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Asymptotic Properties for Increments of
l∞-Valued Gaussian Random Fields

Yong-Kab Choi and Miklós Csörgő

Abstract. This paper establishes general theorems which contain both moduli of continuity and large

incremental results for l∞-valued Gaussian random fields indexed by a multidimensional parameter

under explicit conditions.

1 Introduction and Results

Initial studies on the asymptotics of increments of Wiener and related processes, par-

tial sum and empirical processes were integrated and furthered as well in [10]. Since

then, various limit theories on moduli of continuity and large incremental results

have been developed for lp-valued, 1 ≤ p < ∞, or finite dimensional space-valued

Gaussian and related stochastic processes [4, 6, 7, 11, 12, 19, 23], and for renewal pro-

cesses [32]. Moreover, Csörgő, Lin, and Shao [8] obtained moduli of continuity

results for l∞-valued one-parameter Gaussian and Ornstein–Uhlenbeck processes.

For illustration of the latter and further reference, we introduce one of the in-

spiring results of [8] (see Theorem 1.1 below). Let {Xk(t),−∞ < t < ∞}∞k=1 be

a sequence of centered continuous Gaussian processes with stationary increments

σ2
k (h) := E{Xk(t + h) − Xk(t)}2, where σk(h) are nondecreasing in h > 0.

We recall that a function Q(x) is said to be quasi-increasing on (a, b) if there exists

a constant c > 0 such that Q(x) ≤ cQ(y) for a < x < y < b.

Put σ2
∗(h) = maxk≥1 σ2

k (h), and suppose that σ2
∗(h)/hα is quasi-increasing for

some α > 0.

We quote the following result from [8].

Theorem 1.1 Let Xk( · ) and σk( · ) be as above. Suppose that there exist positive num-

bers A and h0 such that

(1.1)

∞
∑

k=1

σA
k (h0) < ∞.
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Let yh be the solution of the equation

(1.2)

∞
∑

k=1

(hyh)σ2
∗(h)/σ2

k (h)
= h.

If, in addition, Xk( · ), k = 1, 2, . . . , are independent and for 0 ≤ t1 < t2 ≤ t3 < t4,

(1.3) E
{(

Xk(t2) − Xk(t1)
)(

Xk(t4) − Xk(t3)
)}

≤ 0,

then

(1.4) lim
h↓0

sup
0≤t≤1

sup
0≤s≤h

max
k≥1

|Xk(t + s) − Xk(t)|
σ∗(h)

{

2 log(1/(hyh))
} 1/2

= 1 a.s.

Further, if condition (1.1) is replaced by conditions for 0 < h ≤ h0 so that

(1.5) inf
0<s≤h

σ∗(s)

σk(s)
≥ c1

σ∗(h)

σk(h)
for some c1 > 0 and every k ≥ 1

and

(1.6)

∞
∑

k=1

hσ2
∗(h)/σ2

k (h) < ∞,

then (1.4) remains true with yh = 1, that is,

(1.7) lim
h↓0

sup
0≤t≤1

sup
0≤s≤h

max
k≥1

|Xk(t + s) − Xk(t)|
σ∗(h)

{

2 log(1/h)
} 1/2

= 1 a.s.

In the proof of Theorem 1.1 we can find that 0 < yh ≤ 1, condition (1.1) implies

condition (1.6), and that the latter condition guarantees that the solution of equa-

tion (1.2) exists and is unique. Thus we conclude that conditions (1.3) and (1.6) are

essential to get (1.7) which is a modulus of continuity for l∞-valued one-parameter

Gaussian processes.

As an analogue of (1.7), Lin and Quin [26] obtained a large incremental result

for l∞-valued one-parameter Gaussian processes under similar conditions to those

of Theorem 1.1.

Various aspects of infinite dimensional Gaussian processes have been extensively

studied in the literature since the appearance of Dawson [13]. Their importance is

based on their natural roles in many different areas of pure and applied mathemat-

ics. In particular, infinite dimensional Ornstein–Uhlenbeck processes have played

a prominent role in the study of stochastic differential equations [1, 14, 18, 29, 34].

They also appeared in constructive quantum field theory [3, 16], in the study of in-

finite particle systems [17] and of infinite dimensional diffusions [18, 20, 28, 30, 33].

The papers listed in the first paragraph of this section also deal with various path
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properties of some of the processes that are found in the just mentioned works (cf.

[7, 34]).

The object of this paper is to establish general theorems which contain both mod-

uli of continuity and large incremental results for l∞-valued Gaussian random fields

indexed by a multidimensional parameter under explicit conditions as in (1.8) below

and (1.11) of Theorem 1.3, in place of conditions (1.1)–(1.5) of Theorem 1.1.

Given the nonpositive condition (1.3) of Theorem 1.1, it is in general easy enough

to prove liminf results to get (1.4) and (1.7) by simply applying Slepian’s lemma (see

Lemma 2.4 below). However, since condition (1.11) of Theorem 1.3 yields a posi-

tive (or nonpositive) covariance function of increments, as opposed to the restricted

condition (1.3), the proofs of Theorems 1.3, 1.6 and 1.8 below are accomplished with

new techniques built on several lemmas that are of interest on their own.

We assume that the realizations of random fields {Xk(t), t ∈ [0,∞)N}∞k=1 in-

dexed by N-dimensional parameter t := (t1, . . . , tN ) are different objects and that

the choice of coordinates of the parameter is not necessarily limited to length and

time. Any appropriate scale of measurement might be involved.

We first introduce some notations and conditions that will be used throughout.

Let t = (t1, . . . , tN ) and s = (s1, . . . , sN) be vectors in [0,∞)N . Define:

0 = (0, . . . , 0) and 1 = (1, . . . , 1) in [0,∞)N ;

(t, s) = (t1, . . . , tN , s1, . . . , sN) ∈ [0,∞)2N ;

t ≤ s if ti ≤ si for all integers 1 ≤ i ≤ N ;

t ± s = (t1 ± s1, . . . , tN ± sN ); ts = (t1s1, . . . , tN sN );

at = (at1, . . . , atN) for a real number a.

Let D = {t : t := (t1, . . . , tN ) ∈ [0,∞)N} be an N-dimensional parameter space

with the Euclidean norm ‖ · ‖ such that ‖t‖ =
(
∑N

i=1 t2
i

) 1/2
. Let {Xk(t), t ∈ D}∞k=1

be a sequence of real-valued continuous and centered Gaussian random fields with

Xk(0) = 0 and stationary increments

σk(‖h‖) :=
√

E{Xk(t + h) − Xk(t)}2,

where σk(h) are nondecreasing continuous functions of h > 0.

A positive function f (h) of h > 0 is said to be regularly varying with exponent

α > 0 at b ≥ 0 if limh→b{ f (xh)/ f (h)} = xα for x > 0.

Put σ∗(h) = supk≥1 σk(h) and assume that σ∗(h) is a regularly varying function

with exponent α at b ≥ 0 for some 0 < α < 1. Suppose that either

(1.8) σ∗(h)/σk(h) ≥
√

1 + log k, k ≥ 1 or

∞
∑

k=1

hσ2
∗(h)/σ2

k (h) < ∞.

For instance, take σk(h) = hα/
√

1 + 2 log k, h > 0. Then it is clear that condition

(1.1) in Theorem 1.1 is not satisfied but condition (1.8) is satisfied; in the latter case

of (1.8) one can, for example, take h = hn = e−n, n > 1.

https://doi.org/10.4153/CJM-2008-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-015-4


316 Y.-K. Choi and M. Csörgő

We note that condition (1.8) is essential and used only for getting large deviation

probabilities for l∞-valued Gaussian random fields as in Lemmas 2.1 and 2.2, and

that it is an explicit condition as well.

Let {X(t) := (X1(t), X2(t), . . . ), t ∈ D} be a Gaussian random field taking values

in l∞-space with l∞-norm ‖ · ‖∞ defined by ‖X(t)‖∞ = supk≥1 |Xk(t)|.
For each i = 1, 2, . . . , N, let ai(T) and bi(T) be positive continuous functions of

T = (T1, . . . , TN) > 0 such that ai(T) ≤ bi(T), and denote:

aT = (a1(T), . . . , aN(T)), bT = (b1(T), . . . , bN(T)),

β1(T) =
{

2
(

N log(‖bT‖/‖aT‖) + log | log ‖bT‖|
)} 1/2

,

β2(T) =
{

2
(

N log(‖bT‖/‖aT‖) + logθ | log ‖bT‖|
)} 1/2

,

β3(T) =
{

2N log(‖bT‖/‖aT‖)
} 1/2

,

where log x = ln(max{x, 1}) and 1 < θ < e.

In the above context, in case k = N = 1, if we put X(t) = X(t), σk(·) = σ( · ),

aT = aT , and bT = bT , then we can see that the results in this paper generalize

some main theorems related to moduli of continuity and large incremental results

for 1-dimensional one parameter Wiener and further Gaussian and related stochastic

processes in [4, 7, 9, 10, 25, 27, 35]. For example, if we put aT = 1/T = h (0 < h < 1)

and bT = 1 in Corollary 1.9, we obtain the modulus of continuity [7, (3.11)]; if we

put bT = T in Corollary 1.9 as well, we obtain the large incremental result [7, (3.17)].

The main results are as follows.

Theorem 1.2 Let X(t) and σ∗( · ) be as above. For each i = 1, 2, . . . , N, let ai(T)

and bi(T) be positive continuous functions on (0,∞)N such that

(1.9)
‖bT‖
‖aT‖

+ ‖aT‖ → ∞ as ‖T‖ → ∞.

Then we have

(1.10) lim sup
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β1(T)

≤ 1 a.s.

Note that {s : 0 ≤ s ≤ h} ⊂ {s : ‖s‖ ≤ ‖h‖}. Hence we prefer to take suprema

via Euclidean norms of vectors.

Condition (1.9) implies that aT and bT may be many kinds of functions. However,

in order to obtain the opposite inequality of (1.10), the conditions on aT, bT and

σ∗( · ) are a little bit restricted as in the following theorem.

Theorem 1.3 Let X(t) and σ∗( · ) be as in Theorem 1.2. For each i = 1, 2, . . . , N, let

ai(T) and bi(T) be positive increasing and continuous functions on (0,∞)N such that
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lim‖T‖→∞ bi(T) = ∞ and bi(T)/ai(T) (> 1) is increasing. If, in addition, Xk( · ), k =

1, 2, . . . , are independent and there are positive constants c1 and c2 such that, for h > 0,

(1.11)
∣

∣

∣

dσ2
∗(h)

dh

∣

∣

∣
≤ c1

σ2
∗(h)

h
and

∣

∣

∣

d2σ2
∗(h)

dh2

∣

∣

∣
≤ c2

σ2
∗(h)

h2
,

then we have

lim sup
‖T‖→∞

‖X(bT + aT) − X(bT)‖∞
σ∗(‖aT‖)β1(T)

≥ 1 a.s.

The class of variance functions σ2
∗( · ) satisfying condition (1.11) contains all con-

cave functions with 0 < α ≤ 1/2 (e.g., σ2
∗(h) =

√
h ) and convex functions with

1/2 < α < 1 (see [19]). We recall that the correlation function on increments of a

stochastic process with stationary increments is nonpositive (positive) if and only if

its variance function is nearly concave (convex). In this regard, compare condition

(1.3) of Theorem 1.1 with the paragraph following (2.6) below; see also the nonpos-

itive conditions [7, (3.10), (4.2)].

The proofs of Theorems 1.3 and 1.6 under condition (1.11) as above are accom-

plished via several lemmas, because we must compute correlation functions for in-

crements of the Gaussian random field (see (2.6) and (2.18)).

From Theorems 1.2 and 1.3 we obtain the following lim sup result.

Corollary 1.4 Under the assumptions of Theorem 1.3, we have

lim sup
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β1(T)

= 1 a.s.,

lim sup
‖T‖→∞

‖X(bT + aT) − X(bT)‖∞
σ∗(‖aT‖)β1(T)

= 1 a.s.

From now on, we are to show that lim inf results differ from their corresponding

lim sup results under the additional condition (1.12) of the next theorem.

Theorem 1.5 Let X(t) and σ∗( · ) be as in Theorem 1.2. For each i = 1, 2, . . . , N, let

ai(T) and bi(T) be positive continuous functions on (0,∞)N such that as ‖T‖ → ∞,

(1.12) ‖bT‖ → ∞ or 0 and
log

(

‖bT‖/‖aT‖
)

logθ | log ‖bT‖|
→ r, 0 ≤ r ≤ ∞,

where θ is as in β2(T). Then we have

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β2(T)

≤
( rN

1 + rN

) 1/2

a.s.

https://doi.org/10.4153/CJM-2008-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-015-4


318 Y.-K. Choi and M. Csörgő

Theorem 1.6 Let X(t) and σ∗( · ) be as in Theorem 1.5. Assume that conditions (1.11)

and (1.12) are satisfied. Then we have

(1.13) lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)β2(T)

≥
( rN

1 + rN

) 1/2

a.s.

Condition (1.12) guarantees that the class of vector functions aT and bT contains

many functions [2]. As a consequence of Theorems 1.2, 1.3, 1.5, 1.6, and 1.8, we can

obtain moduli of continuity as well as large incremental results as in Examples 1.10

and 1.11. We note also that condition (1.12) and β2(T) are tools that can be used to

show various deviations between lim sup and lim inf results in other random fields,

as well as in this paper.

Combining Theorems 1.5 and 1.6, we obtain the following lim inf result, which

deviates from Corollary 1.4.

Corollary 1.7 Under the assumptions of Theorem 1.6, we have

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β2(T)

= lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)β2(T)

=

( rN

1 + rN

) 1/2

a.s.

and, equivalently, by (1.12),

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β1(T)

= lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)β1(T)

=

( rN

rN + log θ

) 1/2

a.s.

(1.14)

where 1 < θ < e in the definition of β2(T). The reason why θ cannot be equal to e

is shown following (2.20) below. When 0 ≤ r < ∞, it is clear that lim sup results in

Corollary 1.4 are different from lim inf results (1.14) if ‖aT‖ → ∞.

In order to obtain a limit result, we consider the following condition (1.15) of

Theorem 1.8 when r = ∞ in (1.12). In condition (1.15), note in particular that there

is a case that ‖bT‖ converges to a positive constant as well as ‖bT‖ → ∞ (or 0) in

(1.12), as ‖T‖ → ∞.

Theorem 1.8 Let X(t) and σ∗( · ) be as in Theorem 1.2. For each i = 1, 2, . . . , N, let

ai(T) and bi(T) be positive continuous functions on (0,∞)N such that

(1.15) lim
‖T‖→∞

log
(

‖bT‖/‖aT‖
)

logθ | log ‖bT‖|
= ∞.
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If condition (1.11) is satisfied, then

(1.16) lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)β3(T)

≥ 1 a.s.

Combining Theorems 1.2 and 1.8, we arrive at the following limit result.

Corollary 1.9 Under the assumptions of Theorem 1.8 we have

lim
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)βi(T)

= lim
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)βi(T)

= 1, i = 1, 2, 3 a.s.

(1.17)

For example, in the case of N = 1, if we put bT = b1(T1) = 1 and aT = a1(T1) =

1/T1 = h (0 < h < 1) in (1.17), then we obtain the modulus of continuity (1.7)

of Theorem 1.1; if bT = T1 and aT = a1(T1) in (1.17), then we obtain the large

incremental result [26, (2.9)].

For a one-parameter Wiener process with σ∗(h) =
√

h, initial results that are

preliminaries to Corollaries 1.4, 1.7, and 1.9 can be found in [10].

The structures of the main theorems above and the techniques for their proofs can

be applied to develop a similar limit theory for increments of l∞-valued, lp-valued,

1 ≤ p < ∞, or finite dimensional space-valued multiparameter random fields,

extensions of stochastic processes that are dealt with in several papers: Ornstein–

Uhlenbeck processes in [7], Gaussian processes in [4, 5, 25], and Lévy Brownian mo-

tion in [23, 35].

Returning to our present exposition, we present two examples.

Example 1.10 (Large incremental result) Let X(t) and σ∗( · ) be as in Theorem 1.2.

For T = (T1, T2, T3, T4) > 0 with T1 > T2 > T3 > T4, let

bT = (
√

(T1 − T3)2 − (T1 − T2)2,
√

(T2 − T4)2 − (T3 − T4)2, T2 − T3, T1 − T4),

aT = (T2 − T3)bT/‖bT‖.

For convenience, take T1 = T2eT , T2 = eT , T3 = T, T4 = 1 for T > 1. Then aT and

bT satisfy all the conditions of Theorems 1.2, 1.3, 1.5 and 1.6 with

‖aT‖ = T2 − T3 = eT − T,

‖bT‖ = T1 + T2 − T3 − T4 = (T2 + 1)eT − (T + 1),

β1(T) = {8 log[((T2 + 1)eT − (T + 1))/(eT − T)]

+2 log log[(T2 + 1)eT − (T + 1)]}1/2,

aT < bT and r = 2 log θ in (1.12).
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Thus, by Corollary 1.4, we have

lim sup
T→∞

sup
‖t‖≤(T2+1)eT−T−1

sup
‖s‖≤eT−T

‖X(t + s) − X(t)‖∞
σ∗(eT − T) β1(T)

= lim sup
T→∞

‖X(bT + aT) − X(bT)‖∞
σ∗(eT − T)β1(T)

= 1 a.s.

and by (1.14) of Corollary 1.7, we have

lim inf
T→∞

sup
‖t‖≤(T2+1)eT−T−1

sup
‖s‖≤eT−T

‖X(t + s) − X(t)‖∞
σ∗(eT − T) β1(T)

= lim inf
T→∞

sup
‖t‖≤(T2+1)eT−T−1

‖X(t + aT) − X(t)‖∞
σ∗(eT − T) β1(T)

=

√

8/9 a.s.

On the other hand, from Corollary 1.9, we can obtain a modulus of continuity as

follows.

Example 1.11 (Modulus of continuity) Let X(t) and σ∗( · ) be as in Theorem 1.2.

For convenience, let T = (T1, T2, T3) = (1, 2, 3)/h2 for 0 < |h| < 6/7, then

‖T‖ → ∞ if and only if h → 0. Put aT = (1/T1, 1/T2, 1/T3) and bT = |h|aT/‖aT‖.

Then aT and bT satisfy conditions of Corollary 1.9 with

aT = (1, 1/2, 1/3)h2
=: ah, ‖aT‖ = 7h2/6, ‖bT‖ = |h|,

β1(T) =

{

2
(

3 log
( 6

7|h|
)

+ log log
1

|h|
)} 1/2

=: βh.

Thus, by (1.17), we arrive at

lim
h→0

sup
‖t‖≤|h|

‖X(t + ah) − X(t)‖∞
σ∗(7h2/6)βh

= lim
h→0

sup
‖t‖≤|h|

sup
‖s‖≤7h2/6

‖X(t + s) − X(t)‖∞
σ∗(7h2/6)βh

= 1 a.s.

2 Proofs

We shall accomplish the proofs of Theorems 1.2, 1.3, 1.5, 1.6, and 1.8 via several lem-

mas. The following lemma is another version of Fernique’s lemma [15] for l∞-valued

Gaussian random fields which is proved in a way similar to that of [24, Lemma 2.1]

by using condition (1.8). Theorem 1.2 is verified by Lemma 2.2, which follows from

Lemma 2.1.
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Lemma 2.1 Let D be a compact subset of R
N with Euclidean norm ‖ · ‖ and let

{Zk(t), t ∈ D}∞k=1 be a sequence of real-valued separable and centered Gaussian ran-

dom fields. Assume that {U(t) = (Z1(t), Z2(t), · · · ), t ∈ D} is an l∞-valued Gaussian

random field with l∞-norm ‖ · ‖∞. Suppose that

0 < Γk := sup
t∈D

{E(Zk(t))2}1/2 < ∞, Γ := sup
k≥1

Γk,

σ2
k (‖t − s‖) := E{Zk(t) − Zk(s)}2 ≤ ϕ2

k(‖t − s‖),

ϕ∗(h) = sup
k≥1

ϕk(h),

where σk(h) and ϕk(h) are positive nondecreasing and continuous functions of h > 0. If

condition (1.8) is satisfied, then for λ > 0, x > 0 and B > (4
√

2 + 4)
√

N, there exists

a constant c > 0 such that

P
{

sup
t∈D

‖U(t)‖∞ ≥ x
(

Γ + B

∫ ∞

0

ϕ∗(λ2−y2

) dy
)}

≤ c
m(D)

λN
exp(−x2/2),

where m(D) is the Lebesgue measure of D.

From Lemma 2.1, we obtain the following large deviation probability for the

l∞-valued Gaussian random field X( · ) of our investigation.

Lemma 2.2 Let X(t) and σ∗( · ) be as in Theorem 1.2. For each i = 1, 2, . . . , N, let

ai(T) and bi(T) be positive continuous functions on (0,∞)N . Then, for any ε > 0, there

exists a positive constant Cε depending only on ε such that

P
{

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)

≥ x
}

≤ Cε

( ‖bT‖
‖aT‖

)N

exp
(

− x2

2 + ε

)

for all x > 0.

We omit the proof, which is similar to that of [24, Lemma 2.2] and does not make

use of equation (1.2) in Theorem 1.1 or of the classical method of positive dyadic

rational numbers that is used in the proof of Theorem 1.1. Lemma 2.2 plays a key

role in obtaining inequality (2.3).

Proof of Theorem 1.2 Let θ =
√

1 + ε for any given ε > 0. Define

Ek = {T : θk ≤ σ∗(‖aT‖) ≤ θk+1}, −∞ < k < ∞,

Ek, j = {T : 2 j ≤ ‖bT‖
‖aT‖

≤ 2 j+1, T ∈ Ek}, 0 < j < ∞,

‖aTk, j
‖ = sup{‖aT‖ : T ∈ Ek, j},

‖bTk, j
‖ = sup{‖bT‖ : T ∈ Ek, j}.
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By condition (1.9), we have

lim sup
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖) β1(T)

≤ lim sup
|k|+l→∞

sup
j≥l>0

sup
T∈Ek, j

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖) β1(T)

≤ lim sup
|k|+l→∞

sup
j≥l

sup
‖t‖≤‖bTk, j

‖
sup

‖s‖≤‖aTk, j
‖

‖X(t + s) − X(t)‖∞
θk D(k, j)

,

(2.1)

where D(k, j) =
{

2(log 2N j + log log θ|k|+ j logθ 2)
} 1/2

. We are to show that

lim sup
|k|+l→∞

sup
j≥l

sup
‖t‖≤‖bTk, j

‖
sup

‖s‖≤‖aTk, j
‖

‖X(t + s) − X(t)‖∞
θk D(k, j)

≤ θ lim sup
|k|+l→∞

sup
j≥l

sup
‖t‖≤‖bTk, j

‖
sup

‖s‖≤‖aTk, j
‖

‖X(t + s) − X(t)‖∞
σ∗(‖aTk, j

‖) D(k, j)

≤ θ2 a.s.

(2.2)

for any θ as defined above. By Lemma 2.2, there exists Cε > 0, depending only on

ε > 0, such that

P
{

sup
j≥l

sup
‖t‖≤‖bTk, j

‖
sup

‖s‖≤‖aTk, j
‖

‖X(t + s) − X(t)‖∞
σ∗(‖aTk, j

‖)D(k, j)
≥ θ

}

≤ Cε

∑

j≥l

( ‖bTk, j
‖

‖aTk, j
‖
)N

exp
(

−2(1 + ε)

2 + ε
(log 2N j + log log θ|k|+ j logθ 2)

)

≤ Cε

∑

j≥l

2−ε ′N j |k ∨ 1|−1−ε ′

≤ Cε |k ∨ 1|−1−ε ′

2−ε ′Nl

(2.3)

for |k|+ l large enough, where ε ′
= ε/(2 + ε) and k∨ 1 = max{k, 1}. Hence we have

∞
∑

l=1

∞
∑

|k|=1

P
{

sup
j≥l

sup
‖t‖≤‖bTk, j

‖
sup

‖s‖≤‖aTk, j
‖

‖X(t + s) − X(t)‖∞
σ∗(‖aTk, j

‖)D(k, j)
≥ θ

}

< ∞,

and (2.2) follows from the Borel–Cantelli lemma. Combining (2.2) with (2.1) yields

(1.10) by the arbitrariness of θ.

The following Lemmas 2.3–2.5 are essential for the proof of Thoerem 1.3, and

Lemma 2.3 is a well-known version of the second Borel–Cantelli lemma.
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Lemma 2.3 Let {Ak, k ≥ 1} be a sequence of events. If

(i)

∞
∑

k=1

P(Ak) = ∞,

(ii) lim inf
n→∞

∑

1≤ j<k≤n

P(A j ∩ Ak) − P(A j )P(Ak)
(

∑n
j=1 P(A j )

) 2
≤ 0,

then P(An, i.o.) = 1.

Lemma 2.4 ([31]) Let {X j , j = 1, 2, . . . , n} be centered and stationary normal ran-

dom variables with E(XiX j) = ri j and rii = 1. Let I+1
c = [c,∞) and I−1

c = (−∞, c).

Denote by F j the event {X j ∈ I
ε j
c j } for c j ∈ (−∞,∞), j = 1, 2, . . . , n, where ε j is

either +1 or −1. Let K ⊂ {1, 2, . . . , n}, then P{⋂ j∈K F j} is an increasing function of

ri j if εiε j = +1; otherwise, it is decreasing.

The proof of Lemma 2.5 is similar to that of [6, Lemma 5].

Lemma 2.5 Assume condition (1.11) of Theorem 1.3 is satisfied. For i = 0, 1, 2, 3,

let a(i)
= (a(i)

1 , . . . , a(i)
N ) be positive N-dimensional vectors such that a(3)

j − a(2)
j >

a(2)
j − a(1)

j > 0 for each j = 1, 2, . . . , N. then there exists a positive constant c such that

∫ ‖a(0)+a(3)‖

‖a(0)+a(2)‖
dσ2

∗(x) −
∫ ‖a(0)+a(2)‖

‖a(0)+a(1)‖
dσ2

∗(x)

≤ c
σ2
∗(‖a(0) + a(3)‖)‖a(3) − a(2)‖‖a(2) − a(1)‖

‖a(0) + a(1)‖2
.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let jT ≥ 1 be an integer such that σ jT
(‖aT‖) = σ∗(‖aT‖),

where jT depends on ‖aT‖. Then

(2.4) lim sup
‖T‖→∞

‖X(bT) − X(bT − aT)‖∞
σ∗(‖aT‖)β1(T)

≥ lim sup
‖T‖→∞

X jT
(bT) − X jT

(bT − aT)

σ jT
(‖aT‖)β1(T)

.

Let {Ti = (T1i , . . . , TNi) > 0}∞i=1 be an increasing sequence with T0 = 1 whose

points Ti are determined by the relation

bl(Ti) − al(Ti) = bl(Ti−1), l = 1, . . . , N

with Tm (m = 1, 2, · · · , i − 1) defined by induction, where 1 < Ti ≤ T ≤ Ti+1.
This can be done by noting that bl(T) − al(T) are increasing on (0,∞)N , because

bl(T)/al(T) (> 1) are increasing. For estimating a lower bound of the right-hand

side of (2.4), we simply let ji = jTi
, ai = aTi

= (a1(Ti), . . . , aN (Ti)) and bi = bTi
=

(b1(Ti), . . . , bN(Ti)), i ≥ 1, and set

Zi :=
X ji

(bi) − X ji
(bi − ai)

σ ji
(‖ai‖)

.
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The proof of Theorem 1.3 will be completed by showing that

lim sup
i→∞

Zi

β1(Ti)
≥ 1 a.s.

For any given 0 < ε < 1, let Bi = {Zi > xi}, i ≥ 1, where xi = (1 − ε)β1(Ti). First

we show that
∑∞

i=1 P(Bi) = ∞. For a large i, we have

P(Bi) ≥
1√
2π

( 1

xi

− 1

x3
i

)

exp
(

−1

2
x2

i

)

≥ exp
(

− 1

2 − ε
x2

i

)

≥
( ‖ai‖N

‖bi‖N | log ‖bi‖ |

) 1−ε

,

m
∑

i=i0

P(Bi) ≥
1

| log ‖bm‖ |1−ε

m
∑

i=i0

‖ai‖N

‖bi‖N
,

for some i0 with m ≥ i ≥ i0. Further, we have

| log ‖bm‖| ≤ c

m
∑

i=i0

log
‖bi‖
‖bi−1‖

= c

m
∑

i=i0

log

(

1 +
‖ai‖

‖bi−1‖

)

≤ c

m
∑

i=i0

log

(

1 +
c0‖ai−1‖
‖bi−1‖

)

(2.5)

for sufficiently large c0 > 1, where c > 1 is a constant. The last inequality of (2.5)

follows from the fact that there is c0 > 1 big enough such that

‖ai‖
‖ai−1‖

≤ ‖bi‖
‖bi−1‖

≤ ‖bi‖
‖bi‖ − ‖ai‖

=
1

1 − (‖ai‖/‖bi‖)
< c0

for all i0 ≤ i ≤ m. It follows from (2.5) that there exists a constant K > 0 such that

N| log ‖bm‖| ≤ c N

m
∑

i=i0

log
(

1 +
c0‖ai−1‖
‖bi−1‖

)

≤ K

m
∑

i=i0

( c0
2‖ai‖
‖bi‖

)N

.

Therefore, we have

m
∑

i=1

P(Bi) ≥
N

Kc0
2N

| log ‖bm‖|ε → ∞ as m → ∞,

and hence condition (i) of Lemma 2.3 is satisfied.

Next, it suffices to show that condition (ii) of Lemma 2.3 holds. Let i < k. If

ji 6= jk, then

E{(X ji
(bi) − X ji

(bi − ai))(X jk
(bk) − X jk

(bk − ak))} = 0
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by independence of Xk( · ). But, if ji = jk, then

E(ZiZk) =
1

σ ji
(‖ai‖)σ ji

(‖ak‖)
E
{

(X ji
(bi) − X ji

(bi − ai))

× (X ji
(bk) − X ji

(bk − ak))
}

= − 1

2σ ji
(‖ai‖)σ ji

(‖ak‖)

{

σ2
ji

(‖bk − bi‖) − σ2
ji

(‖bk − bi − ak‖)

− σ2
ji

(‖bk − bi + ai‖) + σ2
ji

(‖bk − bi − ak + ai‖)
}

=
1

2σ ji
(‖ai‖)σ ji

(‖ak‖)

{

σ2
ji

(‖bk − bi + ai‖) − σ2
ji

(‖bk − bi‖)

− (σ2
ji

(‖bk − bi − ak + ai‖) − σ2
ji

(‖bk − bi − ak‖))
}

.

(2.6)

If the right-hand side of (2.6) is less than or equal to zero, that is, if σ2
ji

( · ) is a

nearly concave function with 0 < α ≤ 1/2, then P(Bi ∩B j) ≤ P(Bi)P(B j) by Lemma

2.4, and hence (ii) of Lemma 2.3 holds true.

On the contrary, if the right-hand side of (2.6) is larger than zero, that is, if σ2
ji

( · )

is a nearly convex function with 1/2 < α < 1, then

E(ZiZk) ≤ 1

σ ji
(‖ai‖)σ ji

(‖ak‖)

×
{

∫ ‖bk−bi +ai‖

‖bk−bi−ak+ai‖
dσ2

ji
(x) −

∫ ‖bk−bi−ak+ai‖

‖bk−bi−ak‖
dσ2

ji
(x)

}

.

(2.7)

Applying Lemma 2.5 with a(0)
= bk − bi − ak, a(1)

= 0, a(2)
= ai , and a(3)

= ak + ai ,

the right-hand side of (2.7) is less than or equal to

(2.8)
cσ2

ji
(‖bk − bi + ai‖)‖ai‖ ‖ak‖

σ ji
(‖ai‖)σ ji

(‖ak‖)‖bk − bi − ak‖2
.

By the definition of {Ti}∞i=1, we have

bk − bi =

k
∑

l=i+1

al, ‖bk − bi + ai‖ =

∥

∥

∥

k
∑

l=i

al

∥

∥

∥
≤ (k − i + 1)‖ak‖,(2.9)

‖bk − bi − ak‖ =

∥

∥

∥

k−1
∑

l=i+1

al

∥

∥

∥
≥ (k − i − 1)‖ai‖, k ≥ i + 2.(2.10)

Noting that ‖bi‖/‖ai‖ is increasing and
∥

∥

∑k
l=i+1 al

∥

∥ = ‖bk − bi‖ < ‖bk‖, it follows

that

(2.11)
‖ai‖
‖ak‖

≥ ‖bi‖
‖bk‖

≥ 1 − ‖bk − bi‖
‖bk‖

= 1 − ‖
∑k

l=i+1 al‖
‖bk‖

≥ 1 − ρ
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for some 0 < ρ < 1. From (2.7), (2.8), (2.9), (2.10), and (2.11) and the property of

slowly varying function L( · ), we arrive at

E(ZiZk) ≤
c σ2

ji
((k − i + 1)‖ak‖)‖ai‖‖ak‖

σ ji
(‖ai‖)σ ji

(‖ak‖)(k − i − 1)2‖ai‖2

≤ c
σ2

ji
((k − i + 1)‖ak‖)‖ak‖

σ ji
((1 − ρ)‖ak‖)σ ji

(‖ak‖)(k − i − 1)2(1 − ρ)2‖ak‖

= c
(k − i + 1)2α‖ak‖2αL2((k − i + 1)‖ak‖)

(1 − ρ)α+2‖ak‖2αL((1 − ρ)‖ak‖)L(‖ak‖)(k − i − 1)2

≤ c (k − i)α ′−1, k ≥ i + 2,

where α < α ′ < 1. The remainder of the proof is exactly the same as the corre-

sponding proof of [27, Theorem 2]. The details are omitted.

Proof of Theorem 1.5 First, consider the case 0 < r ≤ ∞. Given condition (1.12),

there exists a positive number γ such that

‖bT‖
‖aT‖

≥
∣

∣ log ‖bT‖
∣

∣

γ/ log θ
,

provided ‖T‖ is large enough. Thus, it follows from (1.12) and Lemma 2.2 that, for

any ε > 0,

P
{

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖) β3(T)

>
√

1 + ε
}

≤ Cε

( ‖bT‖
‖aT‖

)N

exp
(

− 2 + 2ε

(2 + ε)2
log

( ‖bT‖
‖aT‖

)N)

≤ Cε | log ‖bT‖|−Nγε/((2+ε) log θ) → 0 as |T‖ → ∞,

(2.12)

and [25, Lemma 1.1.5] implies

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖) β3(T)

≤ 1 a.s.

Hence, by (1.12), we get

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖) β2(T)

= lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖) β3(T)

β3(T)

β2(T)

≤
( rN

1 + rN

) 1/2

a.s.

(2.13)
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Next, consider the case r = 0. It follows from (1.12) that for any ε > 0,

‖bT‖
‖aT‖

< | log ‖bT‖|ε/((2+ε)N log θ)

for ‖T‖ large enough. Similarly to (2.12), we have

P
{

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β2(T)

>
√

ε/2
}

≤ c
( ‖bT‖
‖aT‖

)N

exp
(

− ε

2(2 + ε)
β2

2(T)
)

≤ c | log ‖bT‖|−ε2/((2+ε)2 log θ) → 0 as ‖T‖ → ∞,

which implies that

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

sup
‖s‖≤‖aT‖

‖X(t + s) − X(t)‖∞
σ∗(‖aT‖)β2(T)

≤ 0 a.s.

Combining this inequality with (2.13) completes the proof of Theorem 1.5.

To prove Theorem 1.6, we need the following two lemmas. The proof of Lemma

2.6 is similar to that of [6, Lemma 5].

Lemma 2.6 Assume that condition (1.11) of Theorem 1.3 is satisfied. Let a > 0 and

b > 1 be N-dimensional vectors. Then there exists a positive constant C such that

∣

∣

∣

∫ ‖a‖ ‖b+1‖

‖a‖ ‖b‖
dσ2

∗(x) −
∫ ‖a‖ ‖b‖

‖a‖ ‖b−1‖
dσ2

∗(x)
∣

∣

∣
≤ C

σ2
∗(‖a‖‖b + 1‖)

‖b − 1‖2
.

Lemma 2.7 ([4, 21, 22]) Let N = (n1, . . . , nN) be an N-dimensional vector, where

n1, . . . , nN = 1, 2, . . . , L, and let {lN := (ln1
, . . . , lnN

)} be a subsequence of {N}. Sup-

pose that {Y (N)} is a sequence of N-parameter standard normal random variables with

Λ(N, N
′) := Cov (Y (N),Y (N

′)) for N 6= N
′ such that δ := maxN6=N ′ |Λ(N, N

′)| < 1

and

|λ(N, N
′)| := |Λ(lN, lN ′)| < ‖N − N

′‖−ν

for some ν > 0. Denote m = (m1, . . . , mN ) with mi ≤ L, 1 ≤ i ≤ N. Set u =
{

(2 − η) log
(

∏N
i=1 mi

)} 1/2
, where 0 < η < (1 − δ)ν/(1 + ν + δ). Then we have

P
{

max
1≤N≤m

Y (lN) ≤ u
}

≤
{

Φ(u)
}

QN
i=1 mi

+ c
(

N
∏

i=1

mi

)−δ0

,

where Φ(u) =
∫ u

−∞
1√
2π

e−y2/2 dy, δ0 = {ν(1−δ)−η(1+δ+ν)}/{(1+ν)(1+δ)} > 0

and c > 0 is a constant independent of N and u.
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Proof of Theorem 1.6 The inequality (1.13) is obvious when r = 0. In what fol-

lows, we assume that 0 < r ≤ ∞. Let θ = 1 + ε for 0 < ε < 1. Define

Bk,j = {T : θk−1 ≤ ‖bT‖ ≤ θk, θ ji−1 ≤ ai(T) ≤ θ ji , 1 ≤ i ≤ N},

where k and ji are integers. Denote j = ( j1, . . . , jN ), θ
aj

= (θa j1 , . . . , θa jN ) for

−∞ < a < ∞ and j =
1
N

∑N
i=1 ji . In the sequel, we always consider k and j such

that Bk,j 6= ∅. Note that ‖aT‖ ≥ θ j−1 for T ∈ Bk,j. By condition (1.12), there exists

γ > 0 such that j ≤ k + 1 − γ(log log θ|k|)/(log θ)2
=: K for |k| sufficently large.

Noting that

lim
‖T‖→∞

β2(T)

β3(T)
=

( rN + 1

rN

) 1/2

,

the inequality (1.13) is proved if we show that

(2.14) lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)β3(T)

≥ 1 a.s.

By (1.12), we can write

(2.15) lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖) β3(T)

≥ lim inf
|k|→∞

inf
j≤K

sup
‖t‖≤θk−1

‖X(t + θ
j) − X(t)‖∞

σ∗(‖θj‖)

√

2N log θk− j+1

− lim sup
|k|→∞

sup
j≤K

sup
‖t‖≤θk

sup
θj−1≤s≤θj

‖X(t + θ
j) − X(t + s)‖∞

σ∗(‖θj − θj−1‖)

√

2N log θk− j+1

σ∗(‖θj − θ
j−1‖)

σ∗(‖θj−1‖)

=: J1 − J2.

First, we claim that

(2.16) J1 ≥ 1 a.s.

By the definition of σ∗(h), there exists an integer ζ ≥ 1 such that σζ(‖θj‖) =

σ∗(‖θj‖). Put

β(k, j) = (β(k, j1), . . . , β(k, jN)) =
1√
NM

(θk−1− j1 , . . . , θk−1− jN )

for sufficiently large M > 0. Then

(2.17) J1 ≥ lim inf
|k|→∞

inf
j≤K

max
1≤l≤β(k,j)

Xζ(Mlθj + θ
j) − Xζ(Mlθj)

σζ(‖θj‖)
√

2 log(ΠN
i=1β(k, ji))

.
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Let

Zj(l) =
Xζ(Mlθj + θ

j) − Xζ(Mlθj)

σζ(‖θj‖)
, 1 ≤ l ≤ β(k, j).

Similarly to (2.6), we have, for all l and l ′ with l > l ′,

λj(l, l ′) := Cov(Zj(l), Zj(l ′))

=
1

2σ2
ζ(‖θj‖)

{

σ2
ζ (‖M(l − l ′)θj + θ

j‖) − σ2
ζ (‖M(l − l ′)θj‖)

−
(

σ2
ζ (‖M(l − l ′)θj‖) − σ2

ζ (‖M(l − l ′)θj − θ
j‖)

)}

.

(2.18)

If the right-hand side of (2.18) is less than or equal to zero, then it follows from

Lemma 2.4 that for any 0 < ε < 1,

(2.19) P
{

inf
j≤K

max
1≤l≤β(k.j)

Zj(l)
√

2 log
(

ΠN
i=1β(k, ji)

)

≤
√

1 − ε
}

≤
∑

j≤K

{

Φ

(

√

(2 − 2ε) log
(

ΠN
i=1β(k, ji)

)

)}

QN
i=1 β(k, ji )

.

On the other hand, if the right-hand side of (2.18) is positive, that is, σ2
ζ is a nearly

convex function, then it follows from the regular variation of σ2
ζ and Lemma 2.6 with

a = θ
j and b = M(l − l ′) that

|λj(l, l ′)| ≤ 1

σ2
ζ (‖θj‖)

∣

∣

∣

∣

∫ ‖θ
j‖ ‖M(l−l ′)+1‖

‖θj‖ ‖M(l−l ′)‖
dσ2

ζ (x) −
∫ ‖θ

j‖ ‖M(l−l ′)‖

‖θj‖ ‖M(l−l ′)−1‖
dσ2

ζ(x)

∣

∣

∣

∣

≤ C
σ2

ζ (‖θj‖ ‖M(l − l ′) + 1‖)

σ2
ζ (‖θj‖) ‖M(l − l ′) − 1‖2

≤ C
‖M(l − l ′) + 1‖2

‖M(l − l ′) − 1‖2
‖M(l − l ′) + 1‖2α−2

< ξ ‖l − l ′‖−ν

for sufficiently small ξ > 0, where ν = 1 − α > 0. We now apply Lemma 2.7 for

Y (ll) = Zj(l), 1 ≤ l ≤ β(k.j), m = β(k, j),

|λ(l, l ′)| = |λj(l, l ′)| < ξ ‖l − l ′‖−ν , ν = 1 − α > 0,

u = {(2 − η) log(ΠN
i=1β(k, ji))}1/2, η = 2ε.
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Then we have

P
{

inf
j≤K

max
1≤l≤β(k.j)

Zj(l)
√

2 log
(

ΠN
i=1β(k, ji)

)

≤
√

1 − ε
}

≤
∑

j≤K

{

(Φ(u))
QN

i=1 β(k, ji ) + c
(

N
∏

i=1

β(k, ji)
)−δ0

}

≤
∑

j≤K

{exp
(

− c θεN(k− j)
)

+ c (θN(k− j))−δ0}

≤ c
∑

j≤K

θ−Nδ0(k− j) ≤ cθ−Nδ0γ(logθ log θ|k|)/ log θ

≤ c |k|−Nδ0γ/ log θ

(2.20)

for sufficiently large |k|. Note that the right-hand side of (2.19) is less than or equal

to that of (2.20). Taking θ > 1 such that log θ < Nδ0γ in (2.20), the Borel–Cantelli

lemma implies (2.16) via (2.17).

Next, we show that

(2.21) J2 ≤ 2c εα/2 a.s.

for any small ε > 0, where c > 0 is a constant. Since σ∗(h) is regularly varying, we

have
σ∗(‖θj − θ

j−1‖)

σ∗(‖θj−1‖)
≤ c εα/2.

Therefore, (2.21) is proved if we show that

(2.22) lim sup
|k|→∞

sup
j≤K

sup
‖t‖≤θk

sup
θj−1≤s≤θj

‖X(t + θ
j) − X(t + s)‖∞

σ∗(‖θj − θj−1‖)

√

2N log θk− j+1
≤ 2 a.s.

Similarly to the proof of Lemma 2.2, it follows that for sufficiently large |k|,

P
{

sup
‖t‖≤θk

sup
θj−1≤s≤θj

‖X(t + θ
j) − X(t + s)‖∞

σ∗(‖θj − θj−1‖)

√

2N log θk− j+1
≥ 2 + ε

}

≤ c
θNk

‖θj − θj−1‖N
exp

(

−2(2 + ε)2

2 + ε
N log θk− j+1

)

≤ c(θ3N)−(k− j).

Since ∞
∑

|k|=1

∑

j≤K

(θ3N )−(k− j) ≤ c

∞
∑

|k|=1

|k|−γ/ log θ < ∞,

we obtain (2.22) and hence (2.14) holds true via (2.21), (2.16) and (2.15). This proves

Theorem 1.6.
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Proof of Theorem 1.8 In case r = ∞ in the condition (1.12) of Theorem 1.5, by

considering

lim
r→∞

( rN

1 + rN

) 1/2

= 1

in (1.13) of Theorem 1.6, it follows from (1.13) and condition (1.15) that the in-

equality (1.16) is immediate as long as lim‖T‖→∞ ‖bT‖ = ∞ (or 0) in (1.12). Thus

it remains to prove (1.16) under the construction Bk,j in the proof of Theorem 1.6

when

(2.23) 0 < lim inf
‖T‖→∞

‖bT‖ ≤ lim sup
‖T‖→∞

‖bT‖ < ∞

in (1.15). The latter (2.23) in (1.15) implies that, as ‖T‖ → ∞,

(2.24)
‖bT‖
‖aT‖

→ ∞ or ‖aT‖ → 0.

By (2.23) and (2.24), it is clear that

lim
‖T‖→∞

log(‖bT‖/‖aT‖)

log log(‖bT‖/‖aT‖)
= ∞.

Hence, for sufficiently small j < 0, it follows from the construction Bk,j that

j < k + 1 − 1

(log θ)2
log log θk− j

=: J,

and there exists M > 0 large enough such that

β(k, j) = (β(k, j1), . . . , β(k, jN )) =
1√
NM

(θk−1− j1 , . . . , θk−1− jN ) > 1

by (2.23) and (2.24). Thus, we have

lim inf
‖T‖→∞

sup
‖t‖≤‖bT‖

‖X(t + aT) − X(t)‖∞
σ∗(‖aT‖)β3(T)

≥ lim inf
j→−∞

inf
j< J

sup
‖t‖≤θk−1

‖X(t + θ
j) − X(t)‖∞

σ∗(‖θj‖)
√

2 log
(

ΠN
i=1β(k, ji)

)

− lim sup
j→−∞

sup
j< J

sup
‖t‖≤θk

sup
θj−1≤s≤θj

‖X(t + θ
j) − X(t + s)‖∞

σ∗(‖θj − θj−1‖)

√

2N log θk− j+1

σ∗(‖θj − θ
j−1‖)

σ∗(‖θj−1‖)

=: J ′1 − J ′2.

(2.25)
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In order to prove

(2.26) J ′1 ≥ 1 a.s.,

we proceed along the lines of the proof of (2.16). Then we arrive at

P

{

inf
j< J

max
1≤l≤β(k,j)

Zj(l)
√

2 log
(

ΠN
i=1β(k, ji)

)

≤
√

1 − ε

}

≤ c (k − j)−Nδ0/ log θ

for sufficiently large k − j. Setting j = − j ′ ( j ′ ≥ 1), we obtain (2.26) by the Borel–

Cantelli lemma. It is easy to show that

(2.27) J ′2 = 0 a.s.

along the lines of the proof of (2.21). Combining (2.25), (2.26), and (2.27) yields

(1.16) as well under (2.23). This completes the proof of Theorem 1.8.

Acknowledgement The authors wish to thank the referee for careful reading of

their manuscript, and for a number of inspiring questions and helpful suggestions

that have led to improving the presentation of our results.

References

[1] A. Antoniadis and R. Carmona, Eigenfunction expansions for infinite dimensional
Ornstein-Uhlenbeck processes. Probab. Theory Related Fields 74(1987), no. 1, 31–54.

[2] S. A. Book and T. R. Shore, On large intervals in the Csörgő-Révész theorem on increments of a
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[15] X. Fernique, Continuité des processus Gaussiens. C. R. Acad. Sci. Paris 258(1964), 6058–6060.
[16] L. Gross, On the formula of Mathews and Salam. J. Functional Analysis 25(1977), no. 2, 162–209.
[17] R. Holley and D. Stroock, Generalized Ornstein-Uhlenbeck processes and infinite particle branching

Brownian motions. Publ. Res. Inst. Math. Sci 14(1978), no. 3, 741–788.

https://doi.org/10.4153/CJM-2008-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-015-4


l∞-Valued Gaussian Random Fields 333
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