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Abstract. Let A=p Z A;6; ® 0; and B =p Z - Bjif; ® 6; be the Blaschke
tensor and the Mobius second fundamental form of the i 1mmer51on x.LetD=A+ B
be the para-Blaschke tensor of x, where A is a constant. If x : M" > S"*(1) is an
n-dimensional para-Blaschke isoparametric hypersurface in a unit sphere S"+!(1) and
x has three distinct Blaschke eigenvalues one of which is simple or has three distinct
Mobius principal curvatures one of which is simple, we obtain the full classification

theorems of the hypersurface.
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1. Introduction. In Mobius differential geometry, Wang [18] studied invariants
of hypersurfaces in a unit sphere S”+!(1) under the Mébius transformation group. Let
X : M — S""!(1) be an n-dimensional immersed hypersurface without umbilical points
in $"*1(1). We choose a local orthonormal basis {¢;} for the induced metric I = dx - dx
with dual basis {6;}. Let I = Z - h;0; ® 0; be the second fundamental form and H =

13" hi; the mean curvature of the immersion x. By putting p* = J24{3", b — nH?},
Wang [18] defined the Mobius metric , the Mébius form, the Blaschke tensor and the
Moblus second fundamental form of the immersion x by g = p2dx - dx, ® = p > Cibi,

A=p Z”A 0; ®06;and B = p Z : Bjj6; @ 0;, respectively, where

Ci=—p {Hi+ ) (hj — Hépeflogp) ¢ , (1.1)
Aj = —p~*{Hess;(log p) — ei(log p)ej(log p) — Hhy} (1.2)
1
- Ep‘z(IV(log P> =1+ H*)3;,
By = p~\(h; — HS;), (1.3)
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and Hess;, V are the Hessian matrix and the gradient with respect to the induced
metric dx - dx. It was proved that g, ®, A and B are the Mobius invariants (see [18]).
We should notice that it is one of the important aims to characterize submanifolds in
terms of MObius invariants. Concerning this topic, there are many important results,
one can see [1, 2 and 5-20]. Recently, by making use of the two important Mobius
invariants, the Blaschke tensor A and the Mébius second fundamental form B of the
immersion x, Cheng, Li and Qi [6] and Zhong and Sun [19] defined a symmetric
(0, 2) tensor D = A + AB which is so-called the para-Blaschke tensor of x, where A is
a constant. An eigenvalue of the Blaschke tensor is called a Blaschke eigenvalue of x,
an eigenvalue of the Mobius second fundamental form is called @ Mébius principal
curvature of x and an eigenvalue of the para-Blaschke tensor is called a para-Blaschke
eigenvalue of x. It is reasonable to introduce the definition: A hypersurface x : M +—>
S"+1(1) without umbilical points is called a Blaschke isoparametric hypersurface, or
a Mébius isoparametric hypersurface, or a para-Blaschke isoparametric hypersurface,
if the Mobius form ® = 0 and the Blaschke eigenvalues, or the Mdbius principal
curvatures, or the para-Blaschke eigenvalues of the immersion x are constants. In [11],
Li and Wang investigated and completely classified hypersurfaces x : M > S"+1(1)
without umbilical points and with vanishing Mébius form @ in $"*+!(1), which satisfy
A+ 2B+ ug = 0. Li and Zhang [12] generalized this topic to general submanifolds.
It should be noted that the condition A 4+ AB + ug = 0 implies that the para-Blaschke
eigenvalues of x are all equal. If x has two distinct constant para-Blaschke eigenvalues,
the classification theorem was obtained by Zhong and Sun [19].
Let H"*! be an (n + 1)-dimensional hyperbolic space defined by

H™ = {(yo, y1) e R" x R"™ | =35+ p1 - 31 = —1}.

Leto : R™! > §™(1)\{(—1,0)} and 7 : H"*' > $""!(1) be defined by

1—|u®> 2u
(MRS ) e R 1.4
7 <1+|u|2 1+|u|2) ‘e (9
1
f()}()’yl) = (J}_O’ jj_(l)> 5 (,y(]vyl) [S Hn+17 (1'5)

respectively, where STI(I) is the open hemisphere in S"*!(1) whose first coordinate is
positive.

If » =0, we notice that para-Blaschke isoparametric hypersurfaces reduce to
Blaschke isoparametric hypersurfaces. Li and Peng [13] obtained the following:

THEOREM 1.1. Let x be an n-dimensional immersed Blaschke isoparametric
hypersurface in a unit sphere S"*\(1) with three distinct Blaschke eigenvalues one of
which is simple. Then, X is locally Mébius equivalent to

(1) CSS(p, q, r) for some constants p, q,r, p # q and r % \/% or

(2) Cartan’s non-minimal isoparametric hypersurfaces in S* with three principal
curvatures, that is, the non-minimal tube of constant radius over a standard
Veronese minimal immersion of S*(~/3) into S*, or

(3) one of the hypersurfaces as indicated in Example 3.4 where k = 3 and y, :
M+ S*(r) is one of Cartan’s non-minimal isoparametric hypersurfaces with
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three principal curvatures pi, u, and s satisfying ap; = )lz for some i €
{1,2,3}.

If & # 0, we consider the immersed para-Blaschke isoparametric hypersurfaces
in a unit sphere $"*!(1) with three distinct Blaschke eigenvalues. We may obtain the
following:

THEOREM 1.2. Let x : M + S""'(1) be an n(n > 4)-dimensional immersed para-
Blaschke isoparametric hypersurface in a unit sphere S"*'(1) and D = A + AB, (A # 0),
be the para-Blaschke tensor of X. If X is of three distinct Blaschke eigenvalues one of
which is simple, then x is locally Mbius equivalent to:

(1) a hypersurface with constant mean curvature and constant scalar curvature in
S™1(1), or

(2) the image of o of a hypersurface with constant mean curvature and constant
scalar curvature in R"! or

(3) the image of t of a hypersurface with constant mean curvature and constant
scalar curvature in H'™', or

(4) CSS(p, q, 1) for some constants p, q, 1, p # q and r # «/LZ or

(5) one of the hypersurfaces as indicated in Example 3.4 where k = 3 and 7, :
M, + S*(r) is one of Cartan’s non-minimal isoparametric hypersurfaces with
three principal curvatures satisfying Ap; = rl for someie{l1,2,3}.

For Mobius isoparametric hypersurface with three distinct Mobius principal
curvatures in a unit sphere S"*!(1), Hu and co-authors [8] and [9] obtained the
following:

THEOREM 1.3. Let x : M +— S"*\(1) be an n(n > 4)-dimensional immersed Mobius
isoparametric hypersurface with three distinct Mobius principal curvatures one of which
is simple. Then X is locally Mébius equivalent to

(1) CSS(p, q, r) for some constants p, q, r, or
(2) an open part of the image of o of the cone X : N> x RT — R’ defined by
X(p, 1) = tg, where t € RY and ¢ : N> > S* < R’ is minimal isoparametric
immersion in S* with three principal curvatures, or
(3) one of the hypersurfaces as indicated in Example 3.4 where k =3,
6n

n—1°

hypersurfaces with vanishing scalar curvature and three principal curvatures

[n—1
of values £,/ %=, 0.

r= r=0 and 3 : My — S*r) is Cartan’s minimal isoparametric

If x is an immersed para-Blaschke isoparametric hypersurface in a unit sphere
S"*1(1) with three distinct Mobius principal curvatures one of which is simple, we
obtain the following:

THEOREM 1.4. Let x : M + S""'(1) be an n(n > 4)-dimensional immersed para-
Blaschke isoparametric hypersurface in a unit sphere S"™(1). If X is of three distinct
Mébius principal curvatures one of which is simple, then X is locally Mobius equivalent
to:

(1) a hypersurface with constant mean curvature and constant scalar curvature in
S"1(1), or
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(2) the image of o of a hypersurface with constant mean curvature and constant
scalar curvature in R", or

(3) the image of t of a hypersurface with constant mean curvature and constant
scalar curvature in H'*', or

(4) CSS(p, q,r) for some constants p, q and r, or

(5) an open part of the image of o of the cone X : N3 x R* > R defined by
X(p, 1) = tg, where t € RY and ¢ : N> — S* < R’ is minimal isoparametric
immersion in S* with three principal curvatures, or

(6) one of the hypersurfaces as indicated in Example 3.4 where k =3,

6n
n—1°

hypersurfaces with vanishing scalar curvature and three principal curvatures

[n—1
of values £,/ 5=, 0.

r= A=0 and 3 : My — S*r) is Cartan’s minimal isoparametric

2. Mobius invariants and fundamental formulas. In this section, we review the
Mobius invariants and fundamental formulas on Mobius geometry of hypersurfaces
in $"*1(1), for more details, see Wang [18].

Let x: M +— S"!(1) be an n-dimensional hypersurface of S"+!(1) without
umbilical points. We use the following range of indices throughout this paper:

1 <ijk<n

For an immersed hypersurface x : M — S"t!(1) — R"*? of $"*!(1) without
umbilical points, we define its Mobius position vector Y : M +— L' by Y = p(1, x),
where p* = 2 {3", h; —nH?}. Let A be the Laplace-Beltrami operator of Mobius
metric g = p?dx - dx. We define N = —%AY - ﬁ(A Y, AY)Y, then the structure
equations on M with respect to the Mobius metric g can be written as follows:

dy =3, 2.1)
i
dN =) ¥iY;+ @Eu, 22)
i
dYi=—y;Y —oN + Y 0;¥; + 01 By, (2.3)
J
dErHrl = _¢Y - Z Win41 Y, (24)
i

where {;, w;, w11, ¢} are 1-forms on M with

By exterior differentiation of these equations, we get

Zw[ AP =0, Zwin-H ANw; =0, (2.6)

dw =Y wj A w;, (2.7)
J
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dy; = Zwy‘ AYj+ Qing1 AP,
J
dp = — Zwm—l A Vi,
i
dwj =Y o Ak — Oins1 A Ojupt — 0 AP — Vi A @y,
k

Aoy =Y 0j A Oyt — 0i A $,
J

where

Y = ZA;,‘CQ,‘, Aj = Aji, wpg1 = ZB;'/CQ/, By =B, ¢= Z Ciw;,
- I -

J

583

2.8)

2.9)

(2.10)

@.11)

(2.12)

and Ay, By and C; are locally defined functions and satisfy (1.1), (1.2) and (1.3). We

have
1
dwj = Z Wik N Ol = 5 Z Rjriwi AN w1, Rji = —Rjik,
3 ]

n—1 1
B; =0, B=—— trA=—(1+n*R).

(2.13)

(2.14)

Let C;;, Ajx and By be the covariant derivative of C;, 4; and B;. We define them by

Y Ciywj=dCi+ ) Gy,
j j
Z Ajrowr = dAy + Z Ajwig + ZAlg'a)ki»
k k k

> Bjkwx = dB;+ Y Bywy+ Y Byoy.
k k k

From the structure equations (2.1)—(2.4), we infer
Aji — Aixj = B C; — By Cy,
Cij— G =Y _(Bidiy — BjAs).
k

Bjji — Birj = 6;Ci — 8 G,

Riji) = B Bjy — ByBj, + 8y Aj + 8 Aige — SuAjic — S Air,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

where Rji; denotes the curvature tensor with respect to the Mobius metric g on M
and n(n — )R = 3, ; Ry; is the Mobius scalar curvature of the immersion x : M —

Sn+l(1).
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Since the Mobius form ® = ), Ciw;E,11 = 0, by (2.18)—~(2.20), we have for all
indices 7, j and k that

Ajx = Aikj, Bjx = Birjs Z B Ay = Z By Ay (2.22)
k k

Denote by D = Zi.j Djw; ® w; the (0, 2) para-Blaschke tensor, then
Dj=A;+ABy, 1<ij<n, (2.23)

where X is a constant. The covariant derivative of Dj is defined by
ZDjj_kwk = dDy‘ + Z Dikwkj + Z D/g‘a)ki- (2.24)
k k k

From (2.23), we have
Dy = Aji + ABjk, Djr— Dij = Aji — Aij + MBjx — Birj)- (2.25)
From (2.22), we have for all indices i, j and & that

Dj = Dij. (2.26)

3. Propositions and typical examples. Throughout this section, we shall make the
following convention on the ranges of indices:

l<ab<m, m+1=<p,q=<m+m,
m+m+1<apf<m+m+m=n 1<ijk<n.
‘We may prove the following:

PROPOSITION 3.1. Let x: M + S""'(1) be an n-dimensional hypersurface with
vanishing Mébius form in a unit sphere S"7(1).

(1) If the multiplicity of a Blaschke eigenvalue is constant and greater than 1, then
this Blaschke eigenvalue is constant along its leaf.

(2) If the multiplicity of a Mébius principal curvature is constant and greater than
1, then this Mébius principal curvature is constant along its leaf-

Proof. (1) Let A; be the Blaschke eigenvalues of x with constant multiplicities. We
choose a local orthonormal frame {E, ..., E,} such that E; is a unit principal vector
with respect to 4;. From (2.16), we have

Ay = Ex(4)8; + T (A; — 4)), (3.1)
where F{k is the Levi-Civita connection for the Mobius metric g given by

a)!~/~ = Z F?k(x)k, F{k = —Fjlk (32)
k

From (2.22), we know that 4;;; = A4j;;. Thus, from (3.1), we get

E{(A;) = Ti(A; — A4;), for i#]. (3.3)
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Without loss of generality, we may assume that A is the Blaschke eigenvalue of x with
constant multiplicity m; and m; > 2, that is, for 1 < a < mj, we have A, = A;. From
(3.3), we have

E(A4) =T{{(41 — A4,) =0, for a#1,
and
E(4) = E(4) = T} (As — 4) =0, for a# 1.
Thus,
E,(A4,) =0, forany a.

This implies that A is constant along its leaf.
(2) Since the Mobius second fundamental form is also Codazzi tensor, by the same
method, we see that (2) is true. We complete the proof of Proposition 3.1.

PROPOSITION 3.2. Let X : M +— S"1(1) be an n(n > 4)-dimensional immersed para-
Blaschke isoparametric hypersurface in a unit sphere S"*'(1) and D = A + AB be the
para-Blaschke tensor of X.

(1) If x has three distinct Blaschke eigenvalues Ay, A> and Az one of which is
simple and A # 0, then either A1, Ay and A3 are constants or Agy, =0 for
every a, p.

(2) If x has three distinct Mébius principal curvatures By, By and B3 one of which
is simple, then either By, By and Bz are constants or By, , = 0 for every a, p.

Proof. (1) Let A, Band D denote the n x n-symmetric matrices (A4;), (B;) and (Dj),
respectively, where 4, B; and Dj are defined by (1.2), (1.3) and (2.23). From (2.22)
and (2.23), we know that BA = AB, DA = AD and BD = DB. We may choose a local
orthonormal basis {E1, Es, ..., E,} such that 4; = 4;8;, B; = Bié; and Dy = D;$y,
where A;, B; and D; are the Blaschke eigenvalues, the M6bius principal curvatures and
the para-Blaschke eigenvalues of the immersion x.

From (2.13) and (3.2), the curvature tensor of X may be given by (see [14])

Rf/kl ZEZ(F{/() - Ek(F{l) + Z F{:mF% - Z F{mrz} + Z F;ZF{nl - Z F;}lr{nk' (3.4)
m m m m

Since x has three distinct Blaschke eigenvalues 4;, A, and A3 one of which is
simple and n > 4, without loss of generality, we may assume that m3 = 1, mymy, > 2
and mp > 2.

From (2.14) and (2.23), we have

mi Ay +myAr, + m3A; = trD, 3.5)

my A2+ my A3 + myA —2 (Z Da> A -2 (Z DP> A (3.6)
a P
n—1, 2
—2(Y Do) 45 = — —ZDi.
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Since we assume that Dy, D», ..., D, are constants, we get
midAy +moadAy +m3dA; =0, 3.7
&1dA; +&dAr + 5dA3 =0, (3.9)

where & =mAy — ), Dy, & =mpAdr — Zp D, and & = m3A3 — ), D,. Since A #
0, we know that all of &, & and &; are not zero. We consider two cases:

If at least one of my&; — msé&y, mséy — m&s and m & — mp&) is zero, from (3.7)
and (3.8), we casily know that 4, 4, and 43 are constants.

If all of my&3 — ms&y, msé — m&s and m & — my&; are not zero, from (3.7) and
(3.8), we casily see that

dA, _ dA, _ dA; (3.9)
Mok —msgy  omzEl —mi& g — oy .
From Proposition 3.1 and (3.9), we have
Ey(A2) = Ey(A}) = Ey(A3) =0, (3.10)
and from (3.1), we have
=Ty =0a#b, T, =0,p#q, Th =T, Ti=Th, (3.11)
A A A
o= B pa o P ope T POE 3.12
@ A=Ay T Az—Ar T Ay — Az (3-12)
(1) If m; > 2, from Proposition 3.1 and (3.9), we have
E (A1) = Ei(A2) = E/(43) = 0. (3.13)
From (3.1), (3.3), (3.10) and (3.13), we have
r =r, =0 T, =T, =0, (3.14)
En(Al) En(AZ)
rr = , I = . 3.15
“T A4 T G2
From (3.12), we have
A Ap, Ap Apg.n
rr o= _Aen e pr_ o opno_ _204n  pno L 3.16
ML — Ay T Ay — Ay P A — Ay TP 4, — A, (3.16)

Thus, from (3.4), (3.11) and (3.14)—(3.16), we have

Rppg =E,(T0) = Ey(T%,) + D U000 = 3 Thuli + D T, = 3 Tagl,
m m m m
(3.17)

=r? T’ —T

p TN npp _phr?
an” gb anrbq+rabrnq Lyl

aq” nb
_Aap,nAbq,n + Aaq,nAbp,n - En(Al)En(AZ)(SabSpq

(A1 — A3)(A2 — A3)
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On the other hand, from (2.21), we have
Rappg = (BuBy + Ay + Ap)3us8py = (BuBy + Ay + A2)8u58,. (3.18)
By (3.17) and (3.18), we have

Aap,nAbq,n + Aaq,nAbp,n
={(41 — A3)(A2 — A3)(B.B, + A1 + A2) + E,(41)E,(A2)}a8pq-

Putting
Qap = (A1 — A3) (A2 — A3)(B,By + A1 + A2) + E,(41)Ey(4>), (3.19)
we get
AgpnAvgn + AagnAipn = 0apSabSpq-
If a = b, from B, = 1(D, — A>), we have
2AgpnAagn = Qappg: (3.20)

and
B, B,
Qup = (A1 — A3)(A; — A3) (7011 + A+ (1 - T) Az) + E,(A1)Eq(A42). (3.21)

If p = g, from B, = {(D, — A1), we have
2Aap,nAbp,n - Qa,p‘sabv (322)

and
B, B,
Oup = (1 = Az = A3) (2 Dy + Ao+ (1= ) Ay ) + E(ADE,(42). (3.23)

Since m; > 2 and my > 2, we may consider two cases:

If at least one of B, and B, is zero, for example B, = 0, from (3.21), we know
that g, is irrelevant to p. Assume that exists one po such that 4, , # 0 for any
a, 1 <a <m;. By (3.20), we have 4, , = 0 for p(p # po). By (3.20) again, if p = ¢,
then 47, , = %2 for any p. Since o, is irrelevant to p, we have 47, = G = G =
Agp’n = 0 for po, p(p # po). Thus, 4, , = 0, this is a contradiction. Therefore, we have
Agp.n =0 for any p and a. If, for example B, = 0, from (3.22), (3.23) and by the same
assertion, we have 4,4, , = 0 for any a and p.

If B, # 0 and B, # 0, from (3.21) and (3.23), we know that g, , depends on q, p.
If Dy=D,=---=D,, from B, = }(D, — 4;) and B, = }(D, — A>), we know that
for any a, all B, are equal and for any p, all B, are equal. From (3.21) and (3.23), we
see that for any a and p, all g, , are equal. By the same proof as above, we know that
Agp.n =0 for any a and p.

If at least two of Dy, D, ..., D, are not equal, since nm; > 2 and m; > 2, we may
prove that there exists at most one p such that g, , # 0 for any a, 1 < a < m; and there
exists at most one @ such that g, , # 0 for any p, m; +1 < p < m; + mo.
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In fact, assume that exists more than one p, for example py, p» (p1 # p2), such that

Qap # 0, Qap, # 0. By (3.20), we have A2, = %2 for any p. Thus, 42, , = %41 50,

Agpz,n = Q“% # 0. By (3.20) again, we see that A, ,44,,» = 0, this is a contradiction.
Thus, we know that there exists at most one p such that g, , # O foranya, 1 < a < m;.
By the same proof as above, we also know that there exists at most one @ such that
Qup # 0forany p, mi +1 <p < m 4+ my.

If for all p, 0sp =0, 1 < a < my, by (3.20), we have 4, , = 0 for any p and a.

If there exists one py such that g, ,, # 0, 0up = 0, (p # po), in this case, we must
have that there exists one ao such that g4, # 0, 04, =0, (a # ap). In fact, if for all
a, 0ap =0, m; + 1 < p < my + my, this is in contradiction with g, ,, # 0. Thus, for
1 < a < my, from (3.23), we have

Bp Bp _ En(Al)En(AZ)
TDa+A2+<1—T>A1— T rn AT (3.24)

Since B, # 0, by (3.24), we know that D, = D, for any a,b, 1 <a, b <m,. Since
B, = 1(D, — A,), we easily see that B, = B.

By the same assertion as above, from (3.21), we have D, = D, and B, = B, for any
p,q, mi + 1 <p,qg <m +my. Thus, from (3.21) and (3.23), we see that g, ,, = Qup-
This is in contradiction with the assumption that g, p, # 0, 0up = 0, (p # po). Thus,
the case that there exists one pg such that g, ,, # 0, 04, = 0, (p # po) does not occur.

(i1) If m; = 1, from (3.3) and (3.11), we have

ry,=Tn, =0 T/ =T =0, (3.25)
o= By Eild)
T Ay — Ay P Ay — Ay
E, (A1) o En(Ad)
Ay — Ay P Ay — A3

From (3.4), (3.11), (3.12), (3.25) and (3.26), by the similar calculation as in (i), we have

(3.26)

n
1

1 =

2A1p,nAlq,n = Upapq» (327)
for any p and ¢, where
Bn B}l
vp= (41 — A2)(A4y —Az){TDerAs + (1 - 7) As (3.28)
Ei(42)E (43) [En(A2) — En(A3)1Ex(42)  En(En(42)) E,(4>) }
(A1 — A2)(A4y — 43) (Ay — A3)? Ay — A (A — A3 [

Since m; = 1 and m, > 2, we may consider two cases:

If B, = 0, from (3.28), we know that v, is irrelevant to p. By the same proof as in
(i), we see that 4y, , = 0 for any p.

If B, # 0, from (3.28), we know that v, depends on p. If D1 =Dy = --- = D,,
from (3.28), we see that for any p, all v, are equal. By the same proof as in (i), we see
that 4, ,, = 0 for any p.

If at least two of Dy, D, ..., D, are not equal, since m, > 2, by the same proof as
in (i), we easily know that there exists at most one p such that v, # 0.

If for any p, v, = 0, by (3.27), we have 4y, , = 0.

https://doi.org/10.1017/5S001708951200016X Published online by Cambridge University Press


https://doi.org/10.1017/S001708951200016X

PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES 589

If there is py, such that vy, # 0 and v, = 0, for other p(p # po), we have
B,
Upy = Upy — Up = (Al - AZ)(AI - AS)T(DP() - Dp) (329)

On the other hand, since m; = 1, m3 = 1 and 4;;; is symmetric for all indices 7, j and
k, interchanging 1 and » in the above equations, we also have

2 A1 Ang1 = ©pSog, (3.30)
where

a)p=(A3—A2)(A3—A1){%Dp+A1 + <1 - %) A> (3.31)

E,(A2)Eq(A1) [Ei(42) — E\(AD]EW(A2)  EW(Ei(42)) Ei(A43) }

(A3 — A2)(43 — A1) (Ay — Ay)? Ar — Ay (A — A1)

If By = 0, from (3.31), we know that w), is irrelevant to p. By the same assertion as
above, we know that 4, , = 0 for any p.

If By # 0, from (3.31), we know that w, depends on p. If D1 = Dy = --- = D,,
from (3.31), we see that for any p, all w, are equal. By the same assertion as above, we
see that 41, , = 0 for any p.

If at least two of Dy, D, ..., D, are not equal, since m; > 2, by the same assertion
as above, we know that there exists at most one p such that w, # 0.

If for any p, w, = 0, by (3.30), we have 4,,, = 0. Otherwise, we may prove that
wp, 7 0 for the above py in (3.29). In fact, by (3.27), we have A%m,n = % # 0. On the
other hand, by (3.30), we have Al%ﬁo.,l = % Since A1py,n = Ay, 1, Wehave w,, = vy, # 0.
By (3.31), we also have

B
Up = 0y = 0p — 0y = (A3 = A)(As = A)=(Dp = Dy (332)

Thus, from (3.29) and (3.32), we have
B, B
(41— A) {(A1 — )"+ (s AZ)T‘} (Dp, = Dy) =0,

that is
{(41 — A2)(Dy, — A3) + (A3 — A2)(Dy — A1)} (D, — Dp) = 0.

If D,, = D,, by (3.29), we have v,, = v, this contradicts with v,; # 0, v, = 0, (p # po).
Therefore,

(A1 — A2)(D, — A3) + (A3 — A2)(D1 — 41) = 0. (3.33)
Thus,

(243 — A> — D,)dA; — (A3 + Ay — Dy — D1)dAs + (241 — A> — Dy)d A3 = 0.
(3.34)
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If there is a point such that at this point,

243 — Ay — D, = 0, (3.35-1)
A3+ A, — D, — Dy =0, (3.35-2)
24, — A> — Dy = 0. (3.35-3)

From (3.35-1)—(3.35-3), we have A3 — A, = A, — A; at this point. By (3.33), we have
Ay — A3 — Dy + D, =0, (3.36)

at this point. From (3.35-1)—(3.35-3) and (3.36), we see that A; = A, = A3 at this point.
This contradicts with the assumption of (1) in Proposition 3.2. Thus, the coefficients
of (3.34) are not simultaneously zero at any point. From (3.9) and (3.34), we easily
know that d4; = dA, = dA; = 0, that is 4;, A, and A3 are constants.

(2) Since x has three distinct Mobius principal curvatures B, B, and B; one of
which is simple and n > 4, without loss of generality, we may assume that m; = 1,
mimy > 2 and my > 2.

From (2.14), we have

dB dB dB
mi 1 _ my 2 _ ms 3 . (337)
By — B> B —B; B, — B

(1) If m; > 2, from Proposition 3.1 and (3.37), by the same method in the proof of
(1), we will obtain that

2Blll’,nBaq,n = Q;,papqa (3.38)
where

0,, = (B1 — B3)(By — B3) (Dy + D, + Bi1By — M(B1 + B2)) + E(B1)E.(B2). (3.39)

Since m; > 2and my > 2,if Dy = D, = --- = D, from (3.39), we see that for any
aand p, all o, , are equal. By the same proof as in (1), we know that B, , = 0 for any
a and p.

If at least two of Dy, D, ..., D, are not equal, by the same method in the proof
of (1), we may obtain that there exists at most one p such that o , # 0 for any a,
1 <a<m.

If for all p, Q;YP =0,1 < a < m, by (3.39), we easily see that B, , = 0 for any a
and p. Otherwise, by the same method in the proof of (1), we also conclude.

(i1) If m; = 1, by the same method in the proof of (1), we have

2Blp,nqu,n = U;,(Spqa (340)

for any p and ¢, where

v,=(B1 — B2)(B1 — B3){ D) + Dy + B2 B3 — AM(B> + B3)

4 Er(B)EN(By) [En(B2) — En(B3)]En(By)  En(En(By)) | En(B2) }

(B1 — By)(B1 — B3) (B> — B3)? B, — B3 (B, — B3)?
(3.41)
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Since m; = land my > 2,if Dy = Dy = --- = D,, from (3.41), we see that for any
p. all v, are equal. By the same proof as in (1), we know that By, , = 0 for any p.

If at least two of Dy, D,, ..., D, are not equal, we also see that there exists at most
one p such that v, # 0.

If for any p, v[’, = 0, by (3.41), we have B, , = 0. Otherwise, by the same method
in the proof of (1), we see that By, B, and Bj are constants. This completes the proof
of Proposition 3.2.

ExampLE 3.3. [7, 8]. For any natural number p,q, p+¢qg <n and real
number r € (0, 1), consider the immersed hypersurface u : S”(r) x S9(+/1 —r?) x R* x
Rn—p—q—l > Rn+l

U= (Zu’, tu”, u///

W e SP(r)c R, ' e Sq(M) C R, " e R

then X = o ou : SP(r) x SU+/1 —1?) x Rt x R"7=4~1 » $§"*t1(1) is a hypersurface in
S"*1(1) without umbilical points and with vanishing Mdbius form, it is denoted by
CSS(p, q,r). From [7] and [8], by a direct calculation, we know that CSS(p, ¢, r) has
three distinct Mobius principal curvatures. In particular, if p # g and r # JLE then

CSS(p, q, r) has exactly three distinct Blaschke eigenvalues.

ExAMPLE 3.4. [7, 19]. Let A € R. For any integers n and k satisfying n > 3 and
2<k<n—1,let § : My — S*(r) c R**? be an immersed hypersurface without
umbilical points such that the scalar curvature S| and the mean curvature H; of it
satisfy "

Sy = {nk(k — 1) — (n — Dr*}/n” + n(n — DA%, H, = —

Lety = (o, j2) : H"*(—1/1%) > R be the canonical embedding and M" = M; x
H"%(=1/r?), ¥ = (Jo, J1, J2). We have that ¥ : M" > R}™3 isanimmersion, satisfying
(¥, ¥)1 = 0 and inducing a Riemannian metric g = (d Y, dY), = —dj} + di? + dj3.
Obviously, (M", g) = (M, dj/%) x (H*%(=1/r%), (dp, d),) is a Riemannian manifold.
Define 561 = )71/)7(), )~62 = )72/)7() and X = (561, 562), then |5-(|2 =1. Thus, X: M" = S"+1
defines an immersed hypersurface without umbilical points. From [7] and [19], we
know that the components of the Blaschke tensor, the Mobius second fundamental
form and the para-Blaschke tensor of X are

1 22

A~~=<—L—A—2>8-~ Bj =18

! 22 2)" g
D--:<—L+)\—2>6~ k+1<ij<n

! 22 2 )" =

A4; =0, B;=0, D=0,

l<i<kk+1<j<n orl<j<kk+1=<i=zn

Thus, if A = 0, X has exactly two distinct constant Blaschke eigenvalues.
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In addition, from [7], we know that X is Blaschke isoparametric with three Blaschke
eigenvalues and four Mobius principal curvatures if and only if the corresponding
hypersurface y; is a non-minimal Euclidean isoparametric with three distinct principal
curvatures iy, uy and w3 satisfying Au; = ri for some i€ {1, 2, 3}. From [3], we
know that such hypersurfaces j; do exist. If X has a simple Blaschke eigenvalue,
then k = 3.

EXAMPLE 3.5. [7, 19]. Let A € R. For any integers n and k satisfyingn > 3and 2 <
k<n—1,1lety= (o, ) : My~ H*'(~1/r?) C RI*? be an immersed hypersurface
without umbilical points such that the scalar curvature S| and the mean curvature H,
of it satisfy

Sy = —{nk(k — 1)+ (n — )r2}/m® +n(n— D32, Hy = —gx.

Let ¥, : 8" % () > R" %! be the canonical embedding and M" = M, x S"*(r),
Y =Go, j1.jn). Y : M" — R”+3 is an immersion satisfying (¥, ¥); = 0 and inducing
a Riemannian metric g = (dY dyy, = —dy} + dy; + dy3. Define X1 = y1/30, X2 =
/i, X = (51, %), X2 =1, X: M" — S"! is an immersed hypersurface without
umbilical points. From [7] and [19], we know that

1 A2
A_,'I'Z— ﬁ—i_? 3_,‘/'—)\./’1_[}', B,,:h,,—i—)u?l,,
12 .
Dg-=<—ﬁ+7 8, 1=i,j<k,
1 a2
1 A2 .
D= ﬁ—i_? 8j, k+1=<ij<n,
A;=0, B;=0, D; =0,
l<i<kk+1<j<n orl<j<kk+1=<i<n

Thus, if A = 0, X has exactly two distinct constant Blaschke eigenvalues.

In addition, from [7], we know that X is Blaschke isoparametric with three Blaschke
eigenvalues and four Mobius principal curvatures if and only if the corresponding
hypersurface j; is a non-minimal Euclidean isoparametric with three distinct principal
curvatures i, 4o and 3 satisfying Ap; = —rlz for some i € {1, 2, 3}. But, from [4], we
know that such a hypersurface y; does not exist, since if y; is isoparametric, then it has
at most two principal curvatures.

4. Proof of theorems. We firstly state an important result due to Li and
Wang [11]:

THEOREM 4.1. For an immersed hypersurface x : M + S"1(1) without umbilical
points and with vanishing Mébius form, if the para-Blaschke tensor D satisfies D = fg
for some function f on M, then f is constant and X is locally Mbius equivalent to one of
the following:
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(1) an immersed hypersurface x : M + S"*'(1) with constant scalar curvature
and constant mean curvature, or

(2) the image under o of an immersed hypersurface in R"t' with constant scalar
curvature and constant mean curvature, or

(3) the image under t of an immersed hypersurface in H'*' with constant scalar
curvature and constant mean curvature.

Proof of Theorem 1.2. Let A, A, and A3 be the three distinct Blaschke eigenvalues
with multiplicities m1;, m, and m3 and one of which is simple. We consider two cases:

(1) If all of the para-Blaschkes eigenvalues of x are equal, that is D = D, =
...=D,, by Theorem 4.1, we know that x is locally Mobius equivalent
to one of an immersed hypersurface x : M +— S"+!(1) with constant scalar
curvature and constant mean curvature, or the image under o of an immersed
hypersurface in R"t! with constant scalar curvature and constant mean
curvature, or the image under t of an immersed hypersurface in H"*! with
constant scalar curvature and constant mean curvature.

(2) If not all of the para-Blaschkes eigenvalues of x are equal, by Proposition
3.2, we know that 4;, 4> and A3 are constants, or 4,, , = 0 for any a and p.

We may prove that if 4, , =0 for any a and p, then 4, 4> and A3 are also
constants. If fact, without loss of generality, we assume that m, > 2.
(i) If m; = 1, since 41, ,, = 0 for any p, putting p = ¢ in (3.27), we have v, = 0. By

(3.28),
%D,,—i—Ari— (1 - %) A (4.1)
_ E)E(43)  [En(A2) — En(A3)|En(A2) | En(En(42))  En(42)
(A — A4y — A43) (A2 — A3)? Ay — A3 (A2 — A3

If B, = 0, we see that 43 = D,, is constant. By (3.9), we have that 4; and 4, are
constants.

If B, # 0, by (4.1), we know that for any p, all D, are equal. Thus, x has at most
three distinct para-Blaschke eigenvalues Dy, D, and D, with multiplicities 1, m, and 1.

(ii) If my > 2, putting p = ¢ in (3.20) and a = b in (3.22), we have g, , = 0. Thus,
for any a and p, by (3.21) and (3.23), we have

1 ﬂ)A _ E,(A1)E,(A2)
») (A1 — A3)(Ay — A3)’

%Dp + A+ ( 4.2)
Bp Bp _ En(Al)En(AZ)
TDa—i-Az—i- (1 - 7) A= A — Ay)(Ar — A3 4.3)

If at least one of B, and B, is zero, we easily see that 41, A> and A3 are constants.

If all of B, and B, are not zero, by (4.2) and (4.3), we easily see that for any a
and b, D, = D, and for any p and ¢, D, = D,. Thus, x has at most three distinct
para-Blaschke eigenvalues D,, D, and D, with multiplicities m, m, and 1.

Let D,,D, and D, be the three constant para-Blaschke eigenvalues with
multiplicities m;, m; and 1. We choose a local orthonormal basis {E, ..., E,} such
that E; is the unit para-Blaschke tensor of D;. By (2.24),

Dj = Ex(D))8; + T (D; — D)),
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where F{k is the Levi-Civita connection of g given by w; =), T’ kwk, .' = —F}k. By
(226), we have D,‘,‘J = D[/,i. Thus,

E(D;) = Ti(D; — D)), i#]. (4.4)

If the number of the distinct para-Blaschke eigenvalues of D,, D, and D, is two,
when m; = 1, without loss of generality, we assume that D, = D, # D,. By (4.4),

0= E\(D,) =T,,(D, = D), 0= Ey(Dy)=Tp(Dy— Dy). (4.5)
Thus, Fll,p = F;’p = 0. On the other hand, by (2.16) and A4;;; = Aj;;, we have
Ej(A4;) = T4, — A4)), i#], (4.6)

where {E}, ..., E,} a local orthonormal basis such that E; is the unit Blaschke tensor
of A;. Thus,

Ei(42) = T (As — A1) = 0, E,(42) = T},(42 — 43) = 0.

From Proposition 3.1, we have E,(4>) = 0,2 < p < 1 4+ m,. Thus, 4, is constant. By
(3.9), we have that 4; and A3 are constants.

When m; > 2, without loss of generality, we assume that D, = D, # D,. From
(4.4),

0= En(Da) = FZa(Da - Dn)-
Thus, ', = 0. On the other hand, by (4.6),
Ey(Ay) =T;,(4) — 43) = 0.

From Proposition 3.1, we have E,(4;) = 0,1 <a <mjand E,(4,) =0,m; +1 <p <
my 4+ my. By (3.5) and (3.6), we have

E(4) E(4)  Ef(43)
maky —msgy  omagp —mEs  mg —mg
Thus, by (4.7), we have E,(43) = E,(A3) = E,(43) = 0 and 43 is constant. By (3.9)
again, we know that 4, and A4, are constants.

If the number of the distinct para-Blaschke eigenvalues of D, D, and D, is three,
when m; = 1, by (4.4),

4.7)

0= E\(D,) =T,,(D, — D1), 0= E,(D,)=Tp(D,—D,). (4.8)
1 _ _
Thus, I'), = I'j, = 0. On the other hand, by (4.6),
Ef(A) =T, (4 — A1) =0, Ey(Ay) =T (4 — A3) = 0.
From Proposition 3.1, we have E,(4,) =0, 2 < p < 14 m,. Thus, 4, is constant. By

(3.9) again, we know that 4, and A3 are constants.
When m; > 2, by (4.4),

0= En(Da) = Fga(Da - Dn)
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Therefore, I'” . = 0. On the other hand, by (4.6),
Ey(A41) =Tg(41 — 43) = 0.

From Proposition 3.1, we have E,(4;) = 0,1 <a <mjand E,(4,) =0,m; +1 <p <
my + my. From (4.7), we have E,(43) = E,(43) = E,(43) = 0 and 43 is constant. By
(3.9) again, we know that 4, and A4, are constants.

Since Ay, A> and A; are constants and n > 4, from Theorem 1.1, we see that
x is locally Mobius equivalent to CSS(p, ¢, r) for some constants p, ¢, r, p # ¢ and
r# \lf, or one of the hypersurfaces as indicated in Example 3.4 where k = 3 and

711 My — S*(r) is one of Cartan’s non-minimal isoparametric hypersurfaces with
three principal curvatures satisfying Au; = rlz for somei € {1, 2, 3}. This completes the
proof of Theorem 1.2.

Proof of Theorem 1.4. Let B), B, and Bj be the three distinct Blaschke eigenvalues
with multiplicities m;, m, and m3 and one of which is simple. We consider two cases:

(1) If all of the para-Blaschkes eigenvalues of x are equal, by Theorem 4.1, we sce
that Theorem 1.4 is true.

(2) If not all of the para-Blaschkes eigenvalues of x are equal, by Proposition 3.2,
we know that B;, B, and Bj; are constants, or By, , = 0 for any a and p. In the latter
case, without loss of generality, we assume that n; > 2.

() If my = 1, since By, , = 0 for any p, putting p = ¢ in (3.40), we have v, = 0. By

(3.41),
Dy + Dy + BBy — A(By + Bs) (4.9)
_ EB)E(By)  [Eu(B) — En(B)IEx(By) | En(En(B)  Eu(B2)
© (Bi—By)(Bi — By) (B2 — B3)? By—B;  (B—By)*

Thus, we know that for any p, all D, are equal and x has at most three distinct
para-Blaschke eigenvalues Dy, D, and D, with multiplicities 1, 7, and 1.
(i) If my > 2, putting p = ¢ in (3.38), we have g, , = 0. By (3.39), we have

En(Bl )En(B2)
(Bi — B3)(B, — B3)’

D, + Dp + BB, —A(B; + By) = — (4.10)

By (4.10), we easily see that x has at most three distinct para-Blaschke eigenvalues
D,, D, and D, with multiplicities 1, m, and 1.

If the number of the distinct para-Blaschke eigenvalues of D,, D, and D, is two,
when m; = 1, without loss of generality, we assume that D, = D, # D,. By (4.5), we
have F;p = Fl’,’p = 0. On the other hand, by (2.17) and B;;; = Bj;;;, we have

E{(B) =T%(B; — By, i#]. (4.1
Thus,
E((B,)) =T,,(B, — B)) =0, E,(By) =T}, (B,—B3)=0.

From Proposition 3.1 and (3.37), by the similar proof of Theorem 1.2, we know that
Bi, B, and B; are constants.
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When my > 2, without loss of generality, we assume that D, = D, # D,. From
(4.4), we have I'}, = 0. On the other hand, by (4.11),

E,(By) =T";,(Bi — B3) = 0.

From Proposition 3.1, we have E,(B1) = 0,1 <a <mjand E,(B)) =0,m; +1 <p <
my + my. Combining with (3.37) and by the similar proof of Theorem 1.2, we know
that B, B, and B3 are constants.

If the number of the distinct para-Blaschke eigenvalues of Dy, D, and D, is three,
when m; = 1, by (4.8), we have F;p =TI, = 0. On the other hand, by (4.11),

Ei(B) =TL(By— B)) =0, E,(By)=Tl(By—B3)=0.

From Proposition 3.1 and (3.37), by the similar proof of Theorem 1.2, we know that
B, B, and Bj are constants.
When m; > 2, by (4.4), ', = 0. On the other hand, by (4.11),

E,(By)=T,,(B — B3)=0.

From Proposition 3.1, we have E,(B1) = 0,1 <a <mjand E,(B,) =0,m; +1 <p <
m; + my. Combining with (3.37), we know that B}, B, and Bj are constants.

Since By, B> and Bj; are constants, from Theorem 1.3, we see that Theorem 1.4 is
true. This completes the proof of Theorem 1.4.

ACKNOWLEDGEMENT. The authors would like to thank the referee for his many
valuable remarks and suggestions that really improve the paper.

REFERENCES

1. M. A. Akivis and V. V. Goldberg, Conformal differential geometry and its generalizations
(Wiley, New York 1996).

2. M. A. Akivis and V. V. Goldberg, A conformal differential invariant and the conformal
rigidity of hypersurfaces, Proc. Amer. Math. Soc. 125 (1997), 2415-2424.

3. E. Cartan, Sur des familles remarquables d’hypersurfaces isoparametriques dans les
espace spheriques, Math. Z. 45 (1939), 335-367.

4. E. Cartan, Familles de surfaces isoparam’etriques dans les espace a courbure constante,
Annali di Mat. 17 (1938), 177-191.

5. Q-M. Cheng and S. C. Shu, A Mobius characterization of submanifolds, J. Math. Soc.
Japan 58 (2006), 903-925.

6. Q-M. Cheng, X. X. Li and X. R. Qi, A classification of hypersurfaces with parallel
para-Blaschke tensor in S"*!, Int. J. Math. 21 (2010), 297-316.

7.Z. J. Hu and H. Li, Classification of hypersurfaces with parallel Moebius second
fundamental form in (n + 1)-dimensional sphere, Sci. China Ser. A Math. 47(3) (2004), 417—
430.

8. Z.J. Huand D. Y. Li, M0bius isoparametric hypersurfaces with three distinct principal
curvatures, Pacific Math. J. 232 (2007), 289-311.

9. Z.J. Hu, H. Li and C. P. Wang, Classification of Mdbius isoparametric hypersufaces in
S°, Monatsh. Math. 151 (2007), 202-222.

10. H. Li, H. L. Liu, C. P. Wang and G. S. Zhao, Mdbius isoparametric hypersurface in
S+ with two distinct principal curvatures, Acta Math. Sinica, English Ser. 18 (2002), 437-446.

11. H. Liand C. P. Wang, Mobius geometry of hypersurfaces with constant mean curvature
and constant scalar curvature, Manuscr. Math. 112 (2003), 1-13.

12. X. X. Li and F. Y. Zhang, A Mobius characterization of submanifolds in real space
forms with parallel mean curvature and constant scalar curvature, Manuscr. Math. 117 (2005),
135-152.

https://doi.org/10.1017/5S001708951200016X Published online by Cambridge University Press


https://doi.org/10.1017/S001708951200016X

PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES 597

13. X. X. Li and Y. J. Peng, Classification of Blaschke isoparametric hypersurfaces with
three distinct Blaschke eigenvalues, Results Math. 58 (2010), 145-172.

14. G. H. Li, Mébius hypersurfaces in S"*! with three distinct principal curvatures, J. Geom.
80 (2004), 154-165.

15. H. L. Liu, C. P. Wang and G. S. Zhao, Mobius isotropic submanifolds in S", Téhoku
Math. J. 53 (2001), 553-569.

16. S. C. Shu and S. Y. Liu, Submanifolds with Mobius flat normal bundle in S, Acta
Math. Sinica, Chin. Ser. 48 (2005), 1221-1232.

17. C. P. Wang, Mobius geometry for hypersurfaces in S*, Nagoya Math. J. 139 (1995),
1-20.

18. C. P. Wang, Mobius geometry of submanifolds in S”, Manuscr. Math. 96 (1998), 517—
534.

19. D. X. Zhong and H. A. Sun, The hypersurfaces in a unit sphere with constant para-
Blaschke eigenvalues, Acta Math. Sinica, Chin. Ser. 51 (2008), 579-592.

20. D. X. Zhong and H. A. Sun, The hypersurfaces in S* with constant para-Blaschke
eigenvalues, Adv. Math., Chin. Ser. 37 (2008), 657-669.

https://doi.org/10.1017/5S001708951200016X Published online by Cambridge University Press


https://doi.org/10.1017/S001708951200016X

