Phaseolus beans: impact on glycaemic response and chronic disease risk in human subjects

Andrea M. Hutchins¹*, Donna M. Winham² and Sharon V. Thompson³

¹Department of Health Sciences, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA
²Nutrition Program, School of Nutrition and Health Promotion, 500 North 3rd Street, Phoenix, AZ 85004, USA
³Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA

(Submitted 15 September 2011 – Accepted 1 December 2011)

Abstract

Consumption of *Phaseolus vulgaris* bean species such as pinto, black, navy or kidney may be beneficial in the prevention and treatment of chronic diseases. In particular, conditions that are promoted by increased glycaemic stress (hyperglycaemia and hyperinsulinaemia) including diabetes, CVD and cancer seem to be reduced in individuals who eat more of these beans. The present paper discusses the influence of *P. vulgaris* species on glycaemic response and the impact that relationship may have on the risk of developing diabetes, CVD and cancer.

Key words: *Phaseolus vulgaris*: Beans: Glycaemic response: Chronic disease: Human subjects

Consumption of the *Phaseolus vulgaris* species of beans may be beneficial in the prevention and treatment of chronic diseases that are promoted by increased glycaemic stress (hyperglycaemia and hyperinsulinaemia). These conditions include diabetes, CVD, and cancer.

The importance of controlling postprandial blood glucose in the prevention and management of chronic disease has gained recognition in recent years¹–³. Glucose elevations cause oxidative stress that then alters the ability of the lining of blood vessels, or endothelium, to respond appropriately to blood flow. Some foods such as beans appear to stabilise or reduce postprandial glucose variability. Epidemiological studies show associations with increased legume consumption and decreased rates or prevalence of chronic diseases such as type 2 diabetes mellitus (T2DM)⁴–⁶. Most beans such as the common bean (*P. vulgaris* sp., for example, pinto bean, black bean, navy bean) have a low glycaemic index (GI)⁷,⁸. In contrast, high-GI items such as white rice and white bread can elevate postprandial glucose and result in increased oxidative stress⁹–¹¹.

The low glycaemic response of beans alone has been documented⁹,¹², but few studies have looked at the acute effects of *P. vulgaris* or common beans on glycaemic response as part of a meal⁹,¹³,¹⁴. In the limited number of studies that have looked at mixed meals, beans combined with a high-GI or refined carbohydrate food produced a glycaemic response that was in between the GI of the two foods when analysed alone⁸,¹³,¹⁴. It is not clear what kind of synergistic effects are produced or if an intermediate value always exists when the composition of the foods is varied. These findings are important for guiding recommendations to improve diabetes control and lower CVD and cancer risk¹⁰. It is possible that adding a low-GI food may reduce damage produced by other high-GI components of that meal. One important consideration is that we do not know the magnitude of the effect. It also appears that the glycaemic response attenuation is not necessarily linear.

The present paper discusses the relationship between glycaemic concentrations and glycaemic response produced by the consumption of *P. vulgaris* species, and the impact that relationship may have on the risk of developing diabetes, CVD, and cancer. Glycaemic concentration refers to blood glucose measures at a particular point in time (for example, fasting) and glycaemic response is defined as blood glucose

Abbreviations: GI, glycaemic index; GL, glycaemic load; T2DM, type 2 diabetes mellitus.

* Corresponding author: Associate Professor A. Hutchins, fax +1 719 255 4435, email andrea.hutchins@uccs.edu
concentration following meal consumption, which is established by the rate at which glucose is released into and subsequently removed from circulation\(^{(15)}\).

Review methods

The electronic databases MEDLINE\(^{®}\), CINAHL\(^{®}\) and the Cochrane Library were searched in November 2010, May 2011 and August 2011 with no date limitations. Keywords used for the search were ‘Phaseolus vulgaris’, ‘beans’, ‘legumes’ and ‘glycaemic response’. Abstracts of articles identified as potentially relevant based on the use of the terms *Phaseolus vulgaris*, beans, or legumes and glycaemic response in the abstract or keywords were obtained. The 1438 article abstracts were then reviewed to determine if the article investigated the impact of *P. vulgaris* on glycaemic response or the prevention or treatment of diabetes mellitus, heart disease, CVD, obesity, weight management or cancer. Relevant articles (n 118) were then collected in full text.

The full-text articles were screened for inclusion based on the following criteria: (1) published in a scientific peer-reviewed journal; (2) used *P. vulgaris* as a sole treatment or as part of a treatment; (3) published in English; (4) addressed the impact of *P. vulgaris* on glycaemic response or prevention or treatment of diabetes mellitus, CVD or cancer; (5) used human subjects; and (6) not an editorial, expert opinion, review or instructive article. The reference lists of included articles, review articles and meta-analyses were hand-searched for articles that met the inclusion criteria but that had not been identified during the electronic database search. Relevant articles from the reference lists that met the inclusion criteria were collected in full text. We found twenty-three articles meeting the criteria for inclusion in the tables in the present review.

Evidence for health outcomes

Evidence that beans induce low glycaemic response

Beans and other dry grain pulses typically reduce postprandial glucose elevations in short-term studies with non-diabetic and diabetic individuals compared with most starch foods\(^{(13,14,16–25)}\). Most studies that examined the impact of legumes on glycaemic control have utilised either normo-glycaemic or T2DM participants.

The lower glycaemic response to beans has been attributed to their low GI or delayed digestion of the carbohydrate within and, therefore, delayed absorption of glucose\(^{(7,8,10,12–14)}\). One important question to address, however, is determination of the magnitude and nature of the effect of beans on the glycaemic response to meals containing high-GI foods. The few studies that have explored this question generally report that beans combined with a high-GI food produce a glycaemic response that is intermediate between the high- and low-GI foods, but this is not to say that the nature of the effect is additive or linear\(^{(8,13,14,17,19–22)}\).

The mixed-meal findings presented in Table 1 have important implications for chronic disease risk reduction\(^{(10,24)}\). Individuals generally consume foods in combination, not in isolation, so determining the overall glycaemic response to the combination of foods has greater ‘real-life’ application to determining chronic disease risk reduction. Demonstrating that inclusion of beans in a meal results in a lower glycaemic response to the meal will provide a realistic, food-based mechanism for reducing the oxidative stress, endothelium-dependent vasodilation, and increased blood pressure associated with increased risk for some chronic diseases such as T2DM, complications of T2DM and CVD. Further research is required to examine the lower glycaemic response associated with bean meals along with changes in oxidative stress, endothelium-dependent vasodilation and blood pressure to confirm the validity and strength of this relationship. These studies should be adequately powered randomised controlled trials lasting at least 6 weeks in order to effectively assess the impact of beans’ ability to lower the glycaemic response on these markers for chronic disease risk.

Impact of Phaseolus vulgaris species and glycaemic response on type 2 diabetes mellitus and risk factors for type 2 diabetes mellitus

Controlling postprandial glucose increases through incorporation of low-GI foods such as *P. vulgaris* sp. has a favourable impact on glucose control. Studies demonstrating that consumption of low-GI foods such as beans improve glucose control and T2DM control, as well as reduce risk for developing T2DM, have been analysed and summarised elsewhere and will be covered briefly in the present review\(^{(25–27)}\).

A recent Cochrane review assessed eleven randomised controlled trials and determined the effects of low-GI or low-glycaemic load (GL) diets and found that they improve glycaemic control in individuals with diabetes\(^{(28)}\). Their positive conclusions are supported by other meta-analyses\(^{(29,30)}\) which demonstrated reductions in HbA\(_1c\) of 0·27 (95 % CI 0·05, 0·43)\(^{(30)}\) to 0·43 (95 % CI 0·13, 0·72)\(^{(29)}\) when low-GI diets were compared with high-GI diets. The reductions in HbA\(_1c\) achieved with a low-GI diet are comparable with those produced by pharmacological interventions (for example, hypoglycaemic medications)\(^{(29)}\). However, the studies included in these reviews treated low-GI, or low-GL, diets in a more global fashion and did not focus solely on beans.

A meta-analysis\(^{(7)}\) examined forty-one studies that examined the effects of legume consumption alone, legume consumption as part of a low-GI diet, and legume consumption as part of a high-fibre diet. Pooled analyses demonstrated that legumes, alone or in low-GI or high-fibre diets, improve markers of longer-term glycaemic control (HbA\(_1c\) and fructosamine). Of the reports from the meta-analysis\(^{(7)}\) that focused on *P. vulgaris* consumption, seven\(^{(31–37)}\) are summarised in Table 2. These results are encouraging news for individuals with or at risk for T2DM since they indicate that simple diet changes, such as the inclusion of beans, can have a positive impact on glycaemic control. Nevertheless, these studies also illustrate the fact that few studies have focused on how bean intake influences risk factors for or the treatment of T2DM, let alone whether their effect is linked solely to the lower...
Table 1. Impact of *Phaseolus vulgaris* species on glycaemic response

<table>
<thead>
<tr>
<th>Study reference</th>
<th>Design</th>
<th>Sample size</th>
<th>Population</th>
<th>Duration</th>
<th>Treatment</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) GI studies with the same amount of carbohydrate in test food as control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Whole beans</td>
<td>Borret et al. (1987)</td>
<td>Randomised cross-over trial</td>
<td>Eighteen adults</td>
<td>Men and women with T2DM</td>
<td>Six test meals consumed on separate days</td>
<td>Test foods: White bread, White rice, Wheat flour spaghetti, Kidney beans, Lentils, Potato flakes, Foods consumed alone or as part of iso-glucido-lipido-protidic meal</td>
<td>GI of single foods: White bread > potato flakes > wheat flour spaghetti > white rice > lentils > kidney beans (P<0.001)</td>
</tr>
<tr>
<td>(2) Single-meal postprandial studies</td>
<td>Jenkins et al. (1980)</td>
<td>Randomised controlled cross-over trial</td>
<td>Groups of between five and ten adults</td>
<td>Healthy men and women</td>
<td>Eight legumes and twenty-four foods consumed on separate days</td>
<td>Thirty-two foods: Beans: Butter beans, Haricot beans, Kidney beans, Soyabeans, Blackeye peas, Chickpeas, Marrowfat peas, Lentils, Tuber: Instant mashed potatoes, New potato, Sweet potato, Yarns, Grains: Buckwheat, Millet, Brown rice, White rice, Sweetcorn, Bread and pastas: White bread, Wholemeal bread, White spaghetti, Brown spaghetti, Ryvita, Breakfast cereals: All-Bran, Cornflakes, Muesli, Porridge oats, Shredded Wheat, Weetabix, Biscuits: Digestive, Oatmeal</td>
<td>Mean glucose AUC and peak rise after bean consumption were, respectively, 51% (P<0.001) and 41% (P<0.001) of the values after the grains; 51% (P<0.001) and 45% (P<0.001) of the values after the bread and spaghetti; 45% (P<0.001) and 43% (P<0.001) of the values after the biscuits; 51% (P<0.001) and 48% (P<0.001) of the values after the breakfast cereals; and 55% (P<0.01) and 45% (P<0.001) of the values after the tubers</td>
</tr>
</tbody>
</table>
Table 1. Continued

<table>
<thead>
<tr>
<th>Study reference</th>
<th>Design</th>
<th>Sample size</th>
<th>Population</th>
<th>Duration</th>
<th>Treatment</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panlasigui et al. (1995)</td>
<td>Randomised cross-over trial</td>
<td>Eleven adults</td>
<td>Healthy men and women, aged 22 ± 1.1 years</td>
<td>Six meals consumed on separate days</td>
<td>Rich tea, Fresh peas, Baked beans, Canned soya beans, Test foods: Chickpeas, Pigeon peas, Black beans, Mung beans, White beans, White bread (control) Each meal provided 50 g available carbohydrate</td>
<td>Glycaemic response to all beans was lower compared with white bread (P < 0.01). Glycaemic response to chickpeas (P < 0.01) and the GI of chickpeas (P < 0.01) were lower than to black beans, pigeon peas and mung beans but not different from white beans.</td>
<td>The differences in the glycaemic responses among the legumes could be due to the differences in amount and kind of dietary fibre, amylose content and the presence of antinutrients.</td>
</tr>
<tr>
<td>Thompson et al. (2009)</td>
<td>Randomised cross-over trial</td>
<td>Nine adults</td>
<td>Healthy adult women</td>
<td>Three test meals consumed on separate days</td>
<td>Test foods: White rice, Black beans/rice, Chickpeas/rice Each meal provided 50 g available carbohydrate</td>
<td>Net changes in glucose responses were significantly lower for the black beans/rice and chickpeas/rice meals than the rice control at 60 and 90 min post-treatment (P = 0.041 and P = 0.002, respectively)</td>
<td>Black bean and chickpea intake as part of a meal can reduce the glycaemic response to a high-GI food.</td>
</tr>
<tr>
<td>Thompson et al. (2011)</td>
<td>Randomised cross-over trial</td>
<td>Seventeen adults</td>
<td>Adults with T2DM</td>
<td>Four test meals consumed on separate days</td>
<td>Test foods: White rice, Pinto beans/rice, Black beans/rice, Dark red kidney beans/rice Each meal provided 50 g available carbohydrate</td>
<td>Net changes in glucose responses were significantly lower for the pinto beans/rice, black beans/rice and dark red kidney beans/rice meals than the rice control at 90, 120 and 150 min post-treatment (P < 0.05). IAUC were also significantly reduced for the pinto beans/rice (P < 0.01) and black beans/rice (P < 0.05) meals compared with the rice control.</td>
<td>The combination of whole beans and rice may be beneficial to those with T2DM to assist with blood glucose management.</td>
</tr>
</tbody>
</table>

(b) Other forms of beans

<table>
<thead>
<tr>
<th>Study reference</th>
<th>Design</th>
<th>Sample size</th>
<th>Population</th>
<th>Duration</th>
<th>Treatment</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leathwood & Pollet (1986)</td>
<td>Randomised double-blind cross-over trial</td>
<td>Trial 1: six adults</td>
<td>Trial 1: healthy men and women, aged 30–45 years</td>
<td>Single meals consumed on separate days</td>
<td>Trial 1: Bean flakes or potato flakes as part of a shepherd’s pie</td>
<td>At 150 and 180 min postprandially, glucose concentrations were lower with the bean flakes meal than the rice meal (P < 0.01) compared with the liquid glucose meal and a lower 30 min postprandial rise in glucose (P < 0.05, P < 0.05 and P < 0.05, respectively).</td>
<td>‘Slow-release carbohydrates’ in the form of bean flakes, when included in a realistic meal, produce a low, sustained rise in plasma glucose concentrations and a delay in the reappearance of rated hunger. Meals containing the same amount of carbohydrate produce different responses in glucose and insulin.</td>
</tr>
<tr>
<td>Potter et al. (1981)</td>
<td>Randomised cross-over trial</td>
<td>Eight adults</td>
<td>Healthy men, aged 22–45 years</td>
<td>Four meals consumed on separate days</td>
<td>Four blended test meals: Liquid glucose, Brown rice, Pinto beans, All Bran Each meal provided 75 g carbohydrate</td>
<td>Pinto bean meals produced a lower 30 min postprandial rise in glucose (P < 0.01, P < 0.05 and P < 0.01,respectively) compared with the liquid glucose meal and a lower 30 min postprandial rise in insulin (P < 0.01) compared with the liquid glucose meal and the rice meal.</td>
<td>Meals containing the same amount of carbohydrate produce different responses in glucose and insulin.</td>
</tr>
<tr>
<td>Tappy et al. (1986)</td>
<td>Randomised cross-over trial</td>
<td>Ten adults</td>
<td>Six healthy men and women, aged 19–37 years Four obese adults with</td>
<td>Two meals consumed on separate days</td>
<td>Test meals: White bean flakes meal, Potato flakes meal Each meal provided 50 g carbohydrate</td>
<td>Postprandial glucose and insulin concentrations were lower with the bean flakes meal compared with the potato flakes meal at 30 min (P < 0.01) and P < 0.001, respectively) in the healthy participants. At 150 and 180 min postprandially, glucose and insulin were significantly lower for the bean flakes meal compared with the potato flakes meal at 30 min (P < 0.01, P < 0.01, respectively).</td>
<td>The reduced but more prolonged elevations of glucose and insulin are consistent with a slower digestion rate of starch and a delay in glucose.</td>
</tr>
<tr>
<td>Study reference</td>
<td>Design</td>
<td>Sample size</td>
<td>Population</td>
<td>Duration</td>
<td>Treatment</td>
<td>Results</td>
<td>Conclusions</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Torsdottir et al. (1989)<sup>(22)</sup></td>
<td>Randomised cross-over trial</td>
<td>Six adults</td>
<td>Healthy men, aged 22–30 years</td>
<td>Two test meals consumed on separate days</td>
<td>Test meals: Mashed bean flakes and meat, Mashed potato flakes and meat</td>
<td>lower blood glucose (<i>P</i> < 0.01) and serum insulin (<i>P</i> < 0.05) concentrations than the potato flakes meal</td>
<td>low glycaemic response after a meal containing bean flakes may be due to slow digestion of bean starch in the small intestine</td>
</tr>
<tr>
<td>Tovar et al. (1992)<sup>(23)</sup></td>
<td>Randomised cross-over trial</td>
<td>Ten adults</td>
<td>Healthy men and women, aged 36 ± 2.5 years</td>
<td>Six test meals consumed on separate days</td>
<td>Test meals: Red beans, Boiled beans, Autoclaved beans, Bean precooked flour porridge, Bean flour with free starch cakes, Lentils, Lentil precooked flour porridge, Wheat bread</td>
<td>All meals containing legumes produced lower postprandial glucose values at 30 and 45 min (<i>P</i> < 0.05) compared with the wheat bread meal.</td>
<td>Results from this study confirm the deleterious effect of processing on the metabolic responses to legumes. This may also be attributed to the release of physically inaccessible starch by mechanical disruption of cell walls</td>
</tr>
<tr>
<td>Winham et al. (2007)<sup>(24)</sup></td>
<td>Randomised cross-over trial</td>
<td>Twelve adults: low-dose treatment</td>
<td>Healthy men and women, aged 20–65 years</td>
<td>Six test meals (three low-dose, three high-dose) consumed on separate days</td>
<td>Low-dose meals (included half cup bean paste): Pinto beans, Black-eyed peas, Navy beans</td>
<td>No significant differences by dose or bean type in glucose, insulin response, whole-body insulin sensitivity or HOMA</td>
<td>When provided in the form of a spread (bean paste), pinto bean, navy bean, or black-eyed pea intake as part of a treatment did not significantly reduce glycaemic response to high-GI foods</td>
</tr>
</tbody>
</table>

T2DM, type 2 diabetes mellitus; GI, glycaemic index; AUC, area under the curve; IAUC, incremental area under the curve; HOMA, homeostasis model assessment.
Table 2. *Phaseolus vulgaris* species, glycaemic response and type 2 diabetes mellitus and CVD risk

<table>
<thead>
<tr>
<th>Study reference</th>
<th>Design</th>
<th>Sample size</th>
<th>Population</th>
<th>Duration</th>
<th>Treatment</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al. (1984)</td>
<td>Randomised parallel trial</td>
<td>Nine adults on oat-bran diet Ten adults on bean diet</td>
<td>Hypercholesterolaemic men, aged 34–66 years</td>
<td>7 d on control diet followed by 21 d on test diet</td>
<td>Oat-bran diet contained 100 g oat bran per d Bean diet contained 115 g dried pinto and navy beans per d</td>
<td>Oat-bran and bean diets both lowered fasting plasma glucose concentrations in hypertriacylglycerolaemic subjects (P<0·02). There was no significant difference between the diets</td>
<td>Oat-bran and bean diets had a favourable impact on total and LDL-cholesterol concentrations in hypercholesterolaemic men</td>
</tr>
<tr>
<td>Bazzano et al. (2001)</td>
<td>Cohort</td>
<td>9632 adults</td>
<td>Men and women who participated in the First National Health and Nutrition examination Survey Epidemiologic Follow-up Study with no CVD at baseline</td>
<td>Average 19 years of follow-up</td>
<td>None; frequency of legume intake was estimated using a 3-month FFQ</td>
<td>Legume consumption inversely associated with risk of CHD (P=0·002 for trend) and CVD (P=0·02 for trend) after adjustment for established CVD risk factors</td>
<td>Oat-bran and bean diets lowered fasting plasma glucose concentrations in hypertriacylglycerolaemic men. However, this study did not explore the potential relationship between the improvement in glucose concentrations and the hypcholesterolaemic effect of the diets</td>
</tr>
<tr>
<td>Cobiac et al. (1990)</td>
<td>Randomised cross-over trial</td>
<td>Twenty adults</td>
<td>Mildly hypercholesterolaemic men, aged 29–65 years</td>
<td>4 weeks per intervention</td>
<td>Low-fibre diet with one meal replaced by 440 g canned baked beans daily or 440 g canned spaghetti daily</td>
<td>Neither the baked bean nor spaghetti treatment significantly altered total, HDL- or LDL-cholesterol, TAG or glucose concentrations</td>
<td>Legume intake, estimated using an FFQ, is inversely related to risk of CHD and CVD</td>
</tr>
<tr>
<td>Fleming & Shaheen (1988)</td>
<td>Randomised cross-over trial</td>
<td>Six adults</td>
<td>Healthy men, aged 21–32 years</td>
<td>8 d per intervention</td>
<td>Controlled diet with: Dark red kidney beans daily or Bran cereal daily Total weight of food provided in proportion to body weight</td>
<td>Insulin responses on days 1 and 7 were lower following bean consumption (P=0·02) Glucose and insulin responses were both lower on day 7 compared with day 1 following both bean and bran cereal consumption (P=0·05) The postprandial insulin concentrations following lunch were higher after consumption of the bean breakfast (P=0·03)</td>
<td>This study found that baked bean consumption did not have an impact on risk factors for CVD or T2DM</td>
</tr>
<tr>
<td>Jang et al. (2001)</td>
<td>Randomised parallel controlled trial</td>
<td>Seventy-six adults</td>
<td>Hypercholesterolaemic and/or hypertriacylglycerolaemic men, aged 58·4 ± 1·53 (control) and 54·8 ± 1·20 (whole grain/legume) years</td>
<td>4-week run-in on usual diet 16-week intervention</td>
<td>Control diet: usual diet containing cooked refined rice Intervention diet: 70 g whole grain/legume powder (22·2 % black beans) replacing cooked refined rice for breakfast daily</td>
<td>HDL-cholesterol concentrations increased with the whole grain/legume powder intervention (P=0·001) Glucose, malondialdehyde, 8-epi-PGF2α, and homocysteine concentrations decreased with the whole grain/legume powder intervention (P=0·000, P=0·028, P=0·003 and P=0·032, respectively) OGTT revealed nine subjects in the control group and twelve subjects in the whole grain/legume powder group had significantly improved insulin sensitivity and β-cell function.</td>
<td>This study did not assess the impact of glycaemic response influenced the other risk factor modifications reported</td>
</tr>
<tr>
<td>Study reference</td>
<td>Design</td>
<td>Sample size</td>
<td>Population</td>
<td>Duration</td>
<td>Treatment</td>
<td>Results</td>
<td>Conclusions</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>McAuley et al. (2002)(^{104})</td>
<td>Randomised parallel trial</td>
<td>Seventy-nine adults</td>
<td>Normoglycaemic insulin-resistant men and women</td>
<td>4 months</td>
<td>Modest diet and exercise programme</td>
<td>Intensive diet and exercise programme (included recommendation for legume consumption) Control group</td>
<td>new-onset T2DM In non-diabetic subjects, whole grain/legume powder consumption decreased fasting glucose, response areas of glucose and insulin during OGTT, and insulin resistance In the T2DM subjects, whole grain/legume powder consumption decreased fasting glucose and the response area of glucose during OGTT</td>
</tr>
<tr>
<td>Winham et al. (2007)(^{96})</td>
<td>Randomised cross-over controlled trial</td>
<td>Sixteen adults</td>
<td>Hyperinsulinaemic men (n 7) and women (n 9), aged 22–65 years</td>
<td>8 weeks per intervention</td>
<td>Control: Half cup canned carrots daily Interventions: Half cup canned pinto beans daily Half cup canned black-eyed peas daily</td>
<td>Consumption of half cup pinto beans decreased total and LDL-cholesterol concentrations (P=0·011 and P=0·013, respectively) HDL-cholesterol, TAG, hs-CRP, glucose, insulin and HbA(_1c) were not significantly different</td>
<td>Daily pinto bean consumption decreased total and LDL-cholesterol concentrations in this study Since glucose, insulin and HbA(_1c) values were not significantly altered, this study does not indicate that the influence of beans on glycaemic response was related to the change in cholesterol concentrations</td>
</tr>
<tr>
<td>Winham & Hutchins (2007)(^{98})</td>
<td>Randomised cross-over controlled trial</td>
<td>Twenty-three adults</td>
<td>Hypercholesterolaemic men (n 10) and women (n 13), aged 22–70 years</td>
<td>8 weeks per intervention</td>
<td>Control: half cup canned carrots daily Intervention: half cup vegetarian baked beans daily</td>
<td>Consumption of half cup baked beans decreased total cholesterol concentrations (P=0·01) LDL-cholesterol, HDL-cholesterol, TAG, hs-CRP, glucose, insulin and HbA(_1c) were not significantly different</td>
<td>Daily baked bean consumption decreased total cholesterol concentrations in this study Since glucose, insulin and HbA(_1c) values were not significantly altered, this study does not indicate that the influence of beans on glycaemic response was related to the change in cholesterol concentrations</td>
</tr>
<tr>
<td>Wursch et al. (1988)(^{87})</td>
<td>Randomised cross-over controlled trial</td>
<td>Six adults</td>
<td>Healthy young men, aged 26 ± 6 years</td>
<td>7 d per test meal (breakfast)</td>
<td>Control: 58 g glucose in 150 ml water Test meals (breakfast): 114 g white kidney bean flakes daily or 62 g potato flakes, 38·5 g low-starch wheat bran and 17 g soya isolate daily</td>
<td>Mean area under the glucose response curve at 1 and 2 h was higher following the potato flake-based test meal compared with the bean flake test meal (P<0·01 and P<0·05, respectively) Mean area under the insulin response curve at 1, 2 and 6 h was higher following the potato flake-based test meal compared with the bean flake test meal (P<0·01, P<0·01 and P<0·02, respectively)</td>
<td>A breakfast containing bean flakes favourably altered postprandial glucose and insulin response curves Since this was a short-term study, the influence of the favourable postprandial effects of bean flakes on risk for chronic disease was not assessed</td>
</tr>
</tbody>
</table>

RR, relative risk; T2DM, type 2 diabetes mellitus; OGTT, oral glucose tolerance test; hs-CRP, high-sensitivity C-reactive protein.
glycaemic response when consumed. Studies that explore how beans exert their influence on T2DM prevention and treatment and whether their effect on glycaemic response is related to that influence are required.

Impact of *Phaseolus vulgaris* species and glycaemic response on CVD and CVD risk factors

Besides controlling postprandial glucose increases, numerous research studies indicate that a low-GI diet may also play a role in reducing the risk for or preventing CVD; however, these studies did not focus on beans as a low-GI food. These studies have been analysed and summarised elsewhere(25,26,38--40) and so will not be covered in detail in the present review. Despite the interest in the role of a low-GI diet in CVD risk reduction, the mechanisms behind this risk reduction have yet to be determined. A Cochrane review examined twenty-one randomised controlled trials that included a total of 713 participants. This review found no evidence that low-GI diets influenced changes in certain well-known risk factors for CVD including HDL-cholesterol, LDL-cholesterol, TAG or total cholesterol concentrations. The authors of the Cochrane review reported that many of the trials included in the review were ‘short-term, of poor quality and did not have sufficient power to detect clinical important differences’(41).

Observational studies and a very limited number of randomised controlled trials indicate a beneficial effect of bean consumption on short-term satiety and weight loss when combined with energy restriction(42,43), but these effects may not be related to the relationship between bean intake and glycaemic response. Few studies isolated and examined *P. vulgaris* species intake separately from other food groups(42,43), and none of these studies directly addressed the relationship between bean intake, glycaemic response and short-term satiety and weight loss, so results in this area should be interpreted with caution.

Although *P. vulgaris* species are known to decrease LDL-cholesterol, a well-known risk factor for CVD, in normocholesterolaemic and hypercholesterolaemic participants(35,36,44--47), this effect is most probably attributed to the soluble fibre found in the beans and not to the impact the beans have on glycaemic response. Nevertheless, other risk factors for CVD, such as oxidative stress, have been identified and low-GI foods such as beans and low-GI diets may favourably influence these risk factors.

In addition to chronic hyperglycaemia, elevated postprandial glucose can increase oxidative stress, worsen endothelium-dependent vasodilation and raise blood pressure(39,48--50). Dysmetabolic changes after eating are significant contributors to CVD risk and individuals with T2DM are already at increased risk of CVD. On the other hand, controlling the postprandial glucose response by the inclusion of low-GI/GL foods in the diet can decrease CVD risk. Dietary patterns that include low-GI/GL foods, such as beans, were associated with a lower risk for CVD, even after accounting for other known risk factors such as cigarette smoking, obesity and family history in a prospective cohort study of 44875 men aged 40–75 years(51).

Impact of *Phaseolus vulgaris* species and glycaemic response on cancer and cancer risk factors

Researchers hypothesise that glycaemic response may increase cancer risk through the modulation of hormone concentrations (for example, insulin-like growth factor) by insulin and that hyperinsulinaemia may increase cancer risk(52,53). Studies examining the effect of GI and GL on the risk for various cancers (breast, colorectal, endometrial, gastric, ovarian, pancreatic, prostate, renal) report mixed results(54--81). Most studies utilised either a cohort or case–control design, relying on FFQ to determine the average daily GI and GL of participants(54--59,61--64,67--70,74--81). Inaccurate memory of foods consumed over the recall period (typically 1–2 years) and recall bias are potential confounding factors with FFQ and retrospective studies in general. Researchers also acknowledge that the reliability and validity of estimating average daily GI and GL from FFQ is questionable. Some GI and GL values have been obtained from small samples and the variability of the values is undetermined(54--59).

Few studies have reported the relationship of *P. vulgaris* species and glycaemic response on cancer risk (Table 3)(59,66,74). We were unable to find any studies that had the examination of bean intake, glycaemic response and cancer risk or incidence as a primary objective. One cohort and one case–control study found weak associations between legume intake and a reduction in cancer risk related to a decrease in glycaemic response(59,74). A randomised controlled trial found that a high-legume diet and a healthy American diet both favourably influenced biomarkers for cancer risk(66). If the hypothesis that glycaemic response makes an impact on cancer risk via insulin actions and interactions, then incorporation of beans into the diet to modulate the glycaemic response could have a favourable impact on the risk for a variety of cancers. However, determining the impact of glycaemic response and beans on cancer risk in a human population will require more accurate and reliable methods of tracking diet intake over long periods of time.

Composition of *Phaseolus vulgaris* species of beans

According to the Dietary Guidelines for Americans and the United States Department of Agriculture, beans are classified as both a protein and a starchy vegetable source(82). Beans contain a high amount of protein, with one serving of most bean types (half cup) providing 7–8 g. Beans are also an excellent source of fibre, providing 3–9 g of soluble and insoluble fibre per half-cup serving(83). Beans contain very little fat, generally accounting for less than 3% of the energy content, and have a very low saturated fat content(84). Beans are also high in folate, Mg, Zn, n-3 fatty acids and antioxidants(7,85--88). They contain phytoestrogenic and phytochemical compounds that may function similarly to glucose-lowering α-glucosidase or α-amylase inhibitor T2DM medications such as metformin and acarbose(7,86).
<table>
<thead>
<tr>
<th>Study reference</th>
<th>Design</th>
<th>Sample size</th>
<th>Population</th>
<th>Duration</th>
<th>Treatment</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cho et al. (2003)(59)</td>
<td>Cohort</td>
<td>714 cases of breast cancer from population of 90,655 over 8 years follow-up</td>
<td>Premenopausal women, aged 26–46 years</td>
<td>Cases identified between 1991 and 1999</td>
<td>None; semi-quantitative FFQ with 133 food items (initial) and 142 food items (follow-up) used to calculate GI and GL</td>
<td>GI and GL were not associated with breast cancer risk. There was a weak, non-significant inverse association between intake of fibre from legumes and breast cancer risk (RR for 5th quintile compared with 1st quintile = 0.79; 95% CI 0.62, 1.02; P for trend = 0.04)</td>
<td>This study did not find a relationship between GI and GL and breast cancer risk. Although there was a weak, non-significant inverse association between intake of fibre from legumes and breast cancer risk, there is no evidence that the relationship between legumes and glycaemic response is related to this association.</td>
</tr>
<tr>
<td>Hartman et al. (2010)(66)</td>
<td>Randomised controlled trial</td>
<td>Sixty-four men</td>
<td>Men, aged 35–75 years, without a history of colorectal cancer</td>
<td>4 weeks on each diet</td>
<td>Control diet (high-GI (69) healthy American diet) High-legume (250 g/d), low-GI (38) diet</td>
<td>Both diets significantly reduced fasting CRP (PP=0.018 legume and P=0.007 control) and sTNFRI (PP=0.005 legume and P=0.001 control). The control diet significantly reduced sTNFRII (P=0.001)</td>
<td>Both the control and high-legume diets had favourable effects on biomarkers associated with incidence of colorectal cancer and adenomas. In this study, the legume diet increased fasting glucose concentrations, a result that is inconsistent with the typical reported influence of legumes on glycaemic response.</td>
</tr>
<tr>
<td>Potischman et al. (1999)(74)</td>
<td>Case–control</td>
<td>568 cases; 1451 controls</td>
<td>Cases: Premenopausal women, aged 20–44 years, with breast cancer Controls: Premenopausal women, aged 20–44 years, without cancer</td>
<td>Cases identified between 1990 and 1992</td>
<td>None; modified version of standard 100-item NCI-Block FFQ</td>
<td>Increased intake of beans (OR 0.87; 95% CI 0.7–1.0; 4th quartile) and fibre from beans (OR 0.88; 95% CI 0.7–1.1; 4th quartile) were associated with reduced breast cancer risk.</td>
<td>Increased bean intake is associated with a minimal, if any, reduction in risk of early-stage breast cancer among young women. Although there was a small reduction in risk of early-stage breast cancer among young women associated with bean and bean fibre intake, there is no evidence that the relationship between beans and glycaemic response is related to this association.</td>
</tr>
</tbody>
</table>

GI, glycaemic index; GL, glycaemic load; RR, relative risk; CRP, C-reactive protein; sTNFRI/II, soluble tumour necrosis factor-α receptors I and II; NCI, National Cancer Institute.
The predominant macronutrient in beans is carbohydrate, contributing 60–65% of the energy content. Starch, the primary digestible carbohydrate in beans, can be categorized as readily digestible, slowly digestible and resistant starch(99). All bean varieties including the *P. vulgaris* species contain a higher ratio of slowly digestible:readily digestible starch compared with other starchy foods. In general, most beans contain 30–40% amylose, a linear polymer of glucose units (α1-4 linkages), whereas most other starches contain 20–30% amylose. Starches with more than 30% amylose are readily digestible or resistant starch depending on the amylose content and hydrothermal treatment applied to the food. Beans also contain a substantial amount of resistant starch, considered as a dietary fibre. Resistant starch is defined as any starch that resists digestion by amylase in the small intestine and progresses to the large intestine for fermentation by the gut bacteria(90,91). Slowly digestible starch is associated with reduced glycaemic responses and lower postprandial glucose levels compared with readily digestible starch. This attenuated glycaemic response can benefit both insulin-resistant individuals and individuals with diabetes.

Proposed mechanisms of action

The mechanism of action responsible for the low glycaemic response to beans is multifaceted. Possible explanations include a high content of viscous fibre, protein, relatively high amylose starch and antinutrients. In addition, processing methods affecting the physical form of the beans may alter their glycaemic response.

Beans are commonly consumed in their whole form, or as a minimally processed food with little or no grinding. Eating the intact bean maintains the integrity of the cell wall, slowing digestion of the bean in the upper small intestine. Whole beans also have cell walls that are more resistant to digestion than the cell walls of cereal grains. Minimal or no processing of the bean combined with the resistance of the bean cell wall to digestion provides a likely primary mechanism of action that explains the low glycaemic response to beans(92).

Viscous fibres form a gel-like substance along the digestive tract, which may slow the rate of gastric emptying and absorption rate of nutrients. Inclusion of a viscous fibre with a test meal may reduce the blood glucose response by an average of 44%(93). Purified viscous fibres also reduce postprandial gastric inhibitory polypeptide and insulin levels more effectively than non-viscous fibres(94,95). Beans are particularly high in soluble fibres that increase viscosity of the intestinal lumen or the unstirred water layer(96–98). However, Tappy *et al.*(20) found significantly lower glucose and insulin responses to a bean meal alone compared with a potato meal with added bean fibre. Therefore, the attenuated glycaemic response seen as a result of bean consumption cannot be explained solely by the beans' fibre content.

The protein fraction of beans may interact with starch to reduce the digestibility and glycaemic response of that starch. Alli & Baker(99) found carbohydrates tightly bound to proteins isolated from uncooked beans using citric acid and sodium hydroxide extracts, providing evidence for a starch–protein interaction.

The ratio of amylose:amylopectin starch found in beans may also alter the glycaemic response. The higher molecular weight, greater surface area and branching structure of amylopectin make it subject to faster digestion than amylose. High-amylose meals (70% amylose) compared with high-amylopectin meals (70% amylopectin) result in significantly lower plasma glucose in healthy normoglycaemic adults at 30 and 60 min after meal consumption(100). Among natural sources of carbohydrates, beans have the highest percentage of starch as amylose (30–40%), which is 5–10% more amylose than is found in most cereals(90).

In addition to protein–starch interactions and the nature of the starch in beans, the phytic acid content of beans may influence the glycaemic response after bean consumption. The phytic acid content of beans is high compared with non-bean foods. There is a negative correlation between phytic acid concentrations and glycaemic indices for non-diabetic adults (r = 0.78, P<0.001)(101). A study using unleavened bread made from navy bean flour (containing phytic acid) demonstrated that consuming the navy bean bread significantly reduced blood glucose area under the curve by 64% compared with that of unleavened bread made from white wheat flour(102). Removing the phytic acid from the navy bean flour significantly increased the glycaemic area under the curve by 141%. Phytic acid is believed to inhibit starch digestion both directly and indirectly. Structurally, phytic acid binds directly with starch through phosphate bonds and reduces starch digestibility(102). Indirectly, phytic acid may bind to cations such as Ca. Since the stability of α-amyloses, including pancreatic α-amylose, is dependent on Ca(103), the lack of available Ca can decrease the effectiveness of α-amyloses, slowing the rate of starch digestion. Phytic acid also binds to negatively charged groups on proteins, such as α-amyloses, at neutral and alkaline pH(102), rendering them useless and reducing the digestion of starch by amylase.

Future directions

All beans are not created equal – nor do they elicit identical biological responses when consumed. Even though the GI values for beans are typically very low, studies examining the glycaemic effects of assorted beans from *P. vulgaris* species have demonstrated that the glycaemic response differs based on the bean used. Researchers should continue to study different beans from the *P. vulgaris* species to determine the individual glycaemic effects associated with each bean type.

Definitively determining if the form of the bean consumed changes the glycaemic response, or other positive biological effects associated with bean consumption, should be a priority. As interest in the *P. vulgaris* species increases, the food industry will probably formulate functional or manufactured foods that contain ground beans, bean powder, bean paste, etc. to address the marketing potential in this area. Research is needed to ensure that the various forms in which the bean can be utilised impart the same beneficial
properties associated with the consumption of whole beans, including maintaining the low-GI/GL qualities.

Studies such as the one conducted by Kallio et al.(103) demonstrate that foods can make an impact and act via molecular pathways by affecting signal transduction and gene function. The constituents of foods that act on these pathways go beyond the traditional macro- and micronutrient content typically reported for such foods. Research that identifies the phytochemical components of foods, including beans, is desperately needed to allow research in this area to progress.

We are just beginning to explore the mechanisms of action that are responsible for the chronic disease risk-reduction benefits conferred by whole bean consumption. More research is required to define the pathways involved, including those related to changes in oxidative stress, endothelium-dependent vasodilation, and blood pressure, in order to determine the full extent of the influence that beans have on the prevention of chronic disease.

Summary

Traditional foods such as beans should be retained in the diet because of their many health benefits, including a positive impact on postprandial glycemic response. Hyperglycaemia, whether it occurs following a meal or due to poorly controlled T2DM, is known to increase oxidative stress, contribute to hypertension and increase the risk for CVD. Examination of the glycemic response to meals, especially culturally important food combinations such as beans and rice, is important for the prevention and control of hyperglycaemia-induced diseases.

Understanding the glycemic responses elicited by the beans of the *P. vulgaris* market classification and how these responses vary depending on the bean consumed is essential. Since not all beans are equal in response, these findings will allow provision of accurate nutrition education to individuals who have, or are at risk for, T2DM.

Acknowledgements

The preparation of the present review article received no specific grant funding from any funding agency in the public, commercial or not-for-profit sectors. A. M. H. and S. V. T. were responsible for retrieving references. A. M. H. and D. M. W. were responsible for writing the article. S. V. T. was responsible for the design of the tables. A. M. H., D. M. W. were responsible for writing the article. S. V. T. were responsible for retrieving references. A. M. H. and D. M. W. were responsible for critical reading and evaluation, presentation of the data and article editing. The article has been read and approved by all authors. A. M. H. and D. M. W. have previously received research funding from Bush Brothers & Company and the US Dry Bean Council. A. M. H. is a member of the editorial advisory board for the Dry Bean Quarterly, published by the Northharvest Bean Growers Association, serves as an editor for Bean Briefs, published by the US Dry Bean Council, and has written a white paper supporting the promotion of bean consumption for the US Dry Bean Council. D. M. W. has served as a research advisor for Bush Brothers & Company and Pulse Canada.

S. V. T. has no conflicts of interest to report related to the content of the present review article.

References

Phaseolus beans and glycemic response 863

