Bull. Austral. Math. Soc. Vol. 67 (2003) [39-50]

COBOUNDARY EQUATIONS OF EVENTUALLY EXPANDING TRANSFORMATIONS

Young-Ho Ahn

Let T be an eventually expansive transformation on the unit interval satisfying the Markov condition. Then T is an ergodic transformation on (X, \mathcal{B}, μ) where X = [0, 1), \mathcal{B} is the Borel σ -algebra on the unit interval and μ is the T invariant absolutely continuous measure. Let G be a finite subgroup of the circle group or the whole circle group and $\phi : X \to G$ be a measurable function with finite discontinuity points. We investigate ergodicity of skew product transformations T_{ϕ} on $X \times G$ by showing the solvability of the coboundary equation $\phi(x)g(Tx) = \lambda g(x), |\lambda| = 1$. Its relation with the uniform distribution mod M is also shown.

1. INTRODUCTION

Let (X, \mathcal{B}, μ) be a probability space and T be a measure preserving transformation on X. A transformation T on X is called ergodic if the constant function is the only T-invariant function and it is called weakly mixing if the constant function is the only eigenfunction with respect to T. A measure preserving transformation T is called exact if $\bigcap_{n=0}^{\infty} T^{-n}\mathcal{B}$ is the trivial σ -algebra consisting of empty set and whole set modulo measure zero sets. So exact transformation are as far from being invertible as possible. Recall that if a transformation is exact then that transformation is weakly mixing ([11]).

A piecewise differentiable transformation $T : [0,1) \rightarrow [0,1)$ is said to be eventually expansive if some iterate of T has its derivative bounded away from 1 in modulus, that is, $|(T^n)'| > 1$ everywhere for some n. Let $\{\Delta_i\}$ be a countable (or finite) partition of the unit interval [0,1) by subintervals. Suppose that an eventually expansive map T on the interval [0,1) satisfies

- (i) $T|_{\text{Int}\,\Delta_i}$ has a C^2 -extension to the closure of Δ_i ,
- (ii) $T|_{Int \Delta_i}$ is strictly monotone,
- (iii) $\overline{T(\Delta_i)} = [0, 1]$, and in the case that the number of subintervals in the partition is infinite
- (iv) $\sup_{i} \left\{ \sup_{x_1 \in \operatorname{Int} \Delta_i} \left| T''(x_1) \right| / \inf_{x_2 \in \operatorname{Int} \Delta_i} \left| T'(x_2) \right|^2 \right\} < \infty.$

Received 20th March, 2002

This work was supported by the Brain Korea 21 Project in 2001.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

Then it is well known that there exists a measure μ which is (a) *T*-invariant, (b) exact, and (c) finite and of the form $d\mu = \rho(x) dx$ where ρ is continuous and $1/C < \rho < C$ for some C > 0 ([1, 3, 4]).

The conditions of the above fact can be modified in several ways. One modification is called the Markov condition, when the number of sets in the partition is finite and $\overline{T(\Delta_i)}$ is a union of $\overline{\Delta_j}$. In this paper, let \mathbb{T} be the unit circle in the complex plane, $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$

In [9], Siboni consider the skew product transformation $T_{2,a,\omega}$ on the torus, $[0,1) \times [0,1)$ defined by

$$(x, y) \mapsto (2x, y + ax + \omega) \pmod{1}.$$

He proved a criterion for the ergodicity of the transformation by accurate estimation of correlations of characteristic functions.

Let T be an eventually expansive transformation on the unit interval satisfying the Markov conditions. Then T is an exact transformation on (X, \mathcal{B}, μ) where X = [0, 1), \mathcal{B} is Borel σ -algebra on the unit interval and μ is the T invariant absolutely continuous measure. Let G be a finite subgroup of the circle group or the whole circle group \mathbb{T} and $\phi : X \to G$ a measurable function with finite discontinuity points. In this paper we investigate ergodicity of skew product transformations T_{ϕ} on $X \times G$ by showing the solvability of the coboundary equation $\phi(x)g(Tx) = \lambda g(x), |\lambda| = 1$ and we give a simple proof and generalisations of Siboni's results, see Proposition 3.

Let $X = \{x : 0 \le x < 1\}$ be the compact group of real numbers modulo 1, and let $\theta \in X$ be irrational. The numbers $j\theta$, $j = 0, \pm 1, \ldots$, comprise a dense subgroup of X. For each interval $I \subset X$ and n > 0 define $S_n = S_n(\theta, I)$ to be the number of integers $j, 0 \le j \le n-1$, such that $j\theta \in I$. By the Kronecker-Weyl theorem $\lim_{n\to\infty} S_n/n = \mu(I)$, where μ is Lebesgue measure on X ([6]). Veech [10] was interested in the behaviour of the sequence $\{d_n\}$ of parities of $\{S_n\}$, that is, d_n is 0 or 1 as S_n is even or odd. He investigated the existence of the limit

$$\mu_{\theta}(I) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} d_n,$$

and he showed that a necessary and sufficient condition for $\mu_{\theta}(I)$ to exist for every interval $I \subset X$ is that θ has bounded partial quotients. He also showed that d_n is evenly distributed if the length of the interval is not an integral multiple of θ modulo 1.

In this paper, we are interested in the uniform distribution of the sequence $d_n \in \{0, ..., M-1\}$ defined by

$$d_n(x) \equiv \sum_{k=0}^{n-1} \mathbf{1}_E(T^k x) \pmod{M}$$

Coboundary equations

for eventually expanding transformations, particularly for generalised *L*-covering maps (which will be defined in section 3) and for Gauss transformation on the interval. Here $\mathbf{1}_{E}(x)$ denotes the indicator function of $E \subset X$.

To investigate the sequence $\{d_n(x)\}$, we consider the behaviour of the sequence $\exp((2\pi i/M)d_n(x))$ and check whether this sequence is uniformly distributed on the finite group G generated by $\exp((2\pi i)/M)$. Weyl's criterion for uniform distribution says that the sequence $\exp((2\pi i/M)d_n(x))$ is uniformly distributed if and only if $\lim_{N\to\infty}\sum_{n=1}^{N}/N\exp^k((2\pi i/M)d_n(x)) = 0$ for all $1 \le k \le M-1$ ([6]). We investigate this problem from the viewpoint of spectral theory. Let (X, μ) be a probability space and T be an ergodic measure preserving transformation on X, which is not necessarily invertible. Let $\phi(x)$ be a G-valued function defined by $\phi(x) = \exp((2\pi i/M)\mathbf{1}_E(x))$. Consider the skew product transformation T_{ϕ} on $X \times G$ defined by $T_{\phi}(x,g) = (Tx,\phi(x)g)$. Then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp^k \left(\frac{2\pi i}{M} d_n(x) \right) \cdot z^k = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} U_{T_{\phi}} f(x, z)$$

where $U_{T_{\phi}}$ is an isometry on $L^{2}(X \times G)$ induced by T_{ϕ} and $f(x, z) = z^{k}$. If T_{ϕ} is ergodic, we may apply Birkhoff's Ergodic Theorem to f to deduce that $\lim_{N \to \infty} 1/N \sum_{n=1}^{N} \exp^{k}((2\pi i/M)d_{n}(x)) = 0$, Recall that the dual group of G consists of the $\gamma_{k}(z) = z^{k}$ for $0 \leq k \leq M - 1$. Hence $L^{2}(X \times G) = \bigoplus_{k=0}^{M-1} L^{2}(X) \cdot z^{k}$ and each $L^{2}(X) \cdot z^{k}$ is an invariant subspace of $U_{T_{\phi}}$. If $f(x, z) \in L^{2}(X, G)$ then $f(x, z) = \sum_{k=0}^{M-1} f_{k}(x)z^{k}$, and

$$U_{T_{\phi}}f(x,z) = \sum_{k=0}^{M-1} \phi^k(x)f_k(Tx) \cdot z^k.$$

Hence, if f is an eigenfunction with eigenvalue λ we have $\phi^k(x)f_k(Tx) = \lambda f_k(x)$ for all k. Recall that a nonconstant function h(x) is called a *coboundary* if $h(x) = \overline{q(Tx)}q(x)$, |q(x)| = 1 almost everyway on X.

In [2], Ahn and Choe considered the case when T is an (1/L, ..., 1/L)-Bernoulli transformation and show and that if E is a cylinder set with the same missing initial digit and M = 2, then the sequence $\{d_n\}$ is evenly distributed. In this paper, we show that for all generalised *L*-covering maps and Gauss transformation on the unit interval, the sequence $\{d_n\}$ is uniformly distributed and that compact group extension by $\phi(x)$ is exact.

2. COBOUNDARY EQUATIONS

Let (Y, \mathcal{C}, μ) be a probability space, $f \in L^1(Y, \mathcal{C}, \mu)$ and $\mathcal{B} \subset \mathcal{C}$ a sub σ -algebra. We denote by $E(f \mid \mathcal{B})$ the conditional expectation of f with respect to \mathcal{B} . Recall that this

is a \mathcal{B} -measurable function g with the property that $\int_{\mathcal{B}} f d\mu = \int_{\mathcal{B}} g d\mu$ for all $\mathcal{B} \in \mathcal{B}$. Let S be a transformation defined on Y and \mathcal{B} be *exhaustive* that is, $S^{-1}\mathcal{B} \subset \mathcal{B}$ and $S^{n}\mathcal{B} \uparrow \mathcal{C}$ as $n \to +\infty$. The Martingale Convergence Theorem says that $E(f \mid S^{n}\mathcal{B})$ converges to f almost everywhere and in $L^{1}(Y, \mathcal{C}, \mu)$ as $n \to +\infty$ for $f \in L^{1}(Y, \mathcal{C}, \mu)$

LEMMA 1. Let S be a measure preserving transformation on (Y, C, μ) , and B be an exhaustive σ -algebra $\mathcal{B} \subset C$, and let $\phi: Y \to \mathbb{T}$ be a B-measurable map to the circle group \mathbb{T} . If $q: Y \to \mathbb{T}$ is a C-measurable solution to the equation $\phi \cdot q \circ S = q$, then q is B-measurable.

PROOF: We follow an idea of Parry in [8]. Applying the conditional expectation operator $E(\cdot | B)$ to the equation

$$(*) \qquad \qquad \phi \cdot q \circ S = q$$

we obtain $\phi \cdot E(q \circ S \mid \mathcal{B}) = E(q \mid \mathcal{B})$ or $\phi \cdot E(q \mid S\mathcal{B}) \circ S = E(q \mid \mathcal{B})$. Multiplying this with the inverse of (*) we have $\overline{q(y)} \cdot E(q \mid \mathcal{B})(y) = \overline{q(Sy)} \cdot E(q \mid S\mathcal{B}) \circ S(y)$ almost everywhere so that $\int_Y \overline{q} \cdot E(q \mid \mathcal{B}) d\mu = \int_Y \overline{q} \cdot E(q \mid S\mathcal{B}) d\mu$. By exactly the same argument, using $S^n\mathcal{B}$ in place of \mathcal{B} , we have $\int_Y \overline{q} \cdot E(q \mid S^n\mathcal{B}) d\mu = \int_Y \overline{q} \cdot E(q \mid S^{n+1}\mathcal{B}) d\mu$ so that $\int_Y \overline{q} \cdot E(q \mid \mathcal{B}) d\mu = \int_Y \overline{q} \cdot E(q \mid S^n\mathcal{B}) d\mu$. Taking limits, we get $\int_Y \overline{q} \cdot E(q \mid \mathcal{B}) d\mu = \int_Y |q|^2 d\mu$. Thus $E(q \mid \mathcal{B}) = q$ almost everywhere, and q is \mathcal{B} -measurable.

PROPOSITION 1. Let $Y = \prod_{-\infty}^{\infty} \{0, 1, \dots, L-1\}$ where $L \leq \infty$ and let σ be the shift map on Y with σ -invariant measure μ . Let \mathcal{P} denote the state partition $\{P_k : P_k = \{x : x_0 = k\}$ for $0 \leq k \leq L-1\}$, and let $\mathcal{B}_l^m = \bigvee_{\substack{i=l \ i=l}}^m \sigma^{-i}\mathcal{P}$ for $l \leq m$. Assume that $\phi(x)$ is a T-valued \mathcal{B}_l^m measurable function. If g(x) is a T-valued solution of the equation, $\phi(x)g(\sigma x) = g(x)$ then g(x) is also a \mathcal{B}_l^m measurable function.

PROOF: Let $\mathcal{B} = \bigvee_{i=l}^{\infty} \sigma^{-i} \mathcal{P}$. Then $\phi(x)$ is \mathcal{B} measurable and \mathcal{B} is exhaustive with respect to σ . Since $\phi(x)g(\sigma x) = g(x)$, g(x) is also \mathcal{B} -measurable by the above Lemma. Now let $\mathcal{A} = \bigvee_{i=-m}^{\infty} \sigma^{i} \mathcal{P}$. Then $\phi(\sigma^{-1}x)$ is \mathcal{A} measurable and \mathcal{A} is exhaustive with respect to σ^{-1} . Since $\phi(x)g(\sigma x) = g(x)$ can be rewritten as $\phi(\sigma^{-1}x)g(x) = g(\sigma^{-1}x)$, that is, $\phi(\sigma^{-1}x)\overline{g(\sigma^{-1}x)} = \overline{g(x)}$, g(x) is also \mathcal{A} measurable by applying the above Lemma to the map σ^{-1} . Hence the conclusion follows.

3. The interval maps and symbolic dynamics

In this section we apply the previous result to Markov maps. Consider the behaviour of the iterates of a map τ of the unit interval to itself. We also assume that τ is noninvertible and piecewise continuous. Here are several well-known examples:

(a)
$$\tau(x) = 2x \pmod{1};$$

- Coboundary equations
- (b) $\tau(x) = \beta x \pmod{1}, \ \beta = (1 + \sqrt{5})/2;$
- (c) Gauss transform $\tau(x) = 1/x \pmod{1}$.

For each of these transformations explicit formulas are known for absolutely continuous invariant measures:

- (a) the Lebesgue measure dx;
- (b) $d\mu = \beta dx, 0 \leq x < \beta^{-1}$, and $d\mu = dx, \beta^{-1} \leq x < 1$;
- (c) the Gauss measure $d\mu = (1/\log 2) dx/(1+x)$.

DEFINITION 1: Let $\tau : [0,1) \to [0,1)$ $0 = a_0 < a_1 < \cdots < a_L = 1$, and let $\{I_j\}_{j=0}^{L-1}$ be a partition of [0,1) with $I_j = [a_j, a_{j+1}), 0 \leq j \leq L-1 \leq \infty$. Assume that τ satisfies

- (1) $\tau|_{\text{Int }I_i}$, the restriction of τ to interior points of I_i , has a C^2 -extension to the closure of I_i ,
- (2) $\tau|_{\text{Int }I_i}$ is strictly monotone,
- (3) $\overline{\tau(I_i)} = [0, 1]$, and, in the case where $L = \infty$
- (4) $\sup_{i} \left\{ \sup_{x_1 \in \operatorname{Int} I_i} \left| \tau''(x_1) \right| / \inf_{x_2 \in \operatorname{Int} I_i} \left| \tau'(x_2) \right|^2 \right\} < \infty.$

Suppose that for some n, $|d\tau^n/dt| \ge \theta > 1$ for all t. If we regard the above map τ as being defined on the unit circle, its winding number equals L. We call it a generalised *L*-covering map.

It is known that τ has a finite ergodic measure $\rho(x) dx$ where $\rho(x)$ is piecewise continuous and $1/D < \rho < D$ for some D > 0. See [1, 3].

Given a generalised L-covering map τ , construct an one-sided shift space on L symbols as follows: To each $t \in [0, 1)$ there corresponds a one-sided infinite sequence $[a_0, a_1, \ldots, a_n, \ldots]$ such that $\tau^n(t) \in I_{a_n}$. For some $t \in [0, 1)$, we can find N such that its representation $t = [a_0, a_1, \ldots, a_n, \ldots]$ satisfies the condition that $a_n = 0$ for all $n \ge N$. We call such a t a generalised L-adic point. Let X be the set of all such sequences and ψ be the assignment of a sequence to a point. Since τ has a finite absolutely continuous ergodic measure $\rho(t) dt$, we can define a shift invariant measure ν on any cylinder set $C \subset \prod_{0}^{\infty} \{0, 1, \ldots, L-1\}$ by $\nu(C) = \int_{\psi^{-1}(C)} \rho(x) dx$. Note that $\psi^{-1}(C)$ is a union of intervals with generalised L-adic endpoints. The Kolmogorov Extension Theorem guarantes that ν may be uniquely extended to the whole σ -algebra. We call the shift space X the L-adic symbolic system obtained from τ . Recall that two measure preserving transformations T_1 and T_2 on X_1 and X_2 are said to be isomorphic if there exists a measure preserving transformation $\psi : X_1 \to X_2$ which is one-to-one such that $\psi \circ T_1 = T_2 \circ \psi$ on X_1 modulo sets of measure zero. The mapping ϕ introduced above is an isomorphism between $((0, 1), \rho dt, \tau)$ and the one-sided shift space $(X, d\nu, \sigma)$.

Our construction also applies even if the condition (3) in Definition 1 does not hold. For example, the interval map $x \mapsto \beta x \pmod{1}$, $\beta = (1 + \sqrt{5})/2$ has the following special property: Put $I_0 = [0, \beta^{-1})$, $I_1 = [\beta^{-1}, 1)$. If $x \in I_1$, then $\tau x \in I_0$. In other words, in

any sequence $[x_0, x_1, \ldots, x_n, \ldots]$ the symbol 1 does not occur consecutively. Hence in this case X would not be the full shift $\prod_{0}^{\infty} \{0,1\}$. In fact, it is a shift of finite type with a forbidden block 11. See [1].

DEFINITION 2: An *L*-adic multi-index \vec{n} is a finite sequence of elements of $\{0 \ 1 \ \dots, L-1\}$ and will denote by $\vec{n} = \langle n_1, \dots, n_k \rangle$ Its length k is denoted by $|\vec{n}|$. If there is no danger of ambiguity we call it a multi-index. If $|\vec{n}| = 1$, then $\vec{n} = \langle n_0 \rangle$ for some n_0 , and we write $\vec{n} = n_0$.

Let τ be a map as given in Definition 1. Define $h_i : [0,1) \to [0,1)$ by letting $h_i(t)$ be the unique element in the set $\tau^{-1}(\{t\}) \cap I_i$, $i = 0, 1, \ldots, L-1$. Note that $\tau^{-1}(\{t\}) = \{h_0(t), h_1(t), \ldots, h_{L-1}(t)\}$. For a multi-index $\vec{n} = \langle n_1, \ldots, n_k \rangle$, define $h_{\vec{n}} = h_{n_1} \circ \ldots \circ h_{n_k}$.

For example, consider the transformation $\tau(x) = 2x \pmod{1}$ defined on the unit interval with the partition $\left\{ \begin{bmatrix} 0, (1/2) \\ 0, (1/2) \end{bmatrix} \right\}$. Since every $t \in \begin{bmatrix} 0, 1 \end{bmatrix}$ can be represented as a binary expansion, say $t = \begin{bmatrix} t_1, t_2, \ldots \end{bmatrix}$, $h_0(t) = (1/2)t = \begin{bmatrix} 0, t_1, t_2, \ldots \end{bmatrix}$ and $h_1(t)$ $= (1/2) + (1/2)t = \begin{bmatrix} 1, t_1, t_2, \ldots \end{bmatrix}$. Hence $h_i(t) = \begin{bmatrix} i, t_1, t_2, \ldots \end{bmatrix}$ for i= 0, 1. So $h_{\vec{n}}(t) = \begin{bmatrix} n_1, \ldots, n_k, t_1, t_2, \ldots \end{bmatrix}$ where $\vec{n} = \langle n_1, \ldots, n_k \rangle$. In particular, $h_{\vec{n}}(0) = \begin{bmatrix} n_1, \ldots, n_k \end{bmatrix} = \sum_{j=1}^k n_j 2^{-j}$.

From Definitions 1 and 2 we easily obtain

LEMMA 2. Put $\vec{n} = \langle n_1, \ldots, n_k \rangle$. Let τ and h_i be as given in Definitions 1 and 2. Then

(1) $\tau^{-k}(\{t\}) = \{h_{\vec{n}}(t) : |\vec{n}| = k\},$ (2) $\tau^{k}(h_{\vec{n}}(x)) = x$ where $k = |\vec{n}|,$ (3) $h_{\vec{n}}([a_{1}, a_{2}, \ldots]) = [n_{1}, \ldots, n_{k}, a_{1}, a_{2}, \ldots],$ and (4) $\tau^{-k}(E) = \bigcup_{|\vec{n}|=k} h_{\vec{n}}(E)$ for any subset E.

For any fixed integer k > 0 let \mathcal{P}_0^k be the set of numbers of the form $[a_1, \ldots, a_k]$, $a_i = 0, 1, \ldots, L-1$ so that the points in \mathcal{P}_0^k partition the whole interval [0, 1) into L^k segments. Then (i) $h_{\vec{n}}([0, 1))$ is one of the L^k intervals obtained by partitioning the unit interval by the points in \mathcal{P}_0^k , $k = |\vec{n}|$ and (ii) if $x \in h_{\vec{n}}([0, 1))$, $\vec{n} = \langle n_1, \ldots, n_k \rangle$, then the coded sequence for x is $[n_1, \ldots, n_k, \ldots]$.

PROPOSITION 2. A complex valued step function $\phi(x)$ with finite generalised L-adic discontinuity points $a_1 \leq t_1 < \ldots < t_n < 1$, is not a coboundary for any generalised L-covering map.

PROOF: Let (X, σ_X, ν) be the one-sided shift space which is isomorphic to the given L-covering map. Let $Y = \prod_{-\infty}^{\infty} \{0, 1, \dots, L-1\}, \sigma_Y$ the two-sided shift and μ the unique measure on Y so that (Y, σ_Y, μ) is the natural extension of (X, σ_Y, μ)

Coboundary equations

Assume that $\phi(x)h(\tau x) = h(x)$. Since $\phi(x)$ is step function with finite *L*-adic discontinuity points, we can regard $\phi(x)$ is function on *Y* which is measurable, with respect to $\mathcal{B}_0^m = \bigvee_{i=0}^m \sigma^{-i}\mathcal{P}$ for some $m < \infty$ (Lemma 2). Hence h(x) is also \mathcal{B}_0^m -measurable by Proposition 1. Thus h(x) is also a step function with finite *L*-adic discontinuity points. Hence there exists $0 < r \le a_1$ such that h(x) is constant on [0, r). Thus $\phi(x)h(x) = h(x)$ on [0, r), that is, $\phi(x) = 1$ on $[0, t_1)$. Since $\phi(x)h(\tau x) = h(x)$, $t_1 \ge a_1$ and $\tau[0, a_1) = [0, 1)$, h(x) is constant on [0, 1). Hence the conclusion follows.

EXAMPLE 1. For a transformation $T : [0,1) \to [0,1)$ defined by $x \mapsto 2x \pmod{1}$, we consider the following. Let I = [(3/4),1), $F = \bigcup_{k=0}^{\infty} (1/2^k)I$ and $E = F \bigtriangleup T^{-1}F$. Then $\phi(x) = \exp(\pi i \mathbf{1}_E(x))$ is a coboundary even if the discontinuity points of $\phi(x)$ are contained in [(1/2),1) where the cobounding function $h(x) = \exp(\pi i \mathbf{1}_F(x))$. Hence the assumption in Proposition 2 of finite discontinuity points cannot be dropped.

4. A CLASS OF SKEW PRODUCTS OF CIRCLE ENDOMORPHISMS

In this section, we investigate the dynamical properties of a class of skew products of circle endomorphisms.

DEFINITION 3: For a positive integer L, let $T_{L,a,\omega}$ be the skew-product transformation on the torus, $[0, 1) \times [0, 1)$ defined by

$$(x, y) \mapsto (Lx, y + ax + \omega) \pmod{1}$$
.

In [9], Siboni considered the skew product transformation $T_{2,a,\omega}$ and proved a criterion of ergodicity of the transformation by the accurate estimation of correlations of characteristic functions. In this section, we shall give a simple proof and generalisation of his results.

For a fixed natural number L, let T be the transformation on X = [0, 1) defined by $Tx = Lx \pmod{1}$.

LEMMA 3. Let S and S' be transformations of the torus defined by

$$S(x,y) = (Lx, y + ax) \pmod{1} \text{ and}$$

$$S'(x,y) = \left(Lx, y + \sum_{k=0}^{L-1} \frac{ka}{L-1} \mathbf{1}_{\{(k/L), (k+1/L)\}}(x)\right) \pmod{1}$$

Then S and S' are isomorphic.

PROOF: We will use the *L*-adic expansion of x; $x = (x_0/L) + (x_1/L^2) + \cdots$. Let $\phi(x, y) = (x, y + (a/L - 1)x) \pmod{1}$. Then $\phi^{-1}(x, y) = (x, y - (a/L - 1)x) \pmod{1}$

and

$$\phi^{-1}S\phi(x,y) = \phi^{-1}\left(Lx, y + ax + \frac{a}{L-1}x\right)$$

= $\left(Lx, y + ax + \frac{a}{L-1}x - \frac{a}{L-1}(Lx-k)\right)$ if $x_0 = k$
= $\left(Lx, y + \frac{ka}{L-1}\right)$ if $x_0 = k$
= $S'(x, y)$.

Hence to investigate the spectral type of S, we only need to study the spectral type of S'.

PROPOSITION 3. $T_{L,a,\omega}$ is weakly mixing if and only if a is irrational. Further if a is rational then $T_{L,a,\omega}$ is ergodic if and only if ω is irrational.

PROOF: For convenience, let us denote the 2-torus by $X \times \mathbb{T}$. As before, we use the *L*-adic expansion of *x*. Recall that $L^2(X \times \mathbb{T}) = \bigoplus_{n=-\infty}^{\infty} f(x) \cdot z^n$.

Let $\eta(x) = \exp(2\pi i(ax + \omega))$, $\psi(x) = \exp(2\pi iax)$ and $\phi(x) = \exp(2\pi ia(x_0/L - 1))$. Then

 $U_{T_{\eta}}(f(x) \cdot z^n) = \exp(2\pi i n a x) \cdot \exp(2\pi i n \omega) \cdot f(Tx) \cdot z^n.$

We consider the operator

$$U(f(x)) = \exp(2\pi i n a x) \cdot \exp(2\pi i n \omega) \cdot f(Tx)$$

If n = 0, then U(f(x)) = f(Tx). Thus if $f(Tx) = \lambda f(x)$ then f(x) is constant and $\lambda = 1$ by the mixing property of T. Hence it remains to consider the case $n \neq 0$. Assume that $U(f(x)) = \lambda f(x)$. Then

$$\exp(2\pi i nax)\exp(2\pi i n\omega)f(Tx) = \lambda f(x)$$

and $|\lambda| = 1$. Without loss of generality we may assume that |f(x)| = 1 almost everywere. So $\exp(2\pi i n a x) = \lambda' \overline{f(Tx)} f(x)$, where $\lambda' = \lambda \exp(-2\pi i n \omega)$. By Lemma 3, $U_{T_{\psi}}$ is spectrally equivalent to $U_{T_{\phi}}$ and $U_{T_{\phi}}$ also has an eigenfunction g(x) with eigenvalue λ' , that is, $\overline{\lambda'} \exp\left(2\pi i n \sum_{k=0}^{L-1} (ka/L - 1) \mathbf{1}_{[(k/L),(k+1/L))}(x)\right) = \overline{g(Tx)}g(x)$. If a is an irrational number, then there exists the only integer n for mention.

$$\overline{\lambda'} \exp\left(2\pi i n \sum_{k=0}^{L-1} \frac{ka}{L-1} \mathbf{1}_{[(k/L),(k+1/L))}(x)\right)$$

is constant is n = 0. Hence by Proposition 2, there exists no eigenfunction for $U_{T_{\phi}}$. If a is rational then there exists n such that $\exp\left(2\pi i n \sum_{k=0}^{L-1} (ka/L-1) \mathbf{1}_{\left[(k/L),(k+1/L)\right]}(x)\right) = 1$.

Π

So the problem is reduced to finding g(x) such that $g(Tx) = \lambda'g(x)$. By the mixing property of T we know that g(x) is constant and $\lambda' = \lambda \exp(-2\pi i n\omega) = 1$ for each $n \neq 0$. So $U_{T_{\phi}}$ has eigenfunction $g(x, z) = z^n$ with eigenvalue $\lambda = \exp(2\pi i n\omega)$. Hence $T_{L,a,\omega}$ is not weakly mixing. For the ergodicity, we need only consider the case $\lambda = 1$, that is, $\exp(2\pi i n\omega) = 1$. Hence if a is rational, then $T_{L,a,\omega}$ is ergodic if and only if ω is irrational.

REMARK 1. Indeed we have shown that if a is irrational then $T_{L,a,\omega}$ is exact on the torus. In fact, $T_{L,a,\omega}$ is strong mixing. To see this, let \mathcal{B}_1 be the Borel σ -algebra on [0,1), \mathcal{B}_2 be the Borel σ -algebra on \mathbb{T} and $\mathcal{B}_{\infty} = \bigcap_{n=0}^{\infty} T_{L,a,\omega}^{-n}(\mathcal{B}_1 \times \mathcal{B}_2)$. We only need to show that $L^2(\mathcal{B}_{\infty})$ is the set of constant functions. We use the fact that $T_{L,a,\omega}$ commutes with the circle action $(x, z) \mapsto (x, z \cdot g)$ so that for every n the σ -algebra $T_{L,a,\omega}^{-n}(\mathcal{B}_1 \times \mathcal{B}_2)$ is preserved by the circle action. Hence \mathcal{B}_{∞} is invariant with respect to the circle action. If $f \in L^2(\mathcal{B}_{\infty})$ then it has a representation

$$f(x,z) = \sum_{k} f_k(x) \cdot z^k$$

and $f(x, z \cdot g) = \sum_{k} f_{k}(x) \cdot z^{k} \cdot g^{k}$ for all $g \in \mathbb{T}$. Hence $f_{k}(x) \cdot z^{k} \in L^{2}(\mathcal{B}_{\infty})$. So $|f_{k}(x) \cdot z^{k}| = |f_{k}(x)|$ is also \mathcal{B}_{∞} measurable. But $|f_{k}(x)|$ depends only on x. Hence $|f_{k}(x)|$ is constant by the exactness of T. By a similar argument $\overline{f_{k}} \cdot f_{k} \circ T_{L,a,\omega}$ is also constant, that is,

$$\exp(2\pi i kax) \cdot \exp(2\pi i k\omega) \cdot f_k(Tx) \cdot z^k = \lambda f_k(x) \cdot z^k$$

where $\lambda \in \mathbb{C}$. Thus if $T_{L,a,\omega}$ is weakly mixing then $T_{L,a,\omega}$ is exact. For more information on this subject, see [5].

5. Mod M normality of L-covering maps

In this section, let G be the finite subgroup of T generated by $\exp(2\pi i/M)$.

PROPOSITION 4. Let T be an ergodic transformation on X and $\phi(x)$ be a G-valued function. Let T_{ϕ} be the skew product transformation defined by $T_{\phi}(x,g) = (Tx, \phi(x) \cdot g)$ on $X \times G$. If $\phi(x)h(Tx) = h(x)$, then there exists a G-valued function q(x) such that the following diagram commutes

$$\begin{array}{ccc} X \times G & \stackrel{T_{\phi}}{\longrightarrow} & X \times G \\ q & & & \downarrow q \\ X \times G & \stackrel{S}{\longrightarrow} & X \times G \end{array}$$

where $Q(x,g) = (x,q(x) \cdot g)$ and S(x,g) = (Tx,g). Hence T_{ϕ} has M ergodic components.

PROOF: Since $(\phi(x))^M = 1$, $(\phi(x))^M (h(Tx))^M = (h(x))^M$ is equivalent to $(h(Tx))^M = (h(x))^M$. So we may assume that $(h(x))^M = 1$ by the ergodicity of T. Hence there exist a G-valued function q(x) such that $\phi(x)q(Tx) = q(x)$. For q(x), of this for it is easy to see that the diagram commutes.

LEMMA 4. Let τ be piecewise, twice continuously differentiable and such that $\inf_{x \in J_1} |\tau'(x)| > 1$ where $J_1 = \{x \in X : \tau'(x) \text{ exists}\}$. If the number of discontinuity points of τ of τ' is finite, then there is a finite collection of sets L_1, \ldots, L_n and a set of invariant functions $\{f_1, \ldots, f_n\}$ such that

- (1) each $L_i(1 \leq i \leq n)$ is a finite union of closed intervals;
- (2) $L_i \cap L_j$ contains at most a finite number of points when $i \neq j$;
- (3) $f_i(x) = 0$ for $x \notin L_i, 1 \leq i \leq n$, and $f_i(x) > 0$ for almost everywhere x in L_i ;
- (4) $\int_{L_i} f_i(x) dx = 1$ for $1 \le i \le n$;
- (5) every τ invariant function can be written as $f = \sum_{i=1}^{n} a_i f_i$ with suitable chosen $\{a_i\}$.

PROOF: For the proof, See [7].

PROPOSITION 5. If a G-valued function $\phi(x)$ is a step function with finite discontinuity points $a_1 \leq t_1 < \cdots < t_n < 1$, then $\phi(x)$ is not coboundary for any generalised L-covering map.

PROOF: Assume that $\phi(x)h(Tx) = h(x)$. Without loss of generality assume that X = [0, 1). Since $X \times G = \bigcup_{k=0}^{M-1} \{X \times \exp((2k\pi i)/M)\}$, we may identify $\{X \times \exp((2k\pi i)/M)\}$ with the unit interval $[k, k + 1), 0 \leq k < M$. Since $\phi(x)$ is a G-valued step function with finite discontinuity points, we can regard T_{ϕ} as a piecewise continuous map on [0, M) satisfying the condition of Lemma 4. So we can say that h(x) is also a G-valued step function with finite discontinuity points by Lemma 4 and Proposition 4. Hence there exists $0 < r \leq a_1$ such that h(x) is constant on [0, r). Thus $\phi(x)h(x) = h(x)$ on [0, r). So h(x) is constant on [0, 1) by the argument of the proof of Proposition 2. The conclusion follows.

REMARK 2. In Proposition 5, we have not assumed that the discontinuity points are generalised L-adic points, but rather that the range of $\phi(x)$ is contained in a finite subgroup of T. For generalised L-covering maps, mod M normality holds for finite unions of intervals, when the associated step function $\phi(x)$ step satisfies the condition of Proposition 5. Indeed we may also show that the skew product transformation induced by $\phi(x)$ is also exact on $X \times G$, as in fact strong mixing, using the similar arguments, to those in Remark 1.

Ο

6. Mod M normality of Gauss transformation

Recall that the Gauss transformation T on [0, 1) is defined by

$$T(x) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{x} & \text{if } x \neq 0 \pmod{1}, \end{cases}$$

It is well known that T preserves the Gauss measure on [0, 1) given by

$$\mu(A) = \frac{1}{\log 2} \int_A \frac{1}{1+x} \, dx$$

Let $\mathcal{P} = \{P_j\}$ be a partition on [0,1) defined by $P_j = [(1/j+1), (1/j))$ for $j \in \mathbb{N}$.

PROPOSITION 6. Let $\{B_i\}$ be a sequence of intervals of [0,1) with rational endpoints and $\{b_i\}$ be a sequence of real numbers. Then a nonconstant function $\phi(x) = \exp\left(2\pi i \sum_{i=1}^{n} b_i \mathbf{1}_{B_i}(x)\right)$ is not a coboundary for the Gauss transformation.

PROOF: Let $Y = \prod_{-\infty}^{\infty} \{1, 2, ...\}$ and $Y^+ = \prod_{0}^{\infty} \{1, 2, ...\}$. Consider the following commutative diagram

$$\begin{array}{ccc} & [0,1) & \xrightarrow{T} & [0,1) \\ & \psi & & & \downarrow \psi \\ & & Y^+ & \xrightarrow{\sigma^+} & Y^+ \end{array}$$

where $(\psi(x))_i = j$ if $T^i x \in P_j$ for $i \in \mathbb{N}$. Then ψ is a an isomorphism between $([0, 1), T, \mu)$ and (Y^+, σ^+, ν^+) where ν^+ is the induced measure by ψ and σ^+ is the one-sided shift map on Y^+ . Let (Y, σ, ν) be the natural extension of (Y^+, σ^+, ν^+) where σ is the twosided shift map on Y. If $\phi(x)g(Tx) = g(x)$ then g(x) is also step function with rational discontinuity points and there exist an interval I with rational end points such that g(x)is constant on I by the arguments of Proposition 1. Since $T^n I = [0, 1)$ for some n, $\phi(x)$ is a function with finite discontinuity points, and $\phi(x)g(Tx) = g(x), g(x)$ is also a function with finite discontinuity points. Since $\phi(x)g(Tx) = g(x)$ can be rewritten as $\phi(x) = g(x)\overline{g(Tx)}, \phi(x)$ must be a function with infinite discontinuity points. this is a contradiction.

REMARK 3. By Proposition 6, mod M normality holds for finite union of intervals with rational end points on Gauss transformation. By the similar arguments as in Remark 1, the induced skew product transformation on $X \times G$ is also exact.

References

 R. Adler and L. Flatto, 'Geodesic flows, interval maps and symbolic dynamics', Bull. Amer. Math. Soc. 25 (1991), 229-334.

[12]

- [2] Y. Ahn and G.H. Choe, 'Spectral types of skewed Bernoulli shift', Proc. Amer. Math. Soc. 128 (2000), 503-510.
- [3] T. Bedford, M. Keane and C. Series(eds.), Ergodic theory, symbolic dynamics and hyperbolic space (Oxford Univ. Press, New York, 1991), pp. 107-109.
- [4] A. Boyarsky and P. Góra, Laws of chaos (Birkhäuser, Boston MA, 1997).
- [5] Z. Coelho and W. Parry, 'Shift endomorphisms and compact Lie extensions', Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), 163-179.
- [6] E. Hlawka, The theory of uniform distribution (A B Academic publishers, Berkhamsted, 1984).
- T. Li and J.A. Yorke, 'Ergodic transformations from an interval into itself', Trans. Amer. Math. Soc. 235 (1978), 183-192.
- [8] W. Parry, 'A Cocycle equation for shift', Contemp. Math. 135 (1992), 327-333.
- [9] S. Siboni, 'Ergodic properties of a class of skew-systems obtained by coupling the transformation of the 1-torus with the endomorphism $2x \mod [0, 1]$ ', Nonlinearity 7 (1994), 1133-1141.
- [10] W.A. Veech, 'Strict ergodicity in zero dimensional dynamical system and the Kronecker-Weyl theorem mod 2', Trans. Amer. Math. Soc. 140 (1969), 1-33.
- [11] P. Walters, An introduction to Ergodic theory (Springer-Verlag, New York, 1982).

School of Mathematical Sciences Seoul National University Seoul 151-747 Korea e-mail: ahn@euclid.kaist.ac.kr