal isoparametric
immersion in S4 with three principal curvatures, or

(3) one of the hypersurfaces as indicated in Example 3.4 where k = 3,

r =
√

6n
n−1 , λ = 0 and ỹ1 : M1 �→ S4(r) is Cartan’s minimal isoparametric

hypersurfaces with vanishing scalar curvature and three principal curvatures

of values ±
√

n−1
2n , 0.

If x is an immersed para-Blaschke isoparametric hypersurface in a unit sphere
Sn+1(1) with three distinct Möbius principal curvatures one of which is simple, we
obtain the following:

THEOREM 1.4. Let x : M �→ Sn+1(1) be an n(n ≥ 4)-dimensional immersed para-
Blaschke isoparametric hypersurface in a unit sphere Sn+1(1). If x is of three distinct
Möbius principal curvatures one of which is simple, then x is locally Möbius equivalent
to:

(1) a hypersurface with constant mean curvature and constant scalar curvature in
Sn+1(1), or
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(2) the image of σ of a hypersurface with constant mean curvature and constant
scalar curvature in Rn+1, or

(3) the image of τ of a hypersurface with constant mean curvature and constant
scalar curvature in Hn+1, or

(4) CSS(p, q, r) for some constants p, q and r, or
(5) an open part of the image of σ of the cone x̄ : N3 × R+ �→ R5 defined by

x̄(ϕ, t) = tϕ, where t ∈ R+ and ϕ : N3 �→ S4 ↪→ R5 is minimal isoparametric
immersion in S4 with three principal curvatures, or

(6) one of the hypersurfaces as indicated in Example 3.4 where k = 3,

r =
√

6n
n−1 , λ = 0 and ỹ1 : M1 �→ S4(r) is Cartan’s minimal isoparametric

hypersurfaces with vanishing scalar curvature and three principal curvatures

of values ±
√

n−1
2n , 0.

2. Möbius invariants and fundamental formulas. In this section, we review the
Möbius invariants and fundamental formulas on Möbius geometry of hypersurfaces
in Sn+1(1), for more details, see Wang [18].

Let x : M �→ Sn+1(1) be an n-dimensional hypersurface of Sn+1(1) without
umbilical points. We use the following range of indices throughout this paper:

1 ≤ i, j, k ≤ n.

For an immersed hypersurface x : M �→ Sn+1(1) ↪→ Rn+2 of Sn+1(1) without
umbilical points, we define its Möbius position vector Y : M �→ Ln+3 by Y = ρ(1, x),
where ρ2 = n

n−1 {∑i,j h2
ij − nH2}. Let 
 be the Laplace–Beltrami operator of Möbius

metric g = ρ2dx · dx. We define N = − 1
n
Y − 1

2n2 〈
Y,
Y〉Y , then the structure
equations on M with respect to the Möbius metric g can be written as follows:

dY =
∑

i

ωiYi, (2.1)

dN =
∑

i

ψiYi + φEn+1, (2.2)

dYi = −ψiY − ωiN +
∑

j

ωijYj + ωin+1En+1, (2.3)

dEn+1 = −φY −
∑

i

ωin+1Yi, (2.4)

where {ψi, ωij, ωin+1, φ} are 1-forms on M with

ωij + ωji = 0. (2.5)

By exterior differentiation of these equations, we get∑
i

ωi ∧ ψi = 0,
∑

i

ωin+1 ∧ ωi = 0, (2.6)

dωi =
∑

j

ωij ∧ ωj, (2.7)
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dψi =
∑

j

ωij ∧ ψj + ωin+1 ∧ φ, (2.8)

dφ = −
∑

i

ωin+1 ∧ ψi, (2.9)

dωij =
∑

k

ωik ∧ ωkj − ωin+1 ∧ ωjn+1 − ωi ∧ ψj − ψi ∧ ωj, (2.10)

dωin+1 =
∑

j

ωij ∧ ωjn+1 − ωi ∧ φ, (2.11)

where

ψi =
∑

j

Aijωj, Aij = Aji, ωin+1 =
∑

j

Bijωj, Bij = Bji, φ =
∑

i

Ciωi, (2.12)

and Aij, Bij and Ci are locally defined functions and satisfy (1.1), (1.2) and (1.3). We
have

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl, (2.13)

∑
i

Bii = 0,
∑

i,j

B2
ij = n − 1

n
, trA = 1

2n
(1 + n2R). (2.14)

Let Ci,j, Aij,k and Bij,k be the covariant derivative of Ci, Aij and Bij. We define them by

∑
j

Ci,jωj = dCi +
∑

j

Cjωji, (2.15)

∑
k

Aij,kωk = dAij +
∑

k

Aikωkj +
∑

k

Akjωki, (2.16)

∑
k

Bij,kωk = dBij +
∑

k

Bikωkj +
∑

k

Bkjωki. (2.17)

From the structure equations (2.1)–(2.4), we infer

Aij,k − Aik,j = BikCj − BijCk, (2.18)

Ci,j − Cj,i =
∑

k

(BikAkj − BkjAki), (2.19)

Bij,k − Bik,j = δijCk − δikCj, (2.20)

Rijkl = BikBjl − BilBjk + δikAjl + δjlAik − δilAjk − δjkAil, (2.21)

where Rijkl denotes the curvature tensor with respect to the Möbius metric g on M
and n(n − 1)R = ∑

i,j Rijij is the Möbius scalar curvature of the immersion x : M →
Sn+1(1).
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Since the Möbius form � = ∑
i CiωiEn+1 ≡ 0, by (2.18)–(2.20), we have for all

indices i, j and k that

Aij,k = Aik,j, Bij,k = Bik,j,
∑

k

BikAkj =
∑

k

BkjAki. (2.22)

Denote by D = ∑
i,j Dijωi ⊗ ωj the (0, 2) para-Blaschke tensor, then

Dij = Aij + λBij, 1 ≤ i, j ≤ n, (2.23)

where λ is a constant. The covariant derivative of Dij is defined by∑
k

Dij,kωk = dDij +
∑

k

Dikωkj +
∑

k

Dkjωki. (2.24)

From (2.23), we have

Dij,k = Aij,k + λBij,k, Dij,k − Dik,j = Aij,k − Aik,j + λ(Bij,k − Bik,j). (2.25)

From (2.22), we have for all indices i, j and k that

Dij,k = Dik,j. (2.26)

3. Propositions and typical examples. Throughout this section, we shall make the
following convention on the ranges of indices:

1 ≤ a, b ≤ m1, m1 + 1 ≤ p, q ≤ m1 + m2,

m1 + m2 + 1 ≤ α, β ≤ m1 + m2 + m3 = n, 1 ≤ i, j, k ≤ n.

We may prove the following:

PROPOSITION 3.1. Let x : M �→ Sn+1(1) be an n-dimensional hypersurface with
vanishing Möbius form in a unit sphere Sn+1(1).

(1) If the multiplicity of a Blaschke eigenvalue is constant and greater than 1, then
this Blaschke eigenvalue is constant along its leaf.

(2) If the multiplicity of a Möbius principal curvature is constant and greater than
1, then this Möbius principal curvature is constant along its leaf.

Proof. (1) Let Ai be the Blaschke eigenvalues of x with constant multiplicities. We
choose a local orthonormal frame {E1, . . . , En} such that Ei is a unit principal vector
with respect to Ai. From (2.16), we have

Aij,k = Ek(Ai)δij + �
j
ik(Ai − Aj), (3.1)

where �
j
ik is the Levi–Civita connection for the Möbius metric g given by

ωij =
∑

k

�
j
ikωk, �

j
ik = −�i

jk. (3.2)

From (2.22), we know that Aii,j = Aij,i. Thus, from (3.1), we get

Ej(Ai) = �j
ii(Ai − Aj), for i 	= j. (3.3)
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Without loss of generality, we may assume that A1 is the Blaschke eigenvalue of x with
constant multiplicity m1 and m1 ≥ 2, that is, for 1 ≤ a ≤ m1, we have Aa = A1. From
(3.3), we have

Ea(A1) = �a
11(A1 − Aa) = 0, for a 	= 1,

and

E1(A1) = E1(Aa) = �1
aa(Aa − A1) = 0, for a 	= 1.

Thus,

Ea(A1) = 0, for any a.

This implies that A1 is constant along its leaf.
(2) Since the Möbius second fundamental form is also Codazzi tensor, by the same

method, we see that (2) is true. We complete the proof of Proposition 3.1.

PROPOSITION 3.2. Let x : M �→ Sn+1(1) be an n(n ≥ 4)-dimensional immersed para-
Blaschke isoparametric hypersurface in a unit sphere Sn+1(1) and D = A + λB be the
para-Blaschke tensor of x.

(1) If x has three distinct Blaschke eigenvalues A1, A2 and A3 one of which is
simple and λ 	= 0, then either A1, A2 and A3 are constants or Aap,n = 0 for
every a, p.

(2) If x has three distinct Möbius principal curvatures B1, B2 and B3 one of which
is simple, then either B1, B2 and B3 are constants or Bap,n = 0 for every a, p.

Proof. (1) Let A, B and D denote the n × n-symmetric matrices (Aij), (Bij) and (Dij),
respectively, where Aij, Bij and Dij are defined by (1.2), (1.3) and (2.23). From (2.22)
and (2.23), we know that BA = AB, DA = AD and BD = DB. We may choose a local
orthonormal basis {E1, E2, . . . , En} such that Aij = Aiδij, Bij = Biδij and Dij = Diδij,
where Ai, Bi and Di are the Blaschke eigenvalues, the Möbius principal curvatures and
the para-Blaschke eigenvalues of the immersion x.

From (2.13) and (3.2), the curvature tensor of x may be given by (see [14])

Rijkl =El
(
�

j
ik

) − Ek
(
�

j
il

) +
∑

m

�j
im�m

lk −
∑

m

�j
im�m

kl +
∑

m

�m
ik�

j
ml −

∑
m

�m
il �

j
mk. (3.4)

Since x has three distinct Blaschke eigenvalues A1, A2 and A3 one of which is
simple and n ≥ 4, without loss of generality, we may assume that m3 = 1, m1m2 ≥ 2
and m2 ≥ 2.

From (2.14) and (2.23), we have

m1A1 + m2A2 + m3A3 = trD, (3.5)

m1A2
1 + m2A2

2 + m3A2
3 − 2

(∑
a

Da

)
A1 − 2

(∑
p

Dp

)
A2 (3.6)

− 2

(∑
α

Dα

)
A3 = n − 1

n
λ2 −

∑
i

D2
i .
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Since we assume that D1, D2, . . . , Dn are constants, we get

m1dA1 + m2dA2 + m3dA3 = 0, (3.7)

ξ1dA1 + ξ2dA2 + ξ3dA3 = 0, (3.8)

where ξ1 = m1A1 − ∑
a Da, ξ2 = m2A2 − ∑

p Dp and ξ3 = m3A3 − ∑
α Dα. Since λ 	=

0, we know that all of ξ1, ξ2 and ξ3 are not zero. We consider two cases:
If at least one of m2ξ3 − m3ξ2, m3ξ1 − m1ξ3 and m1ξ2 − m2ξ1 is zero, from (3.7)

and (3.8), we easily know that A1, A2 and A3 are constants.
If all of m2ξ3 − m3ξ2, m3ξ1 − m1ξ3 and m1ξ2 − m2ξ1 are not zero, from (3.7) and

(3.8), we easily see that

dA1

m2ξ3 − m3ξ2
= dA2

m3ξ1 − m1ξ3
= dA3

m1ξ2 − m2ξ1
. (3.9)

From Proposition 3.1 and (3.9), we have

Ep(A2) = Ep(A1) = Ep(A3) = 0, (3.10)

and from (3.1), we have

�
p
ab = �α

ab = 0, a 	= b, �α
pq = 0, p 	= q, �p

aa = �
p
bb, �α

aa = �α
bb, (3.11)

�p
aα = Aap,α

A1 − A2
, �a

αp = Aαa,p

A3 − A1
, �α

pa = Apα,a

A2 − A3
. (3.12)

(i) If m1 ≥ 2, from Proposition 3.1 and (3.9), we have

Ea(A1) = Ea(A2) = Ea(A3) = 0. (3.13)

From (3.1), (3.3), (3.10) and (3.13), we have

�
p
ab = �a

pq = 0, �a
nn = �p

nn = 0, (3.14)

�n
aa = En(A1)

A1 − A3
, �n

pp = En(A2)
A2 − A3

. (3.15)

From (3.12), we have

�p
an = Aap,n

A1 − A2
, �

p
nb = Abp,n

A3 − A2
, �n

bq = Abq,n

A1 − A3
, �n

qb = Abq,n

A2 − A3
. (3.16)

Thus, from (3.4), (3.11) and (3.14)–(3.16), we have

Rapbq =Eq
(
�

p
ab

) − Eb
(
�p

aq

) +
∑

m

�p
am�m

qb −
∑

m

�p
am�m

bq +
∑

m

�m
ab�

p
mq −

∑
m

�m
aq�

p
mb

(3.17)

=�p
an�

n
qb − �p

an�
n
bq + �n

ab�
p
nq − �n

aq�
p
nb

=Aap,nAbq,n + Aaq,nAbp,n − En(A1)En(A2)δabδpq

(A1 − A3)(A2 − A3)
.
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On the other hand, from (2.21), we have

Rapbq = (BaBp + Aa + Ap)δabδpq = (BaBp + A1 + A2)δabδpq. (3.18)

By (3.17) and (3.18), we have

Aap,nAbq,n + Aaq,nAbp,n

= {(A1 − A3)(A2 − A3)(BaBp + A1 + A2) + En(A1)En(A2)}δabδpq.

Putting

�a,p = (A1 − A3)(A2 − A3)(BaBp + A1 + A2) + En(A1)En(A2), (3.19)

we get

Aap,nAbq,n + Aaq,nAbp,n = �a,pδabδpq.

If a = b, from Bp = 1
λ

(Dp − A2), we have

2Aap,nAaq,n = �a,pδpq, (3.20)

and

�a,p = (A1 − A3)(A2 − A3)
(

Ba

λ
Dp + A1 +

(
1 − Ba

λ

)
A2

)
+ En(A1)En(A2). (3.21)

If p = q, from Ba = 1
λ

(Da − A1), we have

2Aap,nAbp,n = �a,pδab, (3.22)

and

�a,p = (A1 − A3)(A2 − A3)
(

Bp

λ
Da + A2 +

(
1 − Bp

λ

)
A1

)
+ En(A1)En(A2). (3.23)

Since m1 ≥ 2 and m2 ≥ 2, we may consider two cases:
If at least one of Ba and Bp is zero, for example Ba = 0, from (3.21), we know

that �a,p is irrelevant to p. Assume that exists one p0 such that Aap0,n 	= 0 for any
a, 1 ≤ a ≤ m1. By (3.20), we have Aap,n = 0 for p(p 	= p0). By (3.20) again, if p = q,
then A2

ap,n = �a,p

2 for any p. Since �a,p is irrelevant to p, we have A2
ap0,n = �a,p0

2 = �a,p

2 =
A2

ap,n = 0 for p0, p(p 	= p0). Thus, Aap0,n = 0, this is a contradiction. Therefore, we have
Aap,n = 0 for any p and a. If, for example Bp = 0, from (3.22), (3.23) and by the same
assertion, we have Aap,n = 0 for any a and p.

If Ba 	= 0 and Bp 	= 0, from (3.21) and (3.23), we know that �a,p depends on a, p.
If D1 = D2 = · · · = Dn, from Ba = 1

λ
(Da − A1) and Bp = 1

λ
(Dp − A2), we know that

for any a, all Ba are equal and for any p, all Bp are equal. From (3.21) and (3.23), we
see that for any a and p, all �a,p are equal. By the same proof as above, we know that
Aap,n = 0 for any a and p.

If at least two of D1, D2, . . . , Dn are not equal, since m2 ≥ 2 and m1 ≥ 2, we may
prove that there exists at most one p such that �a,p 	= 0 for any a, 1 ≤ a ≤ m1 and there
exists at most one a such that �a,p 	= 0 for any p, m1 + 1 ≤ p ≤ m1 + m2.
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In fact, assume that exists more than one p, for example p1, p2 (p1 	= p2), such that
�a,p1 	= 0, �a,p1 	= 0. By (3.20), we have A2

ap,n = �a,p

2 for any p. Thus, A2
ap1,n = �a,p1

2 	= 0,
A2

ap2,n = �a,p2
2 	= 0. By (3.20) again, we see that Aap1,nAap2,n = 0, this is a contradiction.

Thus, we know that there exists at most one p such that �a,p 	= 0 for any a, 1 ≤ a ≤ m1.
By the same proof as above, we also know that there exists at most one a such that
�a,p 	= 0 for any p, m1 + 1 ≤ p ≤ m1 + m2.

If for all p, �a,p = 0, 1 ≤ a ≤ m1, by (3.20), we have Aap,n = 0 for any p and a.
If there exists one p0 such that �a,p0 	= 0, �a,p = 0, (p 	= p0), in this case, we must

have that there exists one a0 such that �a0,p 	= 0, �a,p = 0, (a 	= a0). In fact, if for all
a, �a,p = 0, m1 + 1 ≤ p ≤ m1 + m2, this is in contradiction with �a,p0 	= 0. Thus, for
1 ≤ a ≤ m1, from (3.23), we have

Bp

λ
Da + A2 +

(
1 − Bp

λ

)
A1 = − En(A1)En(A2)

(A1 − A3)(A2 − A3)
, p 	= p0. (3.24)

Since Bp 	= 0, by (3.24), we know that Da = Db for any a, b, 1 ≤ a, b ≤ m1. Since
Ba = 1

λ
(Da − A1), we easily see that Ba = Bb.

By the same assertion as above, from (3.21), we have Dp = Dq and Bp = Bq for any
p, q, m1 + 1 ≤ p, q ≤ m1 + m2. Thus, from (3.21) and (3.23), we see that �a,p0 = �a,p.
This is in contradiction with the assumption that �a,p0 	= 0, �a,p = 0, (p 	= p0). Thus,
the case that there exists one p0 such that �a,p0 	= 0, �a,p = 0, (p 	= p0) does not occur.

(ii) If m1 = 1, from (3.3) and (3.11), we have

�1
pq = �n

pq = 0, �p
nn = �

p
11 = 0, (3.25)

�1
nn = E1(A3)

A3 − A1
, �1

pp = E1(A2)
A2 − A1

, (3.26)

�n
11 = En(A1)

A1 − A3
, �n

pp = En(A2)
A2 − A3

.

From (3.4), (3.11), (3.12), (3.25) and (3.26), by the similar calculation as in (i), we have

2A1p,nA1q,n = υpδpq, (3.27)

for any p and q, where

υp = (A1 − A2)(A1 − A3)
{

Bn

λ
Dp + A3 +

(
1 − Bn

λ

)
A2 (3.28)

+ E1(A2)E1(A3)
(A1 − A2)(A1 − A3)

+ [En(A2) − En(A3)]En(A2)
(A2 − A3)2

−En(En(A2))
A2 − A3

+ En(A2)
(A2 − A3)2

}
.

Since m1 = 1 and m2 ≥ 2, we may consider two cases:
If Bn = 0, from (3.28), we know that υp is irrelevant to p. By the same proof as in

(i), we see that A1p,n = 0 for any p.
If Bn 	= 0, from (3.28), we know that υp depends on p. If D1 = D2 = · · · = Dn,

from (3.28), we see that for any p, all υp are equal. By the same proof as in (i), we see
that A1p,n = 0 for any p.

If at least two of D1, D2, . . . , Dn are not equal, since m2 ≥ 2, by the same proof as
in (i), we easily know that there exists at most one p such that υp 	= 0.

If for any p, υp = 0, by (3.27), we have A1p,n = 0.
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If there is p0, such that υp0 	= 0 and υp = 0, for other p(p 	= p0), we have

υp0 = υp0 − υp = (A1 − A2)(A1 − A3)
Bn

λ
(Dp0 − Dp). (3.29)

On the other hand, since m1 = 1, m3 = 1 and Aij,k is symmetric for all indices i, j and
k, interchanging 1 and n in the above equations, we also have

2Anp,1Anq,1 = ωpδpq, (3.30)

where

ωp = (A3 − A2)(A3 − A1)
{

B1

λ
Dp + A1 +

(
1 − B1

λ

)
A2 (3.31)

+ En(A2)En(A1)
(A3 − A2)(A3 − A1)

+ [E1(A2) − E1(A1)]E1(A2)
(A2 − A1)2

− E1(E1(A2))
A2 − A1

+ E1(A2)
(A2 − A1)2

}
.

If B1 = 0, from (3.31), we know that ωp is irrelevant to p. By the same assertion as
above, we know that A1p,n = 0 for any p.

If B1 	= 0, from (3.31), we know that ωp depends on p. If D1 = D2 = · · · = Dn,
from (3.31), we see that for any p, all ωp are equal. By the same assertion as above, we
see that A1p,n = 0 for any p.

If at least two of D1, D2, . . . , Dn are not equal, since m2 ≥ 2, by the same assertion
as above, we know that there exists at most one p such that ωp 	= 0.

If for any p, ωp = 0, by (3.30), we have A1p,n = 0. Otherwise, we may prove that
ωp0 	= 0 for the above p0 in (3.29). In fact, by (3.27), we have A2

1p0,n = υp0
2 	= 0. On the

other hand, by (3.30), we have A2
np0,1

= ωp0
2 . Since A1p0,n = Anp0,1, we have ωp0 = υp0 	= 0.

By (3.31), we also have

υp0 = ωp0 = ωp0 − ωp = (A3 − A2)(A3 − A1)
B1

λ
(Dp0 − Dp). (3.32)

Thus, from (3.29) and (3.32), we have

(A1 − A3)
{

(A1 − A2)
Bn

λ
+ (A3 − A2)

B1

λ

}
(Dp0 − Dp) = 0,

that is

{(A1 − A2)(Dn − A3) + (A3 − A2)(D1 − A1)} (Dp0 − Dp) = 0.

If Dp0 = Dp, by (3.29), we have υp0 = υp, this contradicts with υp0 	= 0, υp = 0, (p 	= p0).
Therefore,

(A1 − A2)(Dn − A3) + (A3 − A2)(D1 − A1) = 0. (3.33)

Thus,

(2A3 − A2 − Dn)dA1 − (A3 + A1 − Dn − D1)dA2 + (2A1 − A2 − D1)dA3 = 0.

(3.34)
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If there is a point such that at this point,

2A3 − A2 − Dn = 0, (3.35-1)

A3 + A1 − Dn − D1 = 0, (3.35-2)

2A1 − A2 − D1 = 0. (3.35-3)

From (3.35-1)–(3.35-3), we have A3 − A2 = A2 − A1 at this point. By (3.33), we have

A1 − A3 − D1 + Dn = 0, (3.36)

at this point. From (3.35-1)–(3.35-3) and (3.36), we see that A1 = A2 = A3 at this point.
This contradicts with the assumption of (1) in Proposition 3.2. Thus, the coefficients
of (3.34) are not simultaneously zero at any point. From (3.9) and (3.34), we easily
know that dA1 = dA2 = dA3 = 0, that is A1, A2 and A3 are constants.

(2) Since x has three distinct Möbius principal curvatures B1, B2 and B3 one of
which is simple and n ≥ 4, without loss of generality, we may assume that m3 = 1,
m1m2 ≥ 2 and m2 ≥ 2.

From (2.14), we have

m1dB1

B3 − B2
= m2dB2

B1 − B3
= m3dB3

B2 − B1
. (3.37)

(i) If m1 ≥ 2, from Proposition 3.1 and (3.37), by the same method in the proof of
(1), we will obtain that

2Bap,nBaq,n = �′
a,pδpq, (3.38)

where

�′
a,p = (B1 − B3)(B2 − B3)

(
Da + Dp + B1B2 − λ(B1 + B2)

) + En(B1)En(B2). (3.39)

Since m1 ≥ 2 and m2 ≥ 2, if D1 = D2 = · · · = Dn, from (3.39), we see that for any
a and p, all �′

a,p are equal. By the same proof as in (1), we know that Bap,n = 0 for any
a and p.

If at least two of D1, D2, . . . , Dn are not equal, by the same method in the proof
of (1), we may obtain that there exists at most one p such that �′

a,p 	= 0 for any a,
1 ≤ a ≤ m1.

If for all p, �′
a,p = 0, 1 ≤ a ≤ m1, by (3.39), we easily see that Bap,n = 0 for any a

and p. Otherwise, by the same method in the proof of (1), we also conclude.
(ii) If m1 = 1, by the same method in the proof of (1), we have

2B1p,nB1q,n = υ ′
pδpq, (3.40)

for any p and q, where

υ ′
p = (B1 − B2)(B1 − B3)

{
Dp + Dn + B2B3 − λ(B2 + B3)

+ E1(B2)E1(B3)
(B1 − B2)(B1 − B3)

+ [En(B2) − En(B3)]En(B2)
(B2 − B3)2

− En(En(B2))
B2 − B3

+ En(B2)
(B2 − B3)2

}
.

(3.41)
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Since m1 = 1 and m2 ≥ 2, if D1 = D2 = · · · = Dn, from (3.41), we see that for any
p, all υ ′

p are equal. By the same proof as in (1), we know that B1p,n = 0 for any p.
If at least two of D1, D2, . . . , Dn are not equal, we also see that there exists at most

one p such that υ ′
p 	= 0.

If for any p, υ ′
p = 0, by (3.41), we have B1p,n = 0. Otherwise, by the same method

in the proof of (1), we see that B1, B2 and B3 are constants. This completes the proof
of Proposition 3.2.

EXAMPLE 3.3. [7, 8]. For any natural number p, q, p + q < n and real
number r ∈ (0, 1), consider the immersed hypersurface u : Sp(r) × Sq(

√
1 − r2) × R+ ×

Rn−p−q−1 �→ Rn+1

u = (tu′, tu′′, u′′′),

u′ ∈ Sp(r) ⊂ Rp+1, u′′ ∈ Sq(
√

1 − r2) ⊂ Rq+1, u′′′ ∈ Rn−p−q−1,

then x = σ ◦ u : Sp(r) × Sq(
√

1 − r2) × R+ × Rn−p−q−1 �→ Sn+1(1) is a hypersurface in
Sn+1(1) without umbilical points and with vanishing Möbius form, it is denoted by
CSS(p, q, r). From [7] and [8], by a direct calculation, we know that CSS(p, q, r) has
three distinct Möbius principal curvatures. In particular, if p 	= q and r 	= 1√

2
then

CSS(p, q, r) has exactly three distinct Blaschke eigenvalues.

EXAMPLE 3.4. [7, 19]. Let λ ∈ R. For any integers n and k satisfying n ≥ 3 and
2 ≤ k ≤ n − 1, let ỹ1 : M1 �→ Sk+1(r) ⊂ Rk+2 be an immersed hypersurface without
umbilical points such that the scalar curvature S1 and the mean curvature H1 of it
satisfy

S1 = {nk(k − 1) − (n − 1)r2}/nr2 + n(n − 1)λ2, H1 = −n
k
λ.

Let ỹ = (ỹ0, ỹ2) : Hn−k(−1/r2) �→ Rn−k+1
1 be the canonical embedding and M̃n = M1 ×

Hn−k(−1/r2), Ỹ = (ỹ0, ỹ1, ỹ2). We have that Ỹ : M̃n �→ Rn+3
1 is an immersion, satisfying

〈Ỹ , Ỹ〉1 = 0 and inducing a Riemannian metric g = 〈dỸ , dỸ〉1 = −dỹ2
0 + dỹ2

1 + dỹ2
2.

Obviously, (M̃n, g) = (M1, dỹ2
1) × (Hn−k(−1/r2), 〈dỹ, dỹ〉1) is a Riemannian manifold.

Define x̃1 = ỹ1/ỹ0, x̃2 = ỹ2/ỹ0 and x̃ = (x̃1, x̃2), then |x̃|2 = 1. Thus, x̃ : M̃n �→ Sn+1

defines an immersed hypersurface without umbilical points. From [7] and [19], we
know that the components of the Blaschke tensor, the Möbius second fundamental
form and the para-Blaschke tensor of x̃ are

Aij =
(

1
2r2

− λ2

2

)
δij − λhij, Bij = hij + λδij,

Dij =
(

1
2r2

+ λ2

2

)
δij, 1 ≤ i, j ≤ k,

Aij =
(

− 1
2r2

− λ2

2

)
δij, Bij = λδij,

Dij =
(

− 1
2r2

+ λ2

2

)
δij, k + 1 ≤ i, j ≤ n,

Aij = 0, Bij = 0, Dij = 0,

1 ≤ i ≤ k, k + 1 ≤ j ≤ n, or 1 ≤ j ≤ k, k + 1 ≤ i ≤ n.

Thus, if λ = 0, x̃ has exactly two distinct constant Blaschke eigenvalues.

https://doi.org/10.1017/S001708951200016X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951200016X


592 SHICHANG SHU AND BIANPING SU

In addition, from [7], we know that x̃ is Blaschke isoparametric with three Blaschke
eigenvalues and four Möbius principal curvatures if and only if the corresponding
hypersurface ỹ1 is a non-minimal Euclidean isoparametric with three distinct principal
curvatures µ1, µ2 and µ3 satisfying λµi = 1

r2 for some i ∈ {1, 2, 3}. From [3], we
know that such hypersurfaces ỹ1 do exist. If x̃ has a simple Blaschke eigenvalue,
then k = 3.

EXAMPLE 3.5. [7, 19]. Let λ ∈ R. For any integers n and k satisfying n ≥ 3 and 2 ≤
k ≤ n − 1, let ỹ = (ỹ0, ỹ1) : M1 �→ Hk+1(−1/r2) ⊂ Rk+2

1 be an immersed hypersurface
without umbilical points such that the scalar curvature S1 and the mean curvature H1

of it satisfy

S1 = −{nk(k − 1) + (n − 1)r2}/nr2 + n(n − 1)λ2, H1 = −n
k
λ.

Let ỹ2 : Sn−k(r) �→ Rn−k+1 be the canonical embedding and M̃n = M1 × Sn−k(r),
Ỹ = (ỹ0, ỹ1, ỹ2). Ỹ : M̃n �→ Rn+3

1 is an immersion satisfying 〈Ỹ , Ỹ〉1 = 0 and inducing
a Riemannian metric g = 〈dỸ , dỸ〉1 = −dỹ2

0 + dỹ2
1 + dỹ2

2. Define x̃1 = ỹ1/ỹ0, x̃2 =
ỹ2/ỹ0, x̃ = (x̃1, x̃2), |x̃|2 = 1, x̃ : M̃n �→ Sn+1 is an immersed hypersurface without
umbilical points. From [7] and [19], we know that

Aij = −
(

1
2r2

+ λ2

2

)
δij − λhij, Bij = hij + λδij,

Dij =
(

− 1
2r2

+ λ2

2

)
δij, 1 ≤ i, j ≤ k,

Aij =
(

1
2r2

− λ2

2

)
δij, Bij = λδij,

Dij =
(

1
2r2

+ λ2

2

)
δij, k + 1 ≤ i, j ≤ n,

Aij = 0, Bij = 0, Dij = 0,

1 ≤ i ≤ k, k + 1 ≤ j ≤ n, or 1 ≤ j ≤ k, k + 1 ≤ i ≤ n.

Thus, if λ = 0, x̃ has exactly two distinct constant Blaschke eigenvalues.
In addition, from [7], we know that x̃ is Blaschke isoparametric with three Blaschke

eigenvalues and four Möbius principal curvatures if and only if the corresponding
hypersurface ỹ1 is a non-minimal Euclidean isoparametric with three distinct principal
curvatures µ1, µ2 and µ3 satisfying λµi = − 1

r2 for some i ∈ {1, 2, 3}. But, from [4], we
know that such a hypersurface ỹ1 does not exist, since if ỹ1 is isoparametric, then it has
at most two principal curvatures.

4. Proof of theorems. We firstly state an important result due to Li and
Wang [11]:

THEOREM 4.1. For an immersed hypersurface x : M �→ Sn+1(1) without umbilical
points and with vanishing Möbius form, if the para-Blaschke tensor D satisfies D = fg
for some function f on M, then f is constant and x is locally Möbius equivalent to one of
the following:
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(1) an immersed hypersurface x : M �→ Sn+1(1) with constant scalar curvature
and constant mean curvature, or

(2) the image under σ of an immersed hypersurface in Rn+1 with constant scalar
curvature and constant mean curvature, or

(3) the image under τ of an immersed hypersurface in Hn+1 with constant scalar
curvature and constant mean curvature.

Proof of Theorem 1.2. Let A1, A2 and A3 be the three distinct Blaschke eigenvalues
with multiplicities m1, m2 and m3 and one of which is simple. We consider two cases:

(1) If all of the para-Blaschkes eigenvalues of x are equal, that is D1 = D2 =
. . . = Dn, by Theorem 4.1, we know that x is locally Möbius equivalent
to one of an immersed hypersurface x : M �→ Sn+1(1) with constant scalar
curvature and constant mean curvature, or the image under σ of an immersed
hypersurface in Rn+1 with constant scalar curvature and constant mean
curvature, or the image under τ of an immersed hypersurface in Hn+1 with
constant scalar curvature and constant mean curvature.

(2) If not all of the para-Blaschkes eigenvalues of x are equal, by Proposition
3.2, we know that A1, A2 and A3 are constants, or Aap,n = 0 for any a and p.

We may prove that if Aap,n = 0 for any a and p, then A1, A2 and A3 are also
constants. If fact, without loss of generality, we assume that m2 ≥ 2.

(i) If m1 = 1, since A1p,n = 0 for any p, putting p = q in (3.27), we have υp = 0. By
(3.28),

Bn

λ
Dp + A3 +

(
1 − Bn

λ

)
A2 (4.1)

= − E1(A2)E1(A3)
(A1 − A2)(A1 − A3)

− [En(A2) − En(A3)]En(A2)
(A2 − A3)2

+ En(En(A2))
A2 − A3

− En(A2)
(A2 − A3)2

.

If Bn = 0, we see that A3 = Dn is constant. By (3.9), we have that A1 and A2 are
constants.

If Bn 	= 0, by (4.1), we know that for any p, all Dp are equal. Thus, x has at most
three distinct para-Blaschke eigenvalues D1, Dp and Dn with multiplicities 1, m2 and 1.

(ii) If m1 ≥ 2, putting p = q in (3.20) and a = b in (3.22), we have �a,q = 0. Thus,
for any a and p, by (3.21) and (3.23), we have

Ba

λ
Dp + A1 +

(
1 − Ba

λ

)
A2 = − En(A1)En(A2)

(A1 − A3)(A2 − A3)
, (4.2)

Bp

λ
Da + A2 +

(
1 − Bp

λ

)
A1 = − En(A1)En(A2)

(A1 − A3)(A2 − A3)
. (4.3)

If at least one of Bp and Ba is zero, we easily see that A1, A2 and A3 are constants.
If all of Bp and Ba are not zero, by (4.2) and (4.3), we easily see that for any a

and b, Da = Db and for any p and q, Dp = Dq. Thus, x has at most three distinct
para-Blaschke eigenvalues Da, Dp and Dn with multiplicities m1, m2 and 1.

Let Da, Dp and Dn be the three constant para-Blaschke eigenvalues with
multiplicities m1, m2 and 1. We choose a local orthonormal basis {E1, . . . , En} such
that Ei is the unit para-Blaschke tensor of Di. By (2.24),

Dij,k = Ek(Di)δij + �
j
ik(Di − Dj),
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where �
j
ik is the Levi–Civita connection of g given by ωij = ∑

k �
j
ikωk, �

j
ik = −�i

jk. By
(2.26), we have Dii,j = Dij,i. Thus,

Ej(Di) = �j
ii(Di − Dj), i 	= j. (4.4)

If the number of the distinct para-Blaschke eigenvalues of Da, Dp and Dn is two,
when m1 = 1, without loss of generality, we assume that Da = Dn 	= Dp. By (4.4),

0 = E1(Dp) = �1
pp(Dp − Da), 0 = En(Dp) = �n

pp(Dp − Dn). (4.5)

Thus, �1
pp = �n

pp = 0. On the other hand, by (2.16) and Aii,j = Aij,i, we have

Ej(Ai) = �j
ii(Ai − Aj), i 	= j, (4.6)

where {E1, . . . , En} a local orthonormal basis such that Ei is the unit Blaschke tensor
of Ai. Thus,

E1(A2) = �1
pp(A2 − A1) = 0, En(A2) = �n

pp(A2 − A3) = 0.

From Proposition 3.1, we have Ep(A2) = 0, 2 ≤ p ≤ 1 + m2. Thus, A2 is constant. By
(3.9), we have that A1 and A3 are constants.

When m1 ≥ 2, without loss of generality, we assume that Da = Dp 	= Dn. From
(4.4),

0 = En(Da) = �n
aa(Da − Dn).

Thus, �n
aa = 0. On the other hand, by (4.6),

En(A1) = �n
aa(A1 − A3) = 0.

From Proposition 3.1, we have Ea(A1) = 0, 1 ≤ a ≤ m1 and Ep(A2) = 0, m1 + 1 ≤ p ≤
m1 + m2. By (3.5) and (3.6), we have

Ei(A1)
m2ξ3 − m3ξ2

= Ei(A2)
m3ξ1 − m1ξ3

= Ei(A3)
m1ξ2 − m2ξ1

. (4.7)

Thus, by (4.7), we have Ea(A3) = Ep(A3) = En(A3) = 0 and A3 is constant. By (3.9)
again, we know that A1 and A2 are constants.

If the number of the distinct para-Blaschke eigenvalues of D1, Dp and Dn is three,
when m1 = 1, by (4.4),

0 = E1(Dp) = �1
pp(Dp − D1), 0 = En(Dp) = �n

pp(Dp − Dn). (4.8)

Thus, �1
pp = �n

pp = 0. On the other hand, by (4.6),

E1(A2) = �1
pp(A2 − A1) = 0, En(A2) = �n

pp(A2 − A3) = 0.

From Proposition 3.1, we have Ep(A2) = 0, 2 ≤ p ≤ 1 + m2. Thus, A2 is constant. By
(3.9) again, we know that A1 and A3 are constants.

When m1 ≥ 2, by (4.4),

0 = En(Da) = �n
aa(Da − Dn).
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Therefore, �n
aa = 0. On the other hand, by (4.6),

En(A1) = �n
aa(A1 − A3) = 0.

From Proposition 3.1, we have Ea(A1) = 0, 1 ≤ a ≤ m1 and Ep(A2) = 0, m1 + 1 ≤ p ≤
m1 + m2. From (4.7), we have Ea(A3) = Ep(A3) = En(A3) = 0 and A3 is constant. By
(3.9) again, we know that A1 and A2 are constants.

Since A1, A2 and A3 are constants and n ≥ 4, from Theorem 1.1, we see that
x is locally Möbius equivalent to CSS(p, q, r) for some constants p, q, r, p 	= q and
r 	= 1√

2
, or one of the hypersurfaces as indicated in Example 3.4 where k = 3 and

ỹ1 : M1 �→ S4(r) is one of Cartan’s non-minimal isoparametric hypersurfaces with
three principal curvatures satisfying λµi = 1

r2 for some i ∈ {1, 2, 3}. This completes the
proof of Theorem 1.2.

Proof of Theorem 1.4. Let B1, B2 and B3 be the three distinct Blaschke eigenvalues
with multiplicities m1, m2 and m3 and one of which is simple. We consider two cases:

(1) If all of the para-Blaschkes eigenvalues of x are equal, by Theorem 4.1, we see
that Theorem 1.4 is true.

(2) If not all of the para-Blaschkes eigenvalues of x are equal, by Proposition 3.2,
we know that B1, B2 and B3 are constants, or Bap,n = 0 for any a and p. In the latter
case, without loss of generality, we assume that m2 ≥ 2.

(i) If m1 = 1, since B1p,n = 0 for any p, putting p = q in (3.40), we have υ ′
p = 0. By

(3.41),

Dp + Dn + B2B3 − λ(B2 + B3) (4.9)

= − E1(B2)E1(B3)
(B1 − B2)(B1 − B3)

− [En(B2) − En(B3)]En(B2)
(B2 − B3)2

+ En(En(B2))
B2 − B3

− En(B2)
(B2 − B3)2

.

Thus, we know that for any p, all Dp are equal and x has at most three distinct
para-Blaschke eigenvalues D1, Dp and Dn with multiplicities 1, m2 and 1.

(ii) If m1 ≥ 2, putting p = q in (3.38), we have �′
a,q = 0. By (3.39), we have

Da + Dp + B1B2 − λ(B1 + B2) = − En(B1)En(B2)
(B1 − B3)(B2 − B3)

. (4.10)

By (4.10), we easily see that x has at most three distinct para-Blaschke eigenvalues
Da, Dp and Dn with multiplicities m1, m2 and 1.

If the number of the distinct para-Blaschke eigenvalues of Da, Dp and Dn is two,
when m1 = 1, without loss of generality, we assume that Da = Dn 	= Dp. By (4.5), we
have �1

pp = �n
pp = 0. On the other hand, by (2.17) and Bii,j = Bij,i, we have

Ej(Bi) = �j
ii(Bi − Bj), i 	= j. (4.11)

Thus,

E1(B2) = �1
pp(B2 − B1) = 0, En(B2) = �n

pp(B2 − B3) = 0.

From Proposition 3.1 and (3.37), by the similar proof of Theorem 1.2, we know that
B1, B2 and B3 are constants.
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When m1 ≥ 2, without loss of generality, we assume that Da = Dp 	= Dn. From
(4.4), we have �n

aa = 0. On the other hand, by (4.11),

En(B1) = �n
aa(B1 − B3) = 0.

From Proposition 3.1, we have Ea(B1) = 0, 1 ≤ a ≤ m1 and Ep(B2) = 0, m1 + 1 ≤ p ≤
m1 + m2. Combining with (3.37) and by the similar proof of Theorem 1.2, we know
that B1, B2 and B3 are constants.

If the number of the distinct para-Blaschke eigenvalues of D1, Dp and Dn is three,
when m1 = 1, by (4.8), we have �1

pp = �n
pp = 0. On the other hand, by (4.11),

E1(B2) = �1
pp(B2 − B1) = 0, En(B2) = �n

pp(B2 − B3) = 0.

From Proposition 3.1 and (3.37), by the similar proof of Theorem 1.2, we know that
B1, B2 and B3 are constants.

When m1 ≥ 2, by (4.4), �n
aa = 0. On the other hand, by (4.11),

En(B1) = �n
aa(B1 − B3) = 0.

From Proposition 3.1, we have Ea(B1) = 0, 1 ≤ a ≤ m1 and Ep(B2) = 0, m1 + 1 ≤ p ≤
m1 + m2. Combining with (3.37), we know that B1, B2 and B3 are constants.

Since B1, B2 and B3 are constants, from Theorem 1.3, we see that Theorem 1.4 is
true. This completes the proof of Theorem 1.4.
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