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Snow avalanches are typically initiated on marginally stable slopes with a surface
layer of fresh snow that may easily be incorporated into them. The erosion of snow
at the front is fundamental to the dynamics and growth of snow avalanches and they
may rapidly bulk up, making them much more destructive than the initial release.
Snow may also deposit at the rear, base and sides of the flow and the net balance
of erosion and deposition determines whether an avalanche grows or decays. In this
paper, small-scale analogue experiments are performed on a rough inclined plane
with a static erodible layer of carborundum grains. The static layer is prepared by
slowly closing down a flow from a hopper at the top of the slope. This leaves behind
a uniform-depth layer of thickness hstop at a given slope inclination. Due to the
hysteresis of the rough bed friction law, this layer can then be inclined to higher
angles provided that the thickness does not exceed hstart, which is the maximum
depth that can be held static on a rough bed. An avalanche is then initiated on top
of the static layer by releasing a fixed volume of carborundum grains. Dependent
on the slope inclination and the depth of the static layer three different behaviours
are observed. For initial deposit depths above hstop, the avalanche rapidly grows
in size by progressively entraining more and more grains at the front and sides,
and depositing relatively few particles at the base and tail. This leaves behind a
trough eroded to a depth below the initial deposit surface and whose maximal areal
extent has a triangular shape. Conversely, a release on a shallower slope, with a
deposit of thickness hstop, leads to net deposition. This time the avalanche leaves
behind a levee-flanked channel, the floor of which lies above the level of the initial
deposit and narrows downstream. It is also possible to generate avalanches that have
a perfect balance between net erosion and deposition. These avalanches propagate
perfectly steadily downslope, leaving a constant-width trail with levees flanking a
shallow trough cut slightly lower than the initial deposit surface. The cross-section
of the trail therefore represents an exact redistribution of the mass reworked from
the initial static layer. Granular flow problems involving erosion and deposition
are notoriously difficult, because there is no accepted method of modelling the
phase transition between static and moving particles. Remarkably, it is shown in
this paper that by combining Pouliquen & Forterre’s (J. Fluid Mech., vol. 453,
2002, pp. 133–151) extended friction law with the depth-averaged µ(I)-rheology
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of Gray & Edwards (J. Fluid Mech., vol. 755, 2014, pp. 503–544) it is possible
to develop a two-dimensional shallow-water-like avalanche model that qualitatively
captures all of the experimentally observed behaviour. Furthermore, the computed
wavespeed, wave peak height and stationary layer thickness, as well as the distance
travelled by decaying avalanches, are all in good quantitative agreement with the
experiments. This model is therefore likely to have important practical implications for
modelling the initiation, growth and decay of snow avalanches for hazard assessment
and risk mitigation.

Key words: geophysical and geological flows, granular media, waves/free-surface flows

1. Introduction
Large-scale field measurements of snow avalanches (Sovilla, Sommavilla &

Tomaselli 2001; Sovilla & Bartelt 2002; Sovilla, Burlando & Bartelt 2006) indicate
that the dominant mechanism for entrainment and growth of an avalanche is via
frontal ploughing into a layer of fresh snow. Sovilla et al. (2006) showed that over
eighteen events the avalanche mass typically increased by a factor of four, which
had a significant effect on the flow dynamics as well as the run-out distance. The
primary limiting factors on how much snow can be entrained are the structure of
the snowpack and the amount of available material. Virtually all of the entrainment
occurred at, or very close to, the flow front, with basal erosion by the body of
the flow being much less significant. The process of frontal entrainment allows the
avalanche to bulk up, and hence become much more destructive than the initial
release. As well as eroding material at the front, snow may also be deposited at the
rear, base and sides, and there is a subtle balance which determines whether there
is overall growth or decay in the total avalanche mass. Deposition can also produce
key qualitative changes to the flow dynamics, such as the formation of static levees
at the flanks of the avalanche, which leave a trail in the deposit as shown in figure 1.
This image also shows that between the levees there is a trough that has been incised
down below the initial height of the snow cover, and which contains material that
had previously been mobilized by the avalanche. The flow may also rapidly stop if
the slope inclination changes and the avalanche decays away through mass deposition
(Bartelt, Buser & Platzer 2007).

In order to investigate the effects of erosion and deposition experimentally,
we perform small-scale analogue experiments on a rough inclined slope using
carborundum particles of 280–350 µm. For angles below ζ2 = 47.5◦, the maximum
angle for steady uniform flow, a static layer of erodible particles forms as the grains
come to rest at a thickness hstop (Pouliquen 1999b). Due to the hysteresis in the
rough bed friction law (Daerr & Douady 1999; Pouliquen & Forterre 2002), once the
grains have stopped the slope can be inclined to a higher angle before the particles
begin to flow again, and thicker layers of particles are stable provided their depth lies
below hstart > hstop. In the experiments, an avalanche is initiated on top of the erodible
layer by releasing a finite mass of carborundum particles from a small aspect ratio
hollow cylinder. Figure 2 shows a typical flow on a slope inclined at ζ = 35.2◦ to the
horizontal and covered with a uniform-depth layer of erodible grains of thickness hstop.
A long exposure time is selected so that the moving grains appear slightly blurred
and the static grains can be seen in sharp focus. The avalanche has a crescentic
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FIGURE 1. Small levees on either flank of an incised trough in the trail behind the main
body of a snow avalanche at Jungeralm in Bad Gastein, Austria.

shape, with a steep erosive front and a tail that decays more gradually in height.
As the avalanche flows downslope, it continuously erodes particles at the front and
deposits them at the rear, sides and base, to form a trail behind the flow, with an
incised trough, that lies below the initial static deposit height and which is flanked
by static raised levees. These are subtle features that can be seen in figure 2 due
to the use of oblique lighting. In this case, the avalanche has organized itself into
a three-dimensional, steadily travelling erosion–deposition wave (Edwards & Gray
2015) that can propagate indefinitely along the slope, so long as the erodible layer
ahead of the wave does not change depth and the inclination remains the same. The
formation of an incised trough and levees is closely similar to what was observed in
the real snow avalanche in figure 1. This suggests that there is a strong link between
the analogue experiments and real field-scale observations.

Permanent-form solitary waves on erodible beds were first observed by Daerr (2001).
Börzsönyi, Halsey & Ecke (2005, 2008) made further observations and postulated a
Burgers-type model, but unfortunately solitary n-wave-type solutions decay in height
with increasing time (Whitham 1974; Edwards & Gray 2015), so this approach
cannot describe erosion–deposition waves. Clément et al. (2007) developed a partial
fluidization theory with two equations to describe the evolution of the flow thickness
and an order parameter that governs the amount of fluidization. This model does have
a family of solitary wave solutions, but the structure of the equations is radically
different to those one might expect as a generalization of the shallow-water-like
avalanche models that are conventionally used to model geophysical mass flows
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FIGURE 2. Oblique view of an erosion–deposition wave travelling downslope on a plane
inclined at an angle ζ = 35.2◦ to the horizontal. The right-hand side of the wavefront
appears brighter due to oblique illumination from the downslope end of the plane. A long
time exposure has been used so that moving grains are blurred and the static regions are
sharply in focus. The width of this avalanche is approximately 8.5 cm across the wave
crest. Behind the elevated front of the flow lateral levees are deposited on either flank
and between them a trough that is slightly beneath the level of the original deposit is left
behind on the erodible bed.
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(e.g. Grigorian, Eglit & Iakimov 1967; Eglit 1983; Savage & Hutter 1989; Iverson
1997; Gray, Wieland & Hutter 1999; Gray, Tai & Noelle 2003; Mangeney-Castelnau
et al. 2003).

Early models for snow avalanches (Briukhanov et al. 1967; Grigorian et al. 1967;
Eglit & Demidov 2005) recognized the importance of frontal entrainment and solved
for the motion of the front by treating it as a shock wave separating a finite-depth
solid-like erodible layer from a rapidly moving liquid-like avalanche. Mass and
momentum jump conditions were then used to solve for the entrainment of mass and
the speed of front propagation. This approach requires the moving interface between
the static snow cover and the avalanche to be tracked as part of any computation. To
avoid this, Eglit (1983) proposed a model with more gradual erosion at the base of
the avalanche, with the rate being proportional to the flow speed, which is highest
at the front. Most current avalanche models try to incorporate erosion and deposition
by introducing mass and momentum source terms into the depth-averaged mass and
momentum balances (e.g. Bouchaud et al. 1994; Douady, Andreotti & Daerr 1999;
Gray 2001; Doyle et al. 2007; Tai & Kuo 2008; Gray & Ancey 2009; Iverson
2012; Tai & Kuo 2012) and sometimes to augment them with an energy balance
equation (e.g. Bouchut et al. 2008; Capart, Hung & Stark 2015). These approaches
are notoriously difficult since additional non-trivial empirical relations are required to
close the models and there may be slow creep deep beneath the avalanche (Komatsu
et al. 2001), which makes the interface between the flowing and static regions hard
to define.

Recently Edwards & Gray (2015) have developed a one-dimensional system of
depth-averaged equations to model erosion–deposition waves, which combines the
extended basal friction law of Pouliquen & Forterre (2002) with the depth-averaged
µ(I)-rheology of Gray & Edwards (2014). The avalanche is assumed to be either
moving or static throughout its entire depth, with the basal friction law essentially
determining which regions are in motion. Although this approximation is crude, in
that it does not explicitly resolve the basal entrainment or deposition, Edwards &
Gray (2015) showed that it was able to predict accurately the amplitude, wavelength
and coarsening dynamics of erosion–deposition waves that spontaneously form in a
long channel from a continuous inflow. They observed that typical waves had a ratio
of peak height to static layer depth of 2.6 and a typical mobile wavelength of 59 cm,
which are both very similar to the waves observed by Takagi, McElwaine & Huppert
(2011) in their low-inflow-rate experiments.

A key element of the Gray & Edwards (2014) theory is the introduction of a
depth-averaged viscous term, which represents a singular perturbation to the equations.
Strong support for this approach is provided by the fact that the depth-averaged
µ(I)-rheology is also able to predict the cutoff frequency of roll waves (Forterre &
Pouliquen 2003; Forterre 2006) without the need for any additional fitting parameters,
since the granular viscosity is fully determined (Gray & Edwards 2014). This
contrasts with inviscid avalanche models that incorrectly predict the growth of
granular roll waves at all frequencies above the critical Froude number, Frc > 2/3.
Baker, Barker & Gray (2016a) have generalized the depth-averaged µ(I)-rheology to
two dimensions by using the principle of frame invariance. Their extended model is
able to capture the depth-averaged downslope velocity profile that develops across a
fully developed chute flow with either wall slip or zero velocity at the rough side
walls. Again, this is something that the inviscid theory is unable to capture. Moreover,
for sufficiently wide channels the reconstructed two-dimensional downslope velocity
profile across the channel compares favourably with steady-state simulations using the
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full (non-depth-averaged) µ(I)-rheology (Jop, Forterre & Pouliquen 2006), as well as
with experimental measurements of the surface velocity.

In this paper we focus on using the Baker et al. (2016a) extension to the
depth-averaged µ(I)-rheology to model three-dimensional erosion–deposition waves.
Early observations of such waves started with Daerr & Douady (1999) who triggered
two types of avalanche behaviour on a rough bed with an erodible layer of grains.
The static layer was prepared by pouring glass beads down a slope covered with
a velvet cloth, which left a deposit of thickness hstop on a slope of inclination ζstop.
They observed that this static layer could be inclined to a higher angle ζstart before it
would spontaneously start flowing again, i.e. there is hysteresis. For a small increase
in the slope angle, between ζstop and ζstart, a small perturbation to the static layer at
a single point created an avalanche that propagated downslope entraining mass and
widening as it flowed. This left a triangular pattern in the deposit, which led Daerr &
Douady (1999) to name these phenomena ‘triangular’ avalanches. They also showed
that on less stable slopes the avalanching region propagated upwards as well, so that
eventually the whole erodible layer was set in motion.

Pouliquen (1999a) measured hstop as a function of the inclination angle ζ , and
performed experiments to determine the thickness h and the depth-averaged velocity
ū during steady uniform flow. He found that all the experimental data collapsed
with the scaling Fr = βh/hstop, where the constant of proportionality β = 0.136.
Note that Pouliquen (1999a) defined the Froude number as Fr = |ū|/

√
gh, where |ū|

was the depth-averaged speed and g was the constant of gravitational acceleration.
Using this relation to substitute for hstop, Pouliquen (1999a) determined an empirical
friction law for rough beds provided Fr > β. Gray & Edwards (2014) showed that
although the rough bed friction law looks like a basal friction law it actually encodes
the leading-order behaviour of the µ(I)-rheology through the depth of the granular
avalanche. Pouliquen & Forterre (2002) combined Pouliquen’s (1999a) dynamic rough
bed friction law with the Daerr & Douady (1999) concept that once the grains were
stopped (i.e. Fr = 0) flow could not start again until the higher angle ζstart was
exceeded. For the intermediate regime 0< Fr < β there was no further experimental
information, so Pouliquen & Forterre (2002) suggested a power law extrapolation
between the two laws.

Pouliquen & Forterre (2002) applied their extended friction law to the release of a
finite mass of granular material on a rough surface and found that an inviscid shallow-
water avalanche model was able to predict accurately the position and time at which it
stopped, as well as the overall spreading. They also performed the same experiment
on a bed of erodible grains. In this configuration they found that the experimental
avalanche spread out, and formed a drop shape similar to that observed by Daerr
(2001), with a sharp front and gradual decrease in height in the tail that propagated
steadily downslope, eroding and depositing material as it flowed. On the other hand,
their inviscid simulations predicted that the flow did not approach a steadily travelling
wave. Instead, the computed solution spread out considerably more, so that it was
thinner and faster than the experiment with a large almost constant thickness region.
This may be an indication that the computation was partially locking onto the steady
uniform flow solution to the intermediate flow regime found by Edwards & Gray
(2015). In the light of the successful prediction of the formation of two-dimensional
steadily travelling erosion–deposition waves (Edwards & Gray 2015), using the depth-
averaged µ(I)-rheology (Gray & Edwards 2014), this paper investigates whether their
model is able to more accurately predict what happens in three dimensions.
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2. Experimental observations
2.1. Experimental set-up and methods

To investigate the formation of three-dimensional erosion–deposition waves, small-
scale experiments are performed to highlight some key qualitative features not
previously described. The experimental set-up is shown in figure 3 and consists of
a plane inclined at an angle ζ to the horizontal, which is roughened by attaching
a monolayer of spherical glass beads of diameter 750–1000 µm using double-sided
sticky tape. A coordinate system Oxyz is defined with the x-axis pointing downslope,
the y-axis across the slope, with y= 0 at the midpoint of the width of the plane, and
the z-axis pointing normal to the rough plane at z= 0. The avalanche is assumed to
have depth-averaged velocity components ū and v̄ in the downslope x and cross-slope
y directions, respectively. The inclined plane is 1.5 m long by 0.5 m wide and has
a hopper and gate mechanism at the top, which allows the bed to be coated with a
static layer of 280–350 µm diameter carborundum particles prior to the start of the
experiments. For a slope at an angle ζ0 to the horizontal, the initial static layer is of
thickness h0 = hstop(ζ0), i.e. the same thickness as that measured by Daerr & Douady
(1999) and Pouliquen (1999a). Once the grains have stopped the hysteresis of the
friction law allows the chute to be inclined to a new angle ζ < ζstart that is steeper
than ζ0 = ζstop without the grains becoming mobile again.

The release point is centred at (x, y)= (0, 0), which is 80 cm from the end of the
chute. A finite volume of 280–350 µm carborundum particles is then placed on top
of the static layer by filling a hollow cylinder of radius R= 1.4 cm and height hc =

1.6 cm. The flow is released by raising the cylinder, which causes the particles inside
to spread from the downslope edge, like a small inclined column collapse (Mangeney
et al. 2010), before forming an avalanche that travels down the plane whilst eroding
the stationary layer at the wavefront and depositing particles behind. Figure 2 shows
an oblique view of one of these avalanches as it travels downslope. In the trail left
behind the flowing avalanche there are small static levees and a shallow trough, made
visible by illuminating obliquely from the downstream end of the chute.

To capture some of the subtle features of the flow, a high-speed camera (Teledyne
DALSA Genie HM1400) is used to photograph it from overhead at a rate of 100 f.p.s.
with oblique illumination from the downstream end of the chute. A space–time plot
is constructed by extracting the middle row of pixels (along y= 0) from each image
and combining them into a single plot with elapsed time t̂ along the abscissa and
distance x along the ordinate. Note that elapsed time t̂ is offset from the real time t
by a different unknown amount for each set of images. In addition, a Micro-Epsilon
scanCONTROL 2700-100 laser profile sensor is used to acquire thickness data aligned
along the y-axis at three different downstream positions xL = 12 cm, xL = 30 cm
and xL = 50 cm. The laser line measures the distance of the bulk flow particles
away from the sensor at a frequency of 100 Hz and to an accuracy of ±0.2 mm
(approximately a grain diameter) by laser triangulation. The thickness profile h of the
avalanche in the z-direction can then be calculated along the laser line by measuring
the distance between the sensor and the bed before it is coated with the static
layer of carborundum particles. Space time contour plots of the thickness are then
built up for each position xL, although the experiment has to be repeated for each
location. Experiments were carried out for various slope inclination angles and static
layer depths, and three qualitatively different behaviours were observed, which are
described in greater detail in the following sections.
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FIGURE 3. A wooden plane with a layer of 750–1000 µm spherical glass beads stuck
to the surface is inclined at an angle ζ to the horizontal. A coordinate system Oxyz is
centred at the release point with the x-axis pointing downslope, the y-axis across the slope
and the z-axis is aligned with the upward pointing normal. The chute is prepared with a
constant-depth layer of 280–350 µm diameter carborundum particles of thickness h0 =

hstop(ζ0) and a finite volume of the same grains is released on top of this layer from a
hollow cylinder of radius R= 1.4 cm and height hc= 1.6 cm centred at the origin (x, y)=
(0, 0). Note that the hysteresis of the basal friction allows the inclination angle ζ to be
greater than the preparation angle ζ0 of the constant-depth layer provided ζ < ζstart.

2.2. Growing avalanches
In order to generate an avalanche that has a net increase in mass as it propagates
downslope the plane is first inclined at an angle of ζ = 34.4◦ and the bed is coated
with a static layer of carborundum that has a thickness h0 = hstop(34.4◦) ≈ 2.2 mm.
Without disturbing the grains in the static layer, the slope angle is then increased to a
higher angle of ζ =35.2◦. The deposit layer then is thicker than the usual hstop at 35.2◦
by virtue of the hysteresis in the friction law in the range ζ ∈ [ζstop, ζstart]. The cylinder
is held on top of the layer, filled with grains and the avalanche is then released.

Overhead images of the avalanche on the inclined plane and a space–time plot
constructed from them are shown in figure 4. There is also a movie of the flow in
the online supplementary material available at https://doi.org/10.1017/jfm.2017.309
(movie 1). After the initial release the avalanche rapidly develops a sharp front that
erodes material and a tail that decreases in height much more gently, and from which
grains are continually being deposited. Overall there is net erosion and the avalanche
grows in size, leaving behind it a trough formed from the previously mobilized
grains, which is thinner than the initially prepared layer. The vertical grey lines on
the space–time plot in figure 4( f ) indicate stationary grains and the flow front appears
as a strong line across the plot due to the oblique lighting from the downstream end
of the chute. This indicates that the avalanche travels at a near constant wavespeed
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FIGURE 4. A sequence of overhead photos at times (a) t̂ = 0.8, (b) t̂ = 1.4, (c) t̂ = 2.0,
(d) t̂ = 2.6 and (e) t̂ = 3.2 s showing a finite mass release from a cylinder of radius
R = 1.4 cm and height hc = 1.6 cm on top of a static erodible layer of thickness h0 ≈

2.2 mm on a slope inclined at ζ = 35.2◦. These are used to construct the space–time plot
( f ) along the centre line y=0. Vertical grey lines indicate stationary grains. The wavefront
of the avalanche appears as a diagonal white line and indicates that the avalanche travels
downslope at near constant speed before accelerating slightly near the end of the plane.
A movie showing the time-dependent evolution is available in the online supplementary
material (movie 1).
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FIGURE 5. Measured avalanche thickness at three positions xL = 12 cm, xL = 30 cm and
xL = 50 cm downslope of the finite mass release on a slope ζ = 35.2◦ with a deep layer
of static erodible grains of thickness h0 ≈ 2.2 mm, corresponding to hstop at ζ0 = 34.4◦.
The thickness is plotted as (a) contours of constant flow thickness h in the (t̂, y)-plane,
in increasing increments of 0.2 mm inwards (solid lines) from the trough contour at
h= 2.2 mm (dashed line) and (b) flow thickness h along the midpoint of the plane y= 0
versus elapsed time t̂. The avalanche grows in width and peak thickness as it travels
downslope leaving a trough in its wake.

of uw ≈ 0.26 m s−1 although there is evidence of it beginning to slightly accelerate
towards the end of the plane.

Data from the laser profilometer are shown in figure 5 as (a) contours of thickness
h in the (t̂, y)-plane and (b) as thickness along the centre of the plane y = 0 at
each of the distances xL. After the initial collapse the avalanche propagates downslope
and both the width W and the wave peak height hw continually increase to the end
of the plane. The measured values are W ≈ 11 cm, hw ≈ 5.6 mm at xL = 30 cm
and W ≈ 14 cm, hw ≈ 5.9 mm at xL = 50 cm (figure 5). Since the overall length is
approximately the same there is a net increase in avalanche mass and a shallow trough
forms behind the avalanche. The trough widens with downstream distance as shown
in the overhead photos in figure 4(e), which makes it analogous to the ‘triangular
avalanches’ first described by Daerr & Douady (1999). The deposited layer depth in
the trough, denoted by hdeposit, continually decreases to a minimum value of hdeposit ≈

1.7 mm at xL=50 cm. This is close to the static layer thickness hstop(35.2◦)≈1.7 mm.

2.3. Decaying avalanches
Next the plane is inclined at an angle of ζ = 34.1◦ to the horizontal and coated
with a static layer of thickness h0 = hstop(34.1◦) ≈ 2.5 mm. A sequence of overhead
images of the avalanche and a space–time plot constructed from them are shown in
figure 6. A movie is also available in the online supplementary material (movie 2).
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FIGURE 6. A sequence of overhead photos at times (a) t̂ = 1.3, (b) t̂ = 2.3, (c) t̂ = 3.3,
(d) t̂ = 4.3 and (e) t̂ = 5.3 s showing a finite mass release from a cylinder of radius
R = 1.4 cm and height hc = 1.6 cm on top of a static erodible layer of thickness h0 =

hstop(34.1◦) ≈ 2.5 mm on a slope inclined at ζ = 34.1◦. These are used to construct the
space–time plot ( f ) along the centre line y = 0. Vertical grey lines indicate stationary
grains and the wavefront appears as a brighter line. The avalanche travels downslope at
approximately constant speed before decelerating and stopping abruptly. A movie showing
the time-dependent evolution is available in the online supplementary material (movie 2).
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FIGURE 7. Measured avalanche thickness at three positions xL = 12 cm, xL = 30 cm and
xL = 50 cm downslope of the finite mass release for a chute inclined at ζ = 34.1◦ that is
covered with a static erodible layer of thickness h0= hstop(34.1◦)≈ 2.5 mm. The thickness
is plotted as (a) contours of constant flow thickness h in the (t̂, y)-plane, in increasing
increments of 0.2 mm inwards (solid lines) from the outer contour at h= 2.8 mm (dashed
line) and (b) flow thickness h along the midpoint of the plane y= 0 versus elapsed time t̂.
The avalanche decreases in width as it travels downslope, depositing an elevated channel
behind it with levees along its flanks, before it finally comes to rest.

It can be seen that after the initial release of grains the avalanche travels downslope
for a short distance before it stops abruptly. The nearly straight diagonal line in the
space–time plot between 0.15 . x + R . 0.45 m indicates that typical wavespeeds
are uw ≈ 0.13 m s−1 and that there is a very rapid deceleration in the final stages
before the avalanche abruptly comes to rest at x= 55 cm downslope. As the avalanche
flows down the inclined plane it erodes mass at the front, but deposits far more mass
behind it, to form an elevated channel that lies above the height of the undisturbed
deposit and is flanked by levees on either side. To make this precise, figure 7, shows
(a) thickness contours in the (t̂, y)-plane and (b) the thickness h along the centre
of the plane y = 0 at each of the xL locations. The grains spread to a maximum
width of W ≈ 8.5 cm at xL = 12 cm, before reducing to a width of W ≈ 5.5 cm
when the avalanche reaches xL = 50 cm (figure 7a). The narrowing of the deposit
with increasing downstream distance can also be clearly seen in figure 6(e). The wave
peak height hw ≈ 5.1 mm throughout the flow. However, the deposit thickness in the
elevated channel increases significantly above the static layer thickness hstop≈ 2.5 mm,
to hdeposit≈ 2.7 mm at xL= 30 cm and hdeposit≈ 3.3 mm at xL= 50 cm (figure 7b). The
deposit is able to remain static by virtue the hysteresis in the friction law (Daerr &
Douady 1999; Pouliquen & Forterre 2002) since hstop < hdeposit < hstart. The fact that
the wavespeed uw is almost constant during most of the flow may be related to the
fact that the wave peak height is the same at each of the downstream locations xL
(Razis et al. 2014).
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2.4. Solitary steadily travelling avalanches
Finally, the plane is inclined at an angle of ζ = 35.2◦ and the bed is coated with a
static layer of thickness h0 = hstop(35.2) ≈ 1.6 mm. A series of overhead images of
the avalanche propagating down the plane and a space–time plot constructed from
them are shown in figure 8. A movie is also available in the online supplementary
material (movie 3). After the initial release the avalanche rapidly develops into a
steadily travelling wave, so that by x̂= x+ R≈ 15 cm it remains at a constant width
and has a near constant wavespeed of uw ≈ 0.20 m s−1 for the remaining length of
the experimental plane. This suggests that the frontal erosion and deposition at the
base, sides and tail of the avalanche are in exact balance, i.e. it has developed into
a steadily travelling solitary wave similar to the two-dimensional erosion–deposition
waves observed by Edwards & Gray (2015). In this case, however, the wave has a
well defined three-dimensional crescentic shape and it leaves behind static levees and
a trough incised below the height of the undisturbed deposit. This is precisely shown
by the laser profilometer thickness data in figure 9. After the initial release from the
cylinder, the grains spread to a maximum width of W ≈ 8.5 cm, which is maintained
as the avalanche travels downslope (figure 9a). The wave peak height increases from
the initial stages up to hw ≈ 4.3 mm at xL = 30 cm and afterwards remains nearly
constant, as in the previous experiment. In this case however, the deposit layer in
the avalanche trough also remains approximately constant at hdeposit ≈ 1.5 mm, which
is, crucially, very slightly thinner than the static layer thickness, hstop ≈ 1.7 mm
(figure 9b). The deficit in grains in the trough is made up by the formation of very
small static levees, which are slightly higher than the original erodible layer depth h0
as shown in figure 9(a). Since this flow is at the same angle as the growing avalanche,
shown in figure 4, it is clear that it is possible to switch between growing, decaying
and steady avalanches by changing h0, at least for a certain range of slope angles.

3. Measurements of the rough bed friction law
Pouliquen (1999a) performed laboratory experiments for flows of spherical glass

beads on a rough chute and found an empirical friction law that was valid for
steady uniform flows at various slope angles. This law was derived from a steady
uniform flow rule that was later found by Forterre & Pouliquen (2003) to take a
slightly different form for flows of sand on a rough chute. An extension of the
Pouliquen (1999a) friction law was made by Pouliquen & Forterre (2002) to include
flows outside of the dynamic regime, when the Froude number was lower than the
minimum required for a steady uniform flow to be possible, down to Fr= 0 for static
material. This comprised a law that took a different form in each of these dynamic,
static and intermediate regimes. They considered two critical slope inclination angles
as functions of the flow thickness h, namely ζstop(h) and ζstart(h), where ζstop(h) is
the slope angle at which a steady uniform flow leaves a deposit of thickness h and
ζstart(h) is the angle at which a layer of thickness h is mobilized. The thickness of a
deposit left by a steady uniform flow at an inclination angle ζ is denoted by hstop(ζ ),
which is the inverse function of ζstop(h), and the thickness of a static layer that is
mobilised when the inclination is increased to an angle ζ is denoted by hstart(ζ ),
which is the inverse function of ζstart(h).

The procedures for determining the critical slope angles and the empirical steady
uniform flow law have been repeated here for the experimental set-up described above,
namely for a flow of 280–350 µm carborundum particles on a rough bed of spherical
glass beads. The critical slope angle curves, ζstop(h) and ζstart(h) are determined by
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FIGURE 8. A sequence of overhead photos at times (a) t̂ = 0.9, (b) t̂ = 1.4, (c) t̂ = 1.9,
(d) t̂ = 2.4 and (e) t̂ = 2.9 s showing a finite mass release from a cylinder of radius
R = 1.4 cm and height hc = 1.6 cm on top of a static erodible layer of thickness h0 =

hstop(35.2◦) ≈ 1.7 mm on a slope inclined at ζ = 35.2◦. These are used to construct the
space–time plot ( f ) along the centre line y = 0. Vertical grey lines indicate stationary
grains and the wavefront appears as a brighter line. The avalanche travels downslope at
approximately constant speed leaving small parallel lateral levees and a shallow trough
in its wake. A movie showing the time-dependent evolution is available in the online
supplementary material (movie 3).
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FIGURE 9. Measured avalanche thickness at three positions xL = 12 cm, xL = 30 cm and
xL = 50 cm downslope of the finite mass release on a slope inclined at ζ = 35.2◦ that
is initially covered with a static erodible layer of grains of thickness h0 = hstop(35.2◦)≈
1.7 mm. The thickness is plotted as (a) contours of constant flow thickness h in the (t̂, y)-
plane, in increasing increments of 0.2 mm inwards (solid lines) from the outer contour at
h= 1.8 mm (dashed line) and (b) flow thickness h along the midpoint of the plane y= 0
versus elapsed time t̂. The avalanche adjusts to form a constant width channel with levees
and an eroded trough behind it.

fits to experimental data, which comprise measurements of the respective thicknesses,
hstop(ζ ) and hstart(ζ ), at various angles ζ with the laser profilometer. Following
Pouliquen & Forterre (2002), the experimental fits take the functional form

tan ζstop,start = tan ζ1,3 +
tan ζ2 − tan ζ1

1+ h/L
. (3.1)

Henceforth, the critical thickness curves take the inverse functional form

hstop,start(ζ )=L
(

tan ζ2 − tan ζ1

tan ζ − tan ζ1,3
− 1
)
=Lγstop,start(ζ ), (3.2)

where
γstop,start(ζ )=

tan ζ2 − tan ζ1

tan ζ − tan ζ1,3
− 1. (3.3)

There is no steady-uniform flow for inclination angles ζ < ζ1, which is the asymptote
of the curve ζstop(h) for large h, and the flow is accelerated for ζ > ζ2 = ζstop(0). The
third critical angle ζ3 is the asymptote of the curve ζstart(h) for large h. The parameter
L (having the dimensions of a length) is the characteristic depth of flow over which
a transition between the angles ζ1 and ζ2 occurs in the friction law and as such it is
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FIGURE 10. Critical angle curves ζstop (solid line) and ζstart (dashed line), which are fits
to experimental data (circles) of the respective forms in (3.1). The plot is annotated with
arrows to show the progression between the curves as they are found experimentally, by
increasing the slope angle to trigger avalanches that leave deposits of decreasing thickness.

ζ1 = 31.1◦ ζ2 = 47.5◦ ζ3 = 32.7◦ L= 0.44 mm
β = 0.63 Γ = 0.40 a= 0.5 κ = 1

TABLE 1. Material properties kept constant throughout.

dependent on the properties of the grains and on the bed roughness. The fits of these
parameters to the experimental data with the functions (3.1) are shown in figure 10.
The values of these and all of the other previously obtained or yet to be introduced
parameters, whose values remain fixed throughout this paper, are given in table 1.

3.1. Dynamic regime
For steady uniform flows the empirical flow relation between the ratio of the flow
thickness h to hstop(ζ ) and the Froude number was found by Forterre & Pouliquen
(2003) to be

Fr=
|ū|

√
hg cos ζ

= β
h

hstop(ζ )
− Γ. (3.4)

Measurements of the flow thickness are made with the laser profilometer, whilst the
depth-averaged downslope velocity ū, which is equal to |ū|, is determined by the
speed of a front travelling down the plane from a space–time plot of overhead images
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FIGURE 11. Measurements of the Froude number Fr= |ū|/
√

gh cos ζ for steady uniform
flow at various slope inclination angles ζ , as a function of the ratio of the flow thickness
h to the critical thickness hstop (black filled circles). The best fit to the data (solid line)
of the form given in equation (3.4) is with β = 0.63 and Γ = 0.40. This is compared
with the best fits to experiments with sand (Forterre & Pouliquen 2003, dotted line), for
which β = 0.65 and Γ = 0.77, and with glass beads (Pouliquen 1999a, dash-dotted line),
for which β = 0.136/

√
cos ζ and Γ = 0.

(measured in the same way as the wavespeeds in § 2). Here the constants β=0.63 and
Γ = 0.40 are best fits to the measured data, as shown in figure 11. The values of these
constants were previously found to be β = 0.65 and Γ = 0.77 for flows of sand on a
rough bed of the same material (Forterre & Pouliquen 2003) and β = 0.136/

√
cos ζ

and Γ = 0 for flows of spherical glass beads on a rough bed of the same material
(Pouliquen 1999a).

With the critical flow thickness functions (3.1) and empirical flow rule (3.4) known,
a friction law for the dynamic regime can now be determined. In a steady uniform
flow there is a balance between gravity and the shear stress at the bed, which implies
that the force balance may be written as (Pouliquen 1999a)

µ= tan ζ . (3.5)

By defining the tangent of the critical stopping angle as

µstop(h)= tan(ζstop(h)), (3.6)

the friction coefficient for the static layer is found through the steady uniform flow
relation (3.5) and the empirical law (3.4) to be

µ= tan ζ = tan(ζstop(hstop(ζ )))=µstop(hstop(ζ ))=µstop(hβ/(Fr+ Γ )). (3.7)
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However the empirical law (3.4) and therefore the friction law (3.7) are only valid for
flows in the dynamic regime, where steady uniform flows are possible. According to
Pouliquen & Forterre (2002), a flow is in the dynamic regime if h> hstop(ζ ), which is
equivalent to Fr>β in the case of glass beads, since the Froude number offset Γ = 0.
For different granular materials, such as sand and the carborundum particles used here,
which have higher values of β, the transition between the dynamic and intermediate
regimes is more complicated. Edwards & Gray (2015) found that allowing a dynamic
regime for h> hstop(ζ ) in the same way as for glass beads, with β = 0.65 and Γ = 0,
leads to the formation of erosion–deposition waves that deposit grains in the wave
troughs with a layer of thickness hdeposit that is significantly lower than hstop(ζ ). This
implies that for a steady uniform flow to leave a layer of thickness hstop the transition
between dynamic and intermediate friction regimes must occur at higher Froude
number. Furthermore, for materials such as sand, where β <Γ , the minimum Froude
number for the transition to the intermediate regime, i.e. Fr = β − Γ by (3.4), is
negative, implying that all flows can only be in the dynamic regime. To overcome
these problems, a friction law transition point h∗(ζ ) is introduced at a thickness
between hstop(ζ ) and hstart(ζ ). This transition thickness is defined as

h∗(ζ )= (1− a)hstop(ζ )+ ahstart(ζ ), (3.8)

where 0 6 a 6 1 is a parameter whose value is chosen (a = 0.5 here) such that
numerical simulations of the hstop experimental measurement procedure correctly
produce deposit layers with thickness hdeposit ≈ hstop. Changing the value of a does
not qualitatively change the possible behaviours, but it changes h∗ and therefore the
flow thickness at which the transition between regimes occurs. Defining β∗ to be the
Froude number at h = h∗, and substituting the flow rule (3.4) into (3.8) gives the
transition Froude number between the dynamic and intermediate regimes as

β∗(ζ )= β

(
1− a+ a

hstart(ζ )

hstop(ζ )

)
− Γ. (3.9)

Note that the existence of the offset Γ formally breaks the arguments based on the
Bagnold flow profile that led to the creation of the µ(I)-rheology (GDR-MiDi 2004;
Jop, Forterre & Pouliquen 2005; Jop et al. 2006), since the scaling hβ/LFr = I0/I,
that allows the empirical friction law to be written as a function of the inertial
number I and constant I0, is no longer valid for a flow rule of the form in (3.4).
Nevertheless the offset in the friction law will be used in conjunction with the
depth-averaged µ(I)-rheology (Gray & Edwards 2014) in this paper. This is justified
by the fact that for shallow flows the additional depth-averaged viscous term, where
some modification may be necessary, is already much smaller than the leading-order
terms in the downslope momentum balance.

3.2. Static regime
Defining the tangent of the critical starting angle as

µstart(h)= tan(ζstart(h)), (3.10)

Pouliquen & Forterre (2002) showed that a knowledge of the functions µstop(h) and
µstart(h) is sufficient to define an empirical friction law for the whole range of possible
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flow thicknesses and Froude numbers. For Fr= 0 the maximum static friction that can
be attained occurs at ζstart, where the friction coefficient

µ(h, 0)= tan(ζstart(h))=µstart(h). (3.11)

In general, the static friction may lie below µstart and simply balance the forces in
order to prevent motion. For both the inviscid and depth-averaged µ(I)-rheology this
is just a balance between effective basal friction, gravity pulling it down the slope and
pressure gradients. It follows that µ= |tan ζ i−∇h|, where i is the unit vector in the
x-direction.

3.3. Intermediate regime
In the intermediate friction regime when 0 < Fr < β∗, the friction coefficient µ is
given by a power law extrapolation between the friction laws in the static and dynamic
friction regimes as

µ(h, Fr)=
(

Fr
β∗

)κ
(µstop(hβ/(β∗ + Γ ))−µstart(h))+µstart(h). (3.12)

The power of the extrapolation chosen by Pouliquen & Forterre (2002) was κ = 10−3,
in order to give a rapid decrease of the friction coefficient close to Fr = 0. They
found their results were insensitive to changes in κ up to a value of 10−2. Both of
these values are extreme. As a result the decrease in friction from the static value is
concentrated in a narrow boundary layer that lies close to Fr= 0, and for much of the
range the friction coefficient is essentially constant. In fact, these values of κ are so
extreme, that, to the accuracy of machine precision, the boundary layer is essentially
invisible in numerical simulations. This may explain why Pouliquen & Forterre (2002)
found that when they simulated a finite mass release on an erodible layer it had
difficulty coming to rest, and ran out considerably further than in experiments. For
the simulations presented here a value of κ = 1 is used instead. This gives stationary
material in the hysteretic region of parameter space much greater stability to small
disturbances, as well as slowly moving material, above hstop, a greater propensity to
come to rest. In general, the value of κ should be at least of order 10−1 to prevent
static layers that are thinner than hstart from moving without being disturbed and no
greater than order 1, to allow them to flow if forced with the steady uniform flow
velocity.

3.4. Friction coefficient
The forms of the functions µstop and µstart are found through the definitions (3.6)
and (3.10) and the experimental fits (3.1) to be

µstop(hβ/(Fr+ Γ ))= tan ζ1 +
tan ζ2 − tan ζ1

1+ hβ/L(Fr+ Γ )
(3.13)

and
µstart(h)= tan ζ3 +

tan ζ2 − tan ζ1

1+ h/L
, (3.14)

where the form of (3.13) has been modified from that of Pouliquen & Forterre (2002)
in order to account for the offset Γ .
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In summary, the friction coefficient can be written in each of the three flow regimes,
which are referred to as dynamic (Fr > β∗), intermediate (0 < Fr 6 β∗) and static
(Fr= 0) regimes, respectively, as

µ(h, Fr)=



µ1 +
µ2 −µ1

1+ hβ/L(Fr+ Γ )
, Fr > β∗,(

Fr
β∗

)κ (
µ1 +

µ2 −µ1

1+ hβ/L(β∗ + Γ )
−µ3 −

µ2 −µ1

1+ h/L

)
+µ3 +

µ2 −µ1

1+ h/L
, 0< Fr 6 β∗,

min
(
µ3 +

µ2 −µ1

1+ h/L
, |tan ζ i−∇h|

)
, Fr= 0,

(3.15)
where µ1 = tan ζ1, µ2 = tan ζ2 and µ3 = tan ζ3 are the tangents of the critical angles,
ζ1, ζ2 and ζ3. In the case when Γ = 0 and β∗ = β the friction law (3.15) reduces to
that of Pouliquen & Forterre (2002).

4. Governing equations
The erosion–deposition waves observed experimentally in §2 are now modelled

using Baker et al.’s (2016a) two-dimensional generalization of Gray & Edwards’
(2014) depth-averaged µ(I)-rheology combined with the modification of Pouliquen
& Forterre’s (2002) friction law discussed in § 3. The theory is therefore a
two-dimensional depth-averaged generalization of the erosion–deposition wave model
of Edwards & Gray (2015).

4.1. Depth-averaged equations with viscous dissipation
The theory does not explicitly resolve the interface between static and flowing layers
in the normal direction to the chute or the erosion and deposition rates between them.
Instead, the avalanche thickness h and depth-averaged velocity ū= (ū, v̄) are defined
over the entire layer. With this representation the depth-averaged mass and momentum
balance equations are

∂h
∂t
+
∂

∂x
(hū)+

∂

∂y
(hv̄)= 0, (4.1)

∂

∂t
(hū)+

∂

∂x
(χhū2)+

∂

∂y
(χhūv̄)+

∂

∂x

(
1
2

h2g cos ζ
)
= hgSx

+ Vx(x, y), (4.2)

∂

∂t
(hv̄)+

∂

∂x
(χhūv̄)+

∂

∂y
(χhv̄2)+

∂

∂y

(
1
2

h2g cos ζ
)
= hgSy

+ Vy(x, y), (4.3)

where χ = u2/ū2 is the shape factor, Sx,y are source terms and Vx,y are viscous-like
terms. The µ(I)-rheology implies that for steady uniform flow a Bagnold velocity
profile develops (see e.g. GDR-MiDi 2004; Gray & Edwards 2014) and the resulting
shape factor χ = 5/4. However, non-unity values of the shape factor change the
characteristic structure of the inviscid equations, and causes problems when handling
grain-free regions (Hogg & Pritchard 2004), so virtually all avalanche models (e.g.
Grigorian et al. 1967; Savage & Hutter 1989; Gray et al. 1999; Pouliquen 1999b;
Pouliquen & Forterre 2002; Gray et al. 2003) assume, as we do here, that χ = 1. This
is a reasonable assumption since the dominant momentum balance is between source
terms and pressure gradients, whilst the acceleration terms are small. Furthermore,
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Viroulet et al. (2017) showed that variation in the shape factor away from unity has
little effect for flows in which the Froude number is less than one. The source terms

Sx
= sin ζ −µ

ū
|ū|

cos ζ , (4.4)

Sy
=−µ

v̄

|ū|
cos ζ , (4.5)

consist of the downslope component of gravity and the effective basal friction µ
between the avalanche and the rough plane, which opposes the direction of motion.
Gray & Edwards (2014) showed that to leading order the inviscid avalanche equations
emerge naturally from depth averaging the µ(I)-rheology (GDR-MiDi 2004; Jop et al.
2006) with the basal friction given by the dynamic basal friction law of Pouliquen &
Forterre (2002).

The depth-averaged µ(I)-rheology (Gray & Edwards 2014; Baker et al. 2016a),
used here, differs from the standard inviscid equations by the inclusion of in-plane
deviatoric stresses, which give rise to depth-averaged viscous-like terms in the
momentum balances (4.2)–(4.3). In two dimensions these are

Vx(x, y)=
∂

∂x

(
νh3/2 ∂ ū

∂x

)
+
∂

∂y

(
1
2
νh3/2

(
∂v̄

∂x
+
∂ ū
∂y

))
, (4.6)

Vy(x, y)=
∂

∂x

(
1
2
νh3/2

(
∂ ū
∂y
+
∂v̄

∂x

))
+
∂

∂y

(
νh3/2 ∂v̄

∂y

)
, (4.7)

respectively, where the coefficient ν in the effective viscosity νh1/2/2 is explicitly
determined in the depth-integration process and is given by

ν =
2
9
L√g
β

sin ζ
√

cos ζ

(
tan ζ2 − tan ζ
tan ζ − tan ζ1

)
, (4.8)

with the parameters L, β, ζ1 and ζ2 arising from Pouliquen & Forterre’s (2002)
basal friction law described in § 3. The value of ν for the various slope inclinations
is summarized in table 2. Strong evidence for these viscous terms is provided by
the fact that, unlike the inviscid avalanche model, they predict a downslope velocity
profile across a channel with rough side walls (Baker et al. 2016a). The viscous terms
are also vital in regularizing depth-averaged models of segregation-induced fingering
(Pouliquen, Delour & Savage 1997; Pouliquen & Vallance 1999; Woodhouse et al.
2012; Baker, Johnson & Gray 2016b). In addition, the functional dependence on the
slope inclination ζ and thickness h to the three-halves power is crucial in matching
the cutoff frequency of roll waves without any additional fitting parameters (Gray &
Edwards 2014). It should be noted, however, that the theory is only well posed for
slope inclinations in the range of steady uniform flow, i.e. for ζ ∈ [ζ1, ζ2], reflecting
the fact that the full µ(I)-rheology is ill posed for high and low inertial numbers
(Barker et al. 2015). Outside of this range of angles some form of regularization is
therefore required, i.e. the negative viscosity for ζ /∈ [ζ1, ζ2] must be prevented.

Edwards & Gray (2015) found that by using Pouliquen & Forterre’s (2002) extended
basal friction law, which has additional static and intermediate regimes, it was
possible to construct steadily travelling erosion–deposition wave solutions with static
and mobile regions. In principle, the form of the viscous term should change when
the friction law is in the intermediate or static regimes, i.e. for Fr < β∗. However,
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ζ hstop(ζ ) hstart(ζ ) β∗(ζ ) ν(ζ )

(deg.) (mm) (mm) (m3/2 s−1)

34.0 2.5 5.6 0.64 1.7× 10−3

34.4 2.2 4.6 0.57 1.5× 10−3

35.2 1.7 2.9 0.47 1.2× 10−3

TABLE 2. Critical layer thicknesses, hstop and hstart, the friction law transition point β∗ and
the coefficient ν in the depth-averaged viscosity νh1/2/2 for each experimental slope angle.

it is not obvious how to achieve this, since there is no longer a steady uniform
flow solution to determine the velocity and pressure profiles in the depth-integration
process. Neither is it obvious how the offset Γ for angular particles (e.g. sand and
carborundum) can be included in the viscosity. However, since the viscous terms
represent a singular perturbation to the equations (i.e. they are the highest-order
derivatives, but most of the time they are very small), the simple form in (4.6)–(4.7)
with the viscous coefficient (4.8) are assumed to apply to all regimes in this paper.

4.2. Numerical method
The standard depth-averaged avalanche equations (e.g. Gray et al. 2003) represent
a system of hyperbolic equations that require high-resolution shock capturing
numerical methods (e.g. Nessyahu & Tadmor 1990) to solve them. Although
our problems are still convection dominated the inclusion of the depth-averaged
µ(I)-rheology (Gray & Edwards 2014; Baker et al. 2016a) changes the system into
a set of convection–diffusion equations. This paper therefore uses the closely related
semi-discrete high-resolution non-oscillatory central schemes of Kurganov & Tadmor
(2000) together with a second-order Runge–Kutta method, with a step size of 10−4 s,
for their time evolution. The scheme has been tested against the one-dimensional
travelling wave solutions of Edwards & Gray (2015) and the value of the time step
has been chosen to minimize the small variations in the static layer thickness due
to overshoots, while maximizing the efficiency of the computation. The travelling
wave results have also been validated by using an alternative third-order Runge–Kutta
adaptive step method (Medovikov 1998) for the time evolution, although this method
is much more computationally expensive.

In order to solve the system, the depth-averaged equations (4.1)–(4.7) together with
the friction law (3.15) are written in conservative vector form as

∂w
∂t
+
∂f (w)
∂x
+
∂g(w)
∂y
= S(w)+

∂

∂x
(Q(w,wx,wy))+

∂

∂y
(R(w,wx,wy)), (4.9)

where w= (h,m, n)T is the vector of conservative variables h, m= hū and n= hv̄, and
the subscripts denote partial derivatives. The resulting convection flux functions f and
g, and the source term vector S= (0, Sx, Sy)T are

f =


m

m2

h
+

h2

2
g cos ζ

mn
h

 , g=


n

mn
h

n2

h
+

h2

2
g cos ζ

 , S=


0

hg sin ζ −µ
m
|m|

hg cos ζ

−µ
n
|m|

hg cos ζ

 ,
(4.10a−c)
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respectively, where the vector of mass fluxes m= (m, n)T. The diffusive flux functions
are given by

Q= νh1/2


0

∂m
∂x
−

m
h
∂h
∂x

1
2

(
∂m
∂y
−

m
h
∂h
∂y
+
∂n
∂x
−

n
h
∂h
∂x

)
 , (4.11)

and

R= νh1/2


0

1
2

(
∂n
∂x
−

n
h
∂h
∂x
+
∂m
∂y
−

m
h
∂h
∂y

)
∂n
∂y
−

n
h
∂h
∂y

 . (4.12)

For the problems of interest here the flows are subcritical (Fr < 1) everywhere,
which requires two inflow conditions and one outflow condition to be specified for
the hyperbolic system (e.g. Weiyan 1992). The introduction of diffusive terms means
that the system is now parabolic and an extra boundary condition is required, which
is applied here at the outflow end of the domain. Periodic boundary conditions are
imposed at the cross-slope boundaries, although there is no flow across them in any
of the following simulations.

5. Numerical simulations on a two-dimensional plane
The two-dimensional system of conservative equations (4.9)–(4.12), with the friction

law (3.15), are solved numerically for the experimental configurations described
in § 2. A rectangular computational domain is defined in the range −5 6 x 6 95 cm,
−10 cm 6 y 6 10 cm and is discretized with 1000 grid points in the x-direction
and 100 grid points in the y-direction. The initial conditions are of a cylindrical
mass of radius R = 1.4 cm and height hc = 1.6 cm centred at (x, y) = (0, 0) on top
of a layer of thickness h = h0, with m = n = 0 everywhere. This will be referred
to as the standard release. As the column of grains collapses it sets the previously
static particles immediately downstream of the cylinder into motion to form an
avalanche. At the downstream boundary x = 0.95 m free outflow is imposed via a
linear extrapolation of the values of h and m from the final two columns of interior
cells. At the upstream boundary x = −0.05 m, a stationary inflow is imposed with
h= h0 and m= 0.

5.1. Growing avalanches
Simulations are performed to model the growing avalanche shown in figure 4. The
slope angle is set to ζ = 35.2◦ and a deep deposit layer of thickness h0 = 2.2 mm
is prescribed, which is equivalent to hstop(34.4◦) = 2.2 mm on a shallower slope.
The results are plotted as thickness contours in the (x, y)-plane at various times in
figure 12. The region that is in motion is shaded grey and the dashed contour at
2.1 mm approximately delineates the outer boundary of the static trough deposit that
forms behind the avalanche, which is thinner than the undisturbed erodible layer. A
movie is available in the online supplementary material (movie 4). As the avalanche
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FIGURE 12. Numerical simulations of the standard release on a static layer of thickness
h0 = 2.2 mm on a slope angle of ζ = 35.2◦ at times (a) t = 0.5, (b) t = 1.0, (c) t = 1.5,
(d) t = 2.0 and (e) t = 2.5 s. Contours of thickness h are plotted in the (x, y)-plane
in increasing increments of 0.2 mm inwards from the outer contour at 2.3 mm (solid
lines), whilst the trough contour is at h= 2.1 mm (dashed line, 0.1 mm below h0). The
shaded grey area indicates where the depth-averaged downslope velocity component ū
is non-zero. A movie showing the time-dependent evolution is available in the online
supplementary material (movie 4).

propagates downslope it erodes the thick layer in front of it and progressively
grows in size by depositing less material behind it and by broadening laterally. By
xL = 30 cm it is approximately 14 cm wide, which is roughly 25 % wider than the
experimental avalanche, but it has qualitatively the correct behaviour. As a result, the
maximal extent of the trough has a triangular shape, which is consistent with the
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experimental results of Daerr & Douady (1999). As the avalanche bulks up, the wave
accelerates slightly, although over the length of the chute its wavespeed remains close
to its mean value of uw= 0.31 m s−1, which is slightly greater than the experimental
value of 0.26 m s−1.

In order to compare the numerical simulations with the experimental results shown
in figure 5, the flow thickness contours in the (t, y)-plane and the temporal evolution
of the flow thickness on the centreline are plotted in figure 13. The temporal evolution
of the downslope velocity on the centreline and the final static layer depth across
the plane at xL = 30 cm are also shown. The plots in figure 13(b,c) show that the
avalanche develops into a classical erosion–deposition wave soon after the initial
collapse, with the highest velocities occurring during the peak of the wave, which
has a sharp front and a more gradual decay of both height and velocity in the tail.
Outside of the wave the velocity is zero. The avalanche peak height at xL= 50 cm is
hw= 5.8 mm, which is only slightly less than the experimental value of approximately
5.9 mm. As the wave propagates downslope it erodes more grains from the front than
it deposits in the tail, and the incised trough becomes progressively deeper further
downstream, reaching hdeposit = 1.6 mm at xL = 50 cm. This is slightly lower than the
experimental value of 1.7 ± 0.2 mm. The cross-section in figure 13(d) shows that
after the avalanche has passed by there is a strongly incised trough, which has a
base that is 0.6 mm lower than the initial deposit thickness. At the sides are some
very small levees, but they are not big enough to balance the mass that has been lost,
so that this channel is typical of a growing avalanche. Overall the model produces
a slightly wider flowing region, with a shorter thinner avalanche than is observed
experimentally. However, the important features of the experimental flow are captured
in the simulations and the results are qualitatively comparable, as they produce an
avalanche that is continually growing in width and in wave peak height.

There are several possible reasons for the apparently increased width of the
numerical simulations as compared to the experiments. One possibility is that
the friction law (3.15) is still not perfect, and that by modifying it one might
be able to get closer to the experiments. Another possibility is that the relatively
crude representation of the deposition mechanism is at fault, and that to get better
agreement the interface between flowing and non-flowing material really does have to
be resolved in the vertical. Unfortunately there is no accepted way of doing this yet.
A final possibility is that the initial collapse from the cylinder may not be captured
well in the depth-averaged framework. Certainly a few of the grains are stranded at
the experimental release point and do not, as assumed, propagate down the plane.
This would reduce the mass that should be used in the simulations and hence also
produce a width reduction. Better agreement between theory and experiment could
also potentially be achieved by commencing the simulations once the avalanche
is shallow. However, this has not been done here, because it would require us to
prescribe the unknown thickness and velocity fields at this later time.

5.2. Decaying avalanches
With the slope at ζ = 34.1◦ and the static layer thickness at h0 = 2.5 mm, equal to
the theoretical hstop for 34.1◦, the standard release again generates a three-dimensional
erosion–deposition wave that propagates downslope. This time, however, the contour
plots in figure 14 show that there is net deposition and by t = 2.5 s the avalanche
has completely stopped. The shape of the deposit and the final stopping position of
the head, at x= 53 cm, are very close to the experiments shown in figure 6, where
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FIGURE 13. Numerical simulations of the standard release on a static layer of thickness
h0 = 2.2 mm inclined at ζ = 35.2◦. The results are plotted at three downslope positions
xL = 12, xL = 30 and xL = 50 cm (from left to right) as (a) contours of constant flow
thickness in the (t, y)-plane in increasing increments of 0.2 mm inwards from the outer
contour at 2.3 mm (solid lines), whilst the trough contour is at h= 2.1 mm (dashed line,
0.1 mm below h0), (b) flow thickness h along the midpoint of the plane, y= 0, and (c) the
depth-averaged downslope velocity component ū along the midpoint of the plane, versus
time t. The avalanche deposit in the cross-slope y-direction at xL = 30 cm is shown in
(d) for all times after the material at that position has come to rest.
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FIGURE 14. Numerical simulations of the standard release on a static layer of thickness
h0 = 2.5 mm and on a slope angle of ζ = 34.1◦ at times (a) t = 0.5, (b) t = 1.0,
(c) t = 1.5, (d) t = 2.0 and (e) t = 2.5 s. Contours of thickness h are plotted in the
(x, y)-plane in increasing increments of 0.2 mm inwards from the outer contour at 2.8 mm
(solid lines), whilst the deposit contour is at h= 2.6 mm (dashed line, 0.1 mm above h0).
The shaded grey area indicates where the depth-averaged downslope velocity component
ū is non-zero. A movie showing the time-dependent evolution is available in the online
supplementary material (movie 5). Note that the domain size corresponds with the
experimental images in figure 6.

the maximum distance reached by the avalanche is 55 cm. The space–time plots in
figure 15(a,b) indicate that the avalanche is again wider than in the experiments in
figure 7, but that the model otherwise accurately captures the deposition of mass.
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FIGURE 15. Numerical simulations of the standard release on a static layer of thickness
h0= 2.5 mm and at a slope angle of ζ = 34.1◦. The results are plotted at three downslope
positions xL=12, xL=30 and xL=50 cm downslope (from left to right) as (a) contours of
constant flow thickness h in the (t, y)-plane in increasing increments of 0.2 mm inwards
from the outer contour at 2.8 mm (solid lines), whilst the deposit contour is at h=2.6 mm
(dashed line, 0.1 mm above h0), (b) flow thickness h along the midpoint of the plane,
y= 0, and (c) the depth-averaged downslope velocity component ū along the midpoint of
the plane, versus time t. The avalanche deposit in the cross-slope y-direction at xL=30 cm
is shown in (d) for all times after the material at that position has come to rest.
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At xL = 30 cm the deposit thickness in the centre of the channel hdeposit = 2.8 mm,
which is very close to the experimental value of 2.7 mm. The cross-section in
figure 15(d) shows that the avalanche is leaving behind an elevated channel, which
is everywhere higher than the undisturbed deposit and which is flanked by small
levees. This cross-slope profile is typical of a depositing flow, and as one progresses
downstream the elevated channel narrows. During the flowing phase the avalanche has
an almost constant wavespeed uw = 0.15 m s−1, which is moderately larger than the
experimental value of approximately 0.13 m s−1. However, figure 15(b,c) shows that
as the avalanche propagates downslope both the peak thickness and the magnitude
of the velocities decrease. At xL = 30 cm the peak height hw = 4.8 mm, which is
slightly less than the experiments where the thickness is approximately 5.0 mm. This
suggests that the model is again allowing for a wider spread of material into a shorter
and thinner avalanche than is observed experimentally, but that all the main attributes
are qualitatively captured and the quantitative comparison is still good.

5.3. Steady avalanches
Perhaps most interestingly, with the slope at ζ = 35.2◦ and the static layer thickness
h0 = 1.7 mm (equal to hstop(35.2◦) and the experimental value of h0 ≈ 1.7 mm) after
the initial collapse the avalanche appears to approach a steadily travelling wave as
shown in figure 16. In order for this to occur there has to be a perfect balance
between the erosion of material at the front of the avalanche and the deposition that
occurs behind it. The wavespeed is calculated by measuring the distance travelled
by the wave peak in the time after the initial spreading and before it leaves the
computational domain, and is found here to be uw = 0.21 m s−1, which is only
slightly greater than the value of 0.20 m s−1 found in experiments. The space–time
plots in figure 17(a–c) indicate that after the initial collapse the avalanche quickly
attains a constant width W ≈ 11 cm, which is 30 % wider than the experiments in
figure 8. The avalanche peak height at xL = 30 cm is hw = 4.0 mm, which is slightly
less than the experimental value of approximately 4.3 mm. As the avalanche moves
farther downstream its peak height and maximum velocity continue to evolve, albeit
very slowly. Behind the wave, the deposit in the centre of the trough approaches
a constant thickness hdeposit = 1.6 mm, which is slightly lower than the initial layer
thickness, and close to the experimental value of 1.5 mm. The cross-slope profile
in figure 17(d) shows that levees form on either flank of the shallow trough. The
form of this channel is therefore typical of a steady travelling erosion–deposition
wave, in which the initial erodible layer ahead of the wave is reworked into a pair
of levees and a trough behind it, whose cross-sectional area exactly equates to that
in the undisturbed deposit.

6. Numerical simulations of the avalanche in a travelling frame
The survival of the steadily propagating avalanche in § 5.3 suggests that there is a

three-dimensional travelling wave solution to the governing equations. This will now
be investigated further by solving the problem for much longer times in a frame
moving with the wave.

6.1. Governing equations in a travelling frame of reference
In a frame moving with constant speed uw the transformation of coordinates

τ = t, ξ = x− uwt, η= y (6.1a−c)
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FIGURE 16. Numerical simulations of the standard release on a static layer of thickness
h0 = 1.7 mm on a slope angle of ζ = 35.2◦ at times (a) t = 0.5, (b) t = 1.3, (c) t = 2.1,
(d) t = 2.9 and (e) t = 3.7 s. Contours of thickness h are plotted in the (x, y)-plane in
increasing increments of 0.2 mm inwards from the outer contour at 2.0 mm (solid lines),
whilst the deposit contour is at h= 1.8 mm (dashed line, 0.1 mm above h0). The shaded
grey area indicates where the depth-averaged downslope velocity component ū is non-zero.
A movie showing the time-dependent evolution is available in the online supplementary
material (movie 6).
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FIGURE 17. Numerical simulations of the standard release on a static layer of thickness
h0= 1.7 mm and at a slope angle of ζ = 35.2◦. The results are plotted at three downslope
positions xL = 12, xL = 30 and xL = 50 cm (from left to right) as (a) contours of constant
flow thickness h in the (t, y)-plane in increasing increments of 0.2 mm inwards from the
outer contour at 2.0 mm (solid lines), whilst the deposit contour is at h= 1.8 mm (dashed
line, 0.1 mm above h0), (b) flow thickness h along the midpoint of the plane, y= 0, and
(c) the depth-averaged downslope velocity component ū along the midpoint of the plane,
versus time t. The avalanche deposit in the cross-slope y-direction at xL= 30 cm is shown
in (d) for all times after the material at that position has come to rest.
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implies that the depth-averaged mass and momentum conservation laws (4.1)-(4.3)
transform to

∂h
∂τ
+
∂

∂ξ
(h(ū− uw))+

∂

∂η
(hv̄)= 0, (6.2)

∂

∂τ
(hū)+

∂

∂ξ
(hū(ū− uw))+

∂

∂η
(hūv̄)+

∂

∂ξ

(
1
2

h2g cos ζ
)
= hgSξ + Vξ (ξ , η), (6.3)

∂

∂τ
(hv̄)+

∂

∂ξ
(hv̄(ū− uw))+

∂

∂η
(hv̄2)+

∂

∂η

(
1
2

h2g cos ζ
)
= hgSη + Vη(ξ , η), (6.4)

where Sξ = Sx and Sη = Sy are given by (4.4) and (4.5) respectively, and the diffusive
terms are

Vξ (ξ , η)=
∂

∂ξ

(
νh3/2 ∂ ū

∂ξ

)
+
∂

∂η

(
1
2
νh3/2

(
∂v̄

∂ξ
+
∂ ū
∂η

))
, (6.5)

Vη(ξ , η)=
∂

∂ξ

(
1
2
νh3/2

(
∂ ū
∂η
+
∂v̄

∂ξ

))
+
∂

∂η

(
νh3/2 ∂v̄

∂η

)
. (6.6)

In order to solve the travelling wave equations (6.2)–(6.6) numerically, they are
written in terms of the conserved variables w= (h,m, n)T = (h, hū, hv̄)T as

∂w
∂τ
+
∂ f̂ (w)
∂ξ
+
∂g(w)
∂η
= S(w)+

∂

∂ξ
(Q̂(w,wξ ,wη))+

∂

∂η
(R̂(w,wξ ,wη)). (6.7)

The resulting convection flux functions are

f̂ =


m− uwh

m2

h
+

h2

2
g cos ζ − uwm

mn
h
− uwn

 , (6.8)

with g given in (4.10). The source term vector is S = (0, Sξ , Sη)T = (0, Sx, Sη)T and
the diffusive flux functions are given by

Q̂= νh1/2


0

∂m
∂ξ
−

m
h
∂h
∂ξ

1
2

(
∂m
∂η
−

m
h
∂h
∂η
+
∂n
∂ξ
−

n
h
∂h
∂ξ

)
 , (6.9)

and

R̂= νh1/2


0

1
2

(
∂n
∂ξ
−

n
h
∂h
∂ξ
+
∂m
∂η
−

m
h
∂h
∂η

)
∂n
∂η
−

n
h
∂h
∂η

 . (6.10)
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6.2. Numerical simulation
The conservative form of the governing equations (6.7)–(6.10) with the source terms
(4.4)–(4.5) are solved numerically on a rectangular computational domain (0 6 ξ 6
50 cm, −106 η6 10 cm), which is discretized over 500 grid points in the ξ -direction
and 100 grid points in the η-direction. The initial conditions are taken from the results
of the numerical simulation of § 5.3 in the region 45 6 x 6 95 cm downstream at t=
3.7 s (figure 16e). Free outflow is imposed at the upstream boundary ξ = 0 m via a
linear extrapolation of the values of h and m from the first two columns of interior
cells. At the downstream boundary ξ = 0.5 m, a stationary inflow is imposed with
h = h0 and m = 0, such that the initial avalanche effectively has an infinitely long
static layer of thickness h0 ahead of it. The slope angle ζ = 35.2◦ and h0 = 1.7 mm.
Based on the measured wavespeed in the previous simulations in § 5.3 the speed of
the travelling frame is set to uw = 0.21 m s−1.

The initial condition and the computed state after 20 s are shown in figure 18(a,b).
A movie is also available online (movie 7). These show that the initial and final
states are virtually unchanged. The front position has moved slightly to the left, which
simply implies that the imposed speed of the travelling frame was slightly greater
than the actual wavespeed of the avalanche. However, there is nothing to suggest that
after a longer period of computation, and the exact wavespeed of the avalanche being
known, that it would not continue to propagate unchanged in this domain forever. It
is rather remarkable that the presence of an erodible layer of grains can change the
apparent friction of the slope and can thus produce indefinitely long run out. This
is potentially very important for quantifying the risks posed by natural hazards when
there are slopes covered with easily erodible material, such as in the case of snow
avalanches.

The steady travelling wave solution is the three-dimensional equivalent of the
two-dimensional erosion–deposition waves observed by Edwards & Gray (2015).
The final computed state shown in figure 18(b) compares very favourably with the
experimentally observed deposit contour shown in red. The avalanche is wider and
shorter than the experimental avalanche, but the quantitative comparison is reasonably
good and the qualitative features of a levee and shallow trough are very close to what
are observed in the simulations. One interesting feature in the experiments that one
does not see in the numerical computations is that the tail of the moving part of the
avalanche has a pronounced ‘V’-shape. This may be an indication that the avalanche
is eroding down to different depths within the channel. To help visualize the computed
wave figure 19 shows a three-dimensional surface plot of an erosion–deposition wave
with an exaggerated vertical height and colour scale used to reveal the shape of the
wave (in red), the trough (in blue), the levees (in yellow) and the undisturbed deposit
(in green).

7. Conclusions
This paper shows that when a finite mass of carborundum particles is released

on a rough plane covered with an erodible layer of the same grains, there are
three qualitatively different behaviours that can be observed dependent on the slope
inclination and the deposit thickness. For sufficiently shallow slopes the avalanche
propagates for a finite distance before coming to rest, as one may intuitively expect
(Pouliquen & Forterre 2002). At a steeper slope angle, the avalanche has been
observed to either propagate steadily with constant wavespeed and shape, or, when
released on a thicker erodible layer, to accumulate additional particles (bulking) and
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FIGURE 18. Results of a numerical simulation in the frame of the travelling wave on a
slope at ζ = 35.2◦ and with an initial layer thickness h0= 1.7 mm. The initial condition at
t= 3.7 s is taken from the simulation in figure 16(e). The thickness contours (solid lines)
are shown in increasing increments of 0.2 mm inwards from 2.0 mm, with the deposit
contour at h= 1.8 mm (dashed line, 0.1 mm above h0) at (a) t= 0 and (b,c) t= 20 s. The
shaded areas indicate regions where the depth-averaged downslope velocity component ū
is non-zero. The red dashed line in (b) shows the experimental deposit thickness contour
h= 1.8 mm suitably translated downslope. The arrows in (c) represent the non-zero depth-
averaged velocity field ū and the colouring gives the magnitude |ū|. A movie showing the
time-dependent evolution is available in the online supplementary material (movie 7).
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x
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h (mm)

FIGURE 19. Steady travelling erosion–deposition wave solution from the numerical
simulation of figure 18(b) in the region 5 cm 6 x 6 45 cm, coloured by flow thickness h
and plotted as an inclined three-dimensional surface. The x, y and z axes are plotted with
a 1 : 1 : 30 aspect ratio, respectively, and the dashed mesh lines are spaced 20 mm apart.
The rough basal surface of the chute lies at the bottom of the blue layer. A supplementary
movie of the flow is available online (movie 8).

therefore grow and accelerate. The steady travelling avalanche is the three-dimensional
equivalent of the two-dimensional erosion–deposition waves observed by Edwards
& Gray (2015). Provided that both the static layer in front of the flow and the
inclination angle do not change, this wave can travel arbitrarily long distances, which
is an intriguing observation. Behind it, the wave leaves a shallow deposited trough
that is flanked by levees on either side as illustrated in figure 19. Since erosion and
deposition are in exact balance, the total volume of material in the levees and the
trough is the same as the equivalent volume in the undisturbed layer ahead of the
wave. For the growing avalanches the avalanche essentially leaves behind an eroded
trough of previously mobilized material that widens with increasing downstream
distance (Daerr & Douady 1999). Conversely, for decaying avalanches, there is net
mass loss, and a channel is left behind that is elevated above the initially static deposit
height and narrows with downstream distance, terminating in a static deposited head.

Given the notorious difficulty in modelling erosion–deposition problems, it is
remarkable that all three of these behaviours can be modelled by combining
the extended rough bed friction law of Pouliquen & Forterre (2002) with a two-
dimensional generalization (Baker et al. 2016a) of the depth-averaged µ(I)-rheology
of Gray & Edwards (2014). The theory is crude, in that the interface between the
static and moving grains is not resolved in the vertical direction. Instead, the flow
is either static or moving through its entire depth, which is a good approximation
for the shallow erodible beds considered here. An important element of the model
is that the static, dynamic and intermediate regimes in the rough bed friction law
(3.15) have been modified slightly to give greater stability to static layers that form
in the hysteretic region between hstop and hstart. In particular, the power law transition
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starts at a higher Froude number β? than is normal and the subsequent transition
between the static and dynamic states is much more gradual (κ = 1) than in the
original formulation (Pouliquen & Forterre 2002) where κ was equal to 10−3. The
resulting model is able to capture qualitatively all of the key behaviour observed
in the experiments, and the quantitative agreement is also good, even though the
avalanches tends to be shorter and wider than observed. The growing, decaying and
steady avalanches will stop if they flow out onto a run-out plane. The same equations
can be used to compute the arrest, however, care must be taken to regularize the
coefficient ν in the viscosity for angles ζ < ζ1.

Both the bulking up of snow slab avalanches through frontal ploughing (Sovilla
et al. 2001; Sovilla & Bartelt 2002; Sovilla et al. 2006) as well as their sudden arrest
in the run-out zone are strongly affected by the net erosion and deposition in the flow.
In particular, the existence of an easily erodible layer confers much greater mobility to
the flow than one might otherwise expect (Mangeney et al. 2010; Iverson et al. 2011)
and run-out distances can be significantly enhanced. It is therefore anticipated that the
relatively simple model for erosion and deposition, developed in this paper, may find
important application in predicting the risk posed by a wide range of geophysical mass
flows on erodible slopes. A key challenge for the future is how to determine the hstop
and hstart curves for real geophysical materials where the fixed bed may not be clearly
defined.
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