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Multiplicative Isometries and Isometric
Zero-Divisors

Alexandru Aleman, Peter Duren, Marı́a J. Martı́n, and Dragan Vukotić

Abstract. For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces,

Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular

constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Iso-

metric coefficient multipliers are also investigated.

A key result in the theory of Hardy spaces is the classical theorem of F. Riesz to the

effect that the zeros of any function in H p can be divided out by a Blaschke product

to produce a nonvanishing function with the same H p norm. In other words, the

Blaschke products serve as isometric zero-divisors. The theorem is enormously useful

because it transfers questions about H p functions to the more tractable space H2.

More recently, it was shown [7, 9] that the Bergman space Ap has no isometric zero-

divisors. The proof consisted of producing contractive zero-divisors of unit norm,

proving their uniqueness up to rotation, and showing that they are not isometric.

In this note we offer, among other results, a much simpler proof that the Bergman

spaces have no isometric zero-divisors. This is deduced from the easily proved fact

that the only isometric pointwise multipliers of Ap are the unimodular constants.

With greater effort, the same approach is applied to the Bloch space, the Dirichlet

space, and more general spaces with weighted integral norms. It is shown that none

of those spaces admit isometric zero-divisors.

The paper concludes with an analogous study of isometric coefficient multipliers

in Hardy and Bergman spaces.

1 Pointwise Multipliers

Suppose X and Y are Banach spaces of analytic functions in the unit disk D. A func-

tion G analytic in D is said to be a pointwise multiplier of X into Y if G f ∈ Y for

every f ∈ X. Then the pointwise multiplication operator MG : X → Y is defined by

MG f = G f for all f ∈ X. Under the assumption that each point-evaluation func-

tional φζ( f ) = f (ζ) is bounded on X, the closed graph theorem shows that MG is
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a bounded operator. Also, in the nontrivial case where X 6= {0}, it can be said that

‖φζ‖ > 0 except perhaps for a discrete set of points ζ in D. The following lemma is

well known, but we include a proof for the sake of completeness.

Lemma 1.1 Let X be a nontrivial Banach space of functions analytic in the unit disk,

and suppose that each point-evaluation functional is bounded on X. If an analytic func-

tion G is a pointwise multiplier of X into itself, then G ∈ H∞ and ‖G‖∞ ≤ ‖MG‖.

Here H∞ denotes the Banach space of bounded analytic functions in the disk,

with norm ‖G‖∞ = supz∈D
|G(z)|.

Proof of Lemma 1.1 For each ζ ∈ D and f ∈ X,

|φζ( f )| |G(ζ)| = |G(ζ) f (ζ)| = |φζ(MG f )|

≤ ‖φζ‖ ‖MG f ‖X ≤ ‖φζ‖ ‖MG‖ ‖ f ‖X.

Taking the supremum over all functions f ∈ X of unit norm, we conclude that

‖φζ‖ |G(ζ)| ≤ ‖φζ‖ ‖MG‖, so that |G(ζ)| ≤ ‖MG‖ wherever ‖φζ‖ > 0. But the

exceptional set where ‖φζ‖ = 0 is discrete, so the inequality |G(ζ)| ≤ ‖MG‖ extends

to all ζ ∈ D.

It is worth remarking that if X is a Banach space of functions analytic in a given

domain Ω ⊂ C, and if the point-evaluation functional φζ is bounded on X for each

ζ ∈ Ω, then the point-evaluations are uniformly bounded on each compact subset

of Ω. The proof is a simple application of the principle of uniform boundedness.

Indeed, for any compact set K ⊂ Ω,

sup
ζ∈K

|φζ( f )| = sup
ζ∈K

| f (ζ)| < ∞

for each f ∈ X, so that supζ∈K ‖φζ‖ < ∞.

2 Hardy and Bergman Spaces

For 1 ≤ p < ∞, the Hardy space H p consists of the functions f analytic in the unit

disk for which

‖ f ‖H p = sup
0≤r<1

{

1

2π

∫ 2π

0

| f (reiθ)|p dθ

} 1/p

< ∞.

Under this norm, H p is a Banach space and all point-evaluation functionals are

bounded, in view of the estimate

| f (z)| ≤
‖ f ‖H p

(1 − |z|2)1/p
, z ∈ D.

See [5] for this and other basic properties of Hardy spaces.
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The Bergman space Ap consists of the analytic functions in the disk for which

‖ f ‖Ap =

{
∫

D

| f (z)|p dA(z)

} 1/p

< ∞,

where dA(z) = π−1 dx dy is normalized area measure in the disk, with A(D) = 1.

Then Ap is a Banach space for 1 ≤ p < ∞, and the estimate

| f (z)| ≤
‖ f ‖Ap

(1 − |z|2)2/p
, z ∈ D,

shows that point-evaluation functionals are bounded. More generally, if w is a non-

negative integrable function on D, the weighted Bergman space A
p
w is the linear space

of analytic functions with finite weighted norm

‖ f ‖A
p
w

=

{
∫

D

| f (z)|pw(z) dA(z)

} 1/p

.

Although it is a subspace of the complete space Lp(wdA), the weighted Bergman space

A
p
w need not be complete. For instance, it can be shown that A

p
w is not complete if

w(z) = 0 on some annulus R < |z| < 1. It is an open problem to describe the weight

functions w for which A
p
w is complete. However, the standard radial weights

wα(z) = (α + 1)(1 − |z|2)α, α > −1,

always yield complete Bergman spaces A
p
wα , denoted by A

p
α for brevity. The point-

evaluation functionals are bounded in A
p
α, by the generalized estimate

| f (z)| ≤
‖ f ‖A

p
α

(1 − |z|2)(2+α)/p
, z ∈ D.

If w is a weight function for which the point-evaluation functionals are uniformly

bounded on compact subsets of the disk, then it can be shown that A
p
w is a complete

space. For a proof, compare the discussion in Section 1.1 of [6], where the proof of

completeness is carried out only for the unweighted spaces Ap.

It is an important property of the Hardy spaces H p and the Bergman spaces Ap

that the polynomials are dense. In other words, every function in H p or in Ap can

be approximated in norm by a polynomial. (See [5, 6] for proofs.) The same is true

in the spaces A
p
α with standard weights (cf. [6, Section 2.3]), but need not be true in

more general weighted Bergman spaces A
p
w.

We now describe the isometric pointwise multipliers of H p and A
p
w. These are the

analytic functions G with the property that ‖G f ‖ = ‖ f ‖ for all functions f in the

given space. It is not necessary to assume that A
p
w is complete, but we will require the

weight function w to be chosen so that every point-evaluation functional is bounded.

In order to avoid trivial complications, we will also require that w(z) > 0 on some

open subset of the disk.
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Theorem 2.1

(i) Let A
p
w be a weighted Bergman space where the point-evaluation functionals are

bounded, and suppose that w(z) > 0 on some open subset of D. Then the only

isometric pointwise multipliers of A
p
w are the unimodular constants.

(ii) The only isometric pointwise multipliers of the Hardy space H p are the inner func-

tions.

Proof In either case, if an analytic function G is an isometric multiplier, then the op-

erator MG is an isometry, so that ‖MG‖ = 1, and Lemma 1.1 tells us that ‖G‖∞ ≤ 1.

(i) For the weighted Bergman space A
p
w we have

0 = ‖1‖
p

A
p
w
− ‖G‖

p

A
p
w

=

∫

D

(

1 − |G(z)|p
)

w(z) dA(z).

But Lemma 1.1 says that 1 − |G(z)|p ≥ 0 in D, and w(z) > 0 on an open set

E ⊂ D, so it follows that 1 − |G(z)|p ≡ 0 on E. Then since G is analytic, it must

be a unimodular constant.

(ii) A similar argument shows that |G(z)| ≤ 1 in D and |G(z)| = 1 almost every-

where on ∂D, hence G is an inner function.

3 The Bloch Space

The Bloch space B is the Banach space of analytic functions in D with bounded in-

variant derivative, equipped with the norm

‖ f ‖B = | f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)|.

It is a large space in the sense that it is not separable; in particular, the polynomials

are not dense in B. The closure of the polynomials in the Bloch norm turns out to be

the little Bloch space B0 defined by the condition

lim
|z|→1

(1 − |z|2)| f ′(z)| = 0.

The spaces B and B0 are intimately connected with the Bergman space A1. The dual

space of B0 can be identified with A1, and the dual of A1 is B. Every function f in B

satisfies the growth condition

| f (z)| ≤
(

1 + log
1

1 − |z|

)

‖ f ‖B, z ∈ D,

which shows that point-evaluation functionals are bounded in B and therefore in B0.

See for instance [6] for properties of the Bloch space.

Brown and Shields [1], among others, found a description of the pointwise mul-

tipliers of the Bloch space into itself. Cima and Wogen [3] described the surjective

isometries. The following theorem shows, however, that very few pointwise multipli-

ers act isometrically.
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Theorem 3.1 The only isometric pointwise multipliers of the Bloch space B are the

unimodular constants. The same is true for the little Bloch space B0.

Proof If an analytic function G is an isometric multiplier of the Bloch space B, we

conclude from Lemma 1.1 that |G(z)| ≤ 1 in D. The Schwarz–Pick lemma then

applies to show that

(1 − |z|2)|G ′(z)| ≤ 1 − |G(z)|2, z ∈ D.

Since MG is an isometry of B, we have ‖G‖B = ‖1‖B = 1 and inductively ‖Gn‖B =

1 for n = 1, 2, . . . . This means that

|G(0)|n + sup
z∈D

(1 − |z|2) n|G(z)|n−1|G ′(z)| = 1

for all n. Invoking the Schwarz–Pick lemma, we infer that

(3.1) 1 ≤ |G(0)|n + sup
z∈D

n|G(z)|n−1
(

1 − |G(z)|2
)

.

However, elementary calculus shows that the function un(r) = nrn−1(1 − r2) attains

its maximum value in the interval [0, 1] at the point rn =
√

(n − 1)/(n + 1). Thus

un(r) ≤ un(rn) =
2n

n + 1

(

1 −
2

n + 1

) (n−1)/2

.

As n → ∞, this last quantity tends to 2/e < 3/4. This shows that un(r) < 3/4 for all

r ∈ [0, 1] when n is sufficiently large. It then follows from (3.1) that |G(0)|n > 1/4

for large n, so that |G(0)| ≥ 1. Since |G(z)| ≤ 1 in D, the conclusion is that |G(0)| = 1

and so G(z) is a constant of modulus one. The proof applies verbatim to the little

Bloch space B0, since the norm is the same.

4 Dirichlet-Type Spaces

The Dirichlet space D is the Hilbert space of all analytic functions in D with finite

Dirichlet integral, endowed with the norm given by

‖ f ‖2
D = | f (0)|2 +

∫

D

| f ′(z)|2 dA(z) = |a0|
2 +

∞
∑

n=1

n|an|
2,

where f (z) =
∑∞

n=0 anzn. The inequality

| f (z)| ≤

(

1 +

√

log
1

1 − |z|2

)

‖ f ‖D

shows that point-evaluation functionals are bounded. An analytic function f belongs

to the Dirichlet space if and only if f ′ is in the Bergman space A2.

Because D is a Hilbert space, it has many isometries. Stegenga [14] has character-

ized the pointwise multipliers of the Dirichlet space into itself. Again we observe that

very few of them are isometric.
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Theorem 4.1 The only isometric pointwise multipliers of the Dirichlet space D are the

unimodular constants.

Proof It is easy to see that the Dirichlet space is invariant under multiplication by

polynomials. Suppose that G(z) =
∑∞

n=0 anzn is an isometric multiplier of D. Then

‖G‖D = ‖1‖D = 1, so that

|a0|
2 +

∞
∑

n=1

n|an|
2
= 1.

In similar fashion, the relation ‖zG‖D = ‖z‖D = 1 says that

∞
∑

n=0

(n + 1)|an|
2
= 1.

Subtracting the first equation from the second, we conclude that
∑∞

n=1 |an|
2

= 0, so

that G(z) ≡ a0. Since ‖G‖D = 1, it is clear that |a0| = 1.

We now turn to a broad generalization of Theorem 4.1, whose proof will be more

complicated. For 1 ≤ p < ∞, we define the Dirichlet-type space D
p
w to consist of all

analytic functions in the unit disk with finite norm

‖ f ‖D
p
w

=

{

| f (0)|p +

∫

D

| f ′(z)|pw(z) dA(z)

} 1/p

.

Here the weight function w is any nonnegative integrable function. Special choices

of the weight function lead to some familiar spaces as special cases. If w(z) =

(p − 1)(1 − |z|2)p−2 then D
p
w is the analytic Besov space Bp of all analytic functions

whose invariant derivative belongs to the Lp space with respect to hyperbolic area

measure. The choice w(z) = (1 − |z|2)p gives the Bergman space Ap with an equiva-

lent but different norm. When p = 2 the space D2
w is called a weighted Dirichlet space,

but it need not be complete. The weight function w(z) = −2 log |z| is of particular

interest, in view of the Littlewood–Paley formula

2

∫

D

| f ′(z)|2 log
1

|z|
dA(z) =

∞
∑

n=1

|an|
2,

where f (z) =
∑∞

n=0 anzn. With this choice of weight function, the space D2
w is none

other than the Hardy space H2, with precisely the same norm.

The next theorem says that only in this last situation does the Dirichlet-type space

D
p
w have nontrivial isometric multipliers.

Theorem 4.2 Let 1 ≤ p < ∞. Suppose that the Dirichlet-type space D
p
w is complete

and that point-evaluations are bounded. Then D
p
w has nonconstant isometric pointwise

multipliers if and only if p = 2 and w(z) = −2 log |z| a.e. in D. In this case D
p
w = H2

and the isometric multipliers are precisely the inner functions.
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Proof If an analytic function G is an isometric multiplier of D
p
w, then G ∈ H∞ and

‖G‖∞ ≤ 1 by Lemma 1.1. The isometric property of G says that ‖ f ‖ = ‖Gn f ‖ for

each f ∈ D
p
w and every positive integer n. More explicitly,

‖ f ‖
p

D
p
w

= |G(0)|np | f (0)|p +

∫

D

|nGn−1G ′ f + Gn f ′|pw dA.

Suppose now that G is not a unimodular constant. Then |G(z)| < 1 everywhere in D

by the maximum modulus principle, and G(z)n → 0 uniformly on compact subsets

of D as n → ∞. In particular, G(0)n → 0 and

lim
n→∞

∫

D

|Gn f ′|pw dA = 0,

by the Lebesgue dominated convergence theorem. Hence by Minkowski’s inequality,

(4.1) ‖ f ‖
p

D
p
w

= lim
n→∞

∫

D

|nGn−1G ′ f |pw dA

for every polynomial f . If we apply (4.1) to the constant polynomial f (z) ≡ 1, we see

that the total variations of the measures dµn = |nGn−1G ′|pwdA converge to 1. Hence

by Alaoglu’s theorem, a subsequence {µnk
} converges in the weak-star topology to a

probability measure µ on D. Using again the fact that |G(z)| < 1 in D, we see that µ
must be supported on T = ∂D. Consequently,

lim
k→∞

∫

D

h|nkGnk−1G ′|pw dA =

∫

T

h dµ

for every function h continuous on D. Comparing this with (4.1), we conclude that

(4.2) | f (0)|p +

∫

D

| f ′|pw dA =

∫

T

| f |p dµ

for every polynomial f .

We now apply (4.2) to the polynomials f (z) = 1 + tzn, where t is a real parameter,

to obtain

(4.3) 1 + |t|pnp

∫

D

|z|(n−1)pw dA =

∫

T

(

1 + 2tℜ{zn} + t2
) p/2

dµ.

Since the right-hand side of (4.3) is analytic in t near 0, we infer that p must be an

even integer. Also note that the coefficient of t2 in the Taylor series development of

the right-hand side is

c2 =

∫

T

( p

2
+ p(p − 2)(ℜ{zn})2

)

dµ,
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and c2 > 0 because the integrand is strictly positive. On the other hand, if p > 2,

the left-hand side gives c2 = 0, so the only possibility is that p = 2. In this case, the

coefficient of t on the right-hand side of (4.3) must vanish; i.e.,

ℜ

∫

T

zn dµ = 0, n = 1, 2, . . . .

In a similar way, an application of (4.3) to the polynomials f (z) = 1 + itzn gives

ℑ

∫

T

zn dµ = 0, n = 1, 2, . . . .

Since µ is real, it follows that

∫

T

zn dµ = 0, n = ±1,±2, . . . ,

and so, by the Weierstrass approximation theorem, µ must be normalized Lebesgue

measure on the circle. Consequently, D
p
w = D2

w = H2, and the Littlewood–Paley

formula shows that

(4.4)

∫

D

| f ′(z)|2w(z) dA(z) = 2

∫

D

| f ′(z)|2 log
1

|z|
dA(z)

for all f ∈ H2.

The final step is to deduce from (4.4) that w(z) = −2 log |z| a.e. in D. Observe

first that polarization identity gives the more general relation

∫

D

f ′(z)g ′(z)w(z) dA(z) = 2

∫

D

f ′(z)g ′(z) log
1

|z|
dA(z)

for all f , g ∈ H2. In particular,

(4.5)

∫

D

zmznw(z) dA(z) = 2

∫

D

zmzn log
1

|z|
dA(z)

for all nonnegative integers m and n. To apply (4.5), let k 6= 0 be any positive or

negative integer, and choose nonnegative integers n ≥ −k and m = n + k. Then a

calculation by polar coordinates gives

∫ 1

0

r2n+k+1

∫ 2π

0

eikθw(reiθ) dθ dr = 0,

since m 6= n and the weight −2 log |z| is radial. If n0 = max{−k, 0}, this means that

the finite measure σ on [0, 1] given by

dσ = r2n0+k+1

∫ 2π

0

eikθw(reiθ) dθ dr
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annihilates the monomials r2 j , j = 0, 1, 2, . . . . Hence by the Weierstrass approxima-

tion theorem, σ = 0. In other words,

∫ 2π

0

eikθw(reiθ) dθ = 0 k = ±1,±2, . . .

for almost every r ∈ [0, 1]. This implies that the weight function is radial, and we

may write w(reiθ) = w(r) a.e. Setting f ′(z) = zn in (4.4), we have

∫ 1

0

r2n+1w(r) dr = 2

∫ 1

0

r2n+1 log
1

r
dr, n = 0, 1, 2, . . . .

In other words, the measure

dν =

(

w(r) − 2 log
1

r

)

r dr

annihilates the monomials r2 j for j = 0, 1, 2, . . . . Another appeal to the Weier-

strass approximation theorem now shows that ν = 0, which completes the proof

that w(z) = −2 log |z| a.e. in D.

Remark It should be observed that Theorem 4.2 remains true for 0 < p < 1. In

fact, the same proof applies with one small modification. Instead of using Minkow-

ski’s inequality to obtain (4.1), one appeals to the inequality ‖ f + g‖p ≤ ‖ f ‖p +‖g‖p,

valid for 0 < p < 1. Lemma 1.1 is stated for Banach spaces, but the proof extends

readily to D
p
w with 0 < p < 1.

5 Zero-divisors

Let X be a Banach space of analytic functions in the unit disk. A nonempty sequence

{zk} of points in D, finite or infinite, is called a zero-set for X (or an X zero-set) if

some function f ∈ X vanishes precisely on {zk}. If all points zk are distinct, this

means that f (zk) = 0 and f ′(zk) 6= 0 for k = 1, 2, . . . . If some point ζ occurs m

times in the sequence {zk}, it means that f has a zero of precise order m at ζ . An

analytic function f is said to vanish on {zk} if f (zk) = 0 for each k and the order of

its zero at zk is greater than or equal to the multiplicity of zk in the sequence. Such a

function is allowed to vanish elsewhere in D and to have a zero of higher order than

required at a point zk.

A function G ∈ X is called a zero-divisor for an X zero-set {zk} if it vanishes

precisely on {zk} and f /G ∈ X for every function f ∈ X that vanishes on {zk}. If

‖ f /G‖ = ‖ f ‖ for every such function f , then G is said to be an isometric zero-divisor.

Blaschke products are isometric zero-divisors for every Hardy space H p. However,

the next theorem will suggest that isometric zero-divisors are rather uncommon. Be-

fore stating the theorem, it is convenient to introduce the notion of a functional Ba-

nach space. This is a Banach space X of functions analytic in a given domain Ω ⊂ C ,

with the properties:

(i) X contains all polynomials;
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(ii) the polynomials are dense in X;

(iii) for ζ ∈ Ω, each point-evaluation functional φζ( f ) = f (ζ) is bounded in X.

Theorem 5.1 Let X be a functional Banach space, and suppose that X is invariant un-

der multiplication by polynomials. Then every isometric zero-divisor in X is an isometric

pointwise multiplier of X.

Proof Let {zk} be an X zero-set and suppose G ∈ X is an isometric zero-divisor for

{zk}. Then for each polynomial Q the function QG belongs to X and vanishes on

{zk}, so that

(5.1) ‖Q‖ =

∥

∥

∥

QG

G

∥

∥

∥
= ‖QG‖.

We wish to conclude that ‖G f ‖ = ‖ f ‖ for every f ∈ X. To see this, let {Qn} be a

sequence of polynomials for which ‖Qn − f ‖ → 0. Such a sequence exists because

the polynomials are assumed to be dense in X. Observe that {QnG} is a Cauchy

sequence in X, since ‖QnG − QmG‖ = ‖Qn − Qm‖ by (5.1). Because X is complete,

it follows that ‖QnG − g‖ → 0 for some function g ∈ X. By the assumption that

point-evaluations are bounded, this implies that Qn(z)G(z) → g(z) pointwise in D.

But for the same reason, Qn(z) → f (z) pointwise, which shows that g = f G. Finally,

in view of (5.1), the triangle inequality gives

∣

∣‖G f ‖ − ‖ f ‖
∣

∣ ≤
∣

∣‖G f ‖ − ‖QnG‖
∣

∣ +
∣

∣‖QnG‖ − ‖Qn‖
∣

∣ +
∣

∣‖Qn‖ − ‖ f ‖
∣

∣

≤ ‖G f − QnG‖ + ‖Qn − f ‖ → 0 as n → ∞.

Thus ‖G f ‖ = ‖ f ‖ for every f ∈ X, as claimed.

In view of our results on isometric pointwise multipliers, it is now a short step to

the following theorem.

Theorem 5.2

(i) For 1 ≤ p < ∞ and α > −1, the Bergman spaces A
p
α with standard weights have

no isometric zero-divisors. More generally, the weighted Bergman space A
p
w has no

isometric zero-divisors if it is a functional Banach space and w(z) > 0 on some

open subset of D.

(ii) The Bloch space B and the little Bloch space B0 have no isometric zero-divisors.

(iii) The Dirichlet space D has no isometric zero-divisors. More generally, the Dirichlet-

type space D
p
w has no isometric zero-divisors if it is a functional Banach space,

except for p = 2 and w(z) = −2 log |z|, where D
p
w = H2.

(iv) For 1 ≤ p < ∞, the only isometric zero-divisors of the Hardy space H p are the

Blaschke products.

Proof (i) As mentioned earlier, polynomials are dense and point-evaluation func-

tionals are bounded in the standard weighted Bergman spaces A
p
α, so they are func-

tional Banach spaces. If more generally A
p
w is a functional Banach space, then by

Theorem 5.1 any isometric zero-divisor would be an isometric pointwise multiplier.

But under the additional hypothesis that w(z) > 0 on an open set, Theorem 2.1 says
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that the only isometric pointwise multipliers of A
p
w are the unimodular constants,

which are not zero-divisors.

(ii) The polynomials are dense in B0, so it is a functional Banach space. It is easy

to check that B0 is invariant under multiplication by polynomials. Hence by Theo-

rem 5.1 every isometric zero-divisor of B0 is an isometric pointwise multiplier. But

by Theorem 3.1 the only isometric pointwise multipliers of B0 are the unimodular

constants. Thus B0 has no isometric zero-divisors. Since B0 ⊂ B, this clearly shows

that no function G ∈ B0 is an isometric zero-divisor of B, but it leaves open the pos-

sibility that some function in B \B0 may be. The difficulty is surmounted by appeal

to the following lemma.

Lemma 5.3 Every isometric zero-divisor of B belongs to B0.

The proof of Lemma 5.3 is deferred to the end of this section.

(iii) This follows by combining Theorem 5.1 with Theorem 4.1 and its general-

ization, Theorem 4.2.

(iv) By Theorem 5.1 and Theorem 2.1, every zero-divisor of H p is an inner func-

tion. However, the canonical factorization of H p functions (see [5]) makes clear that

an inner function cannot be a divisor of the space if it has a nontrivial singular factor.

Hence the zero-divisors are precisely the Blaschke products.

Proof of Lemma 5.3 Let G be an isometric zero-divisor of B. For a ∈ D, the func-

tions fa(z) = (1 − az)−1 and ga(z) = − log(1 − az) are pointwise multipliers of B,

since they are analytic in the closed disk. It follows as in (5.1) that

‖G fa‖B = ‖ fa‖B and ‖Gga‖B = ‖ga‖B.

The first equality gives

|G(1)| + (1 − |a|2)|(G fa) ′(a)| ≤ ‖ fa‖B = 1 +
|a|

1 − |a|2
, or

∣

∣aG(a) + (1 − |a|2)G ′(a)
∣

∣ ≤ |a| + (1 − |a|2)
(

1 − |G(1)|
)

, a ∈ D,

and since G ∈ B, we conclude that G is bounded. The equality ‖Gga‖B = ‖ga‖B

implies

(1 − |a|2)|(Gga) ′(a)| ≤ ‖ga‖B < 2, or
∣

∣aG(a) + (1 − |a|2)G ′(a) log(1 − |a|2)
∣

∣ < 2, a ∈ D.

Since G is bounded, we conclude that G ∈ B0.

Lemma 5.3 and its proof are closely related to the description of pointwise mul-

tipliers of the Bloch space, as given by Brown and Shields [1]. They showed that an

analytic function G is a multiplier of B if and only if it is a multiplier of B0, and these

multipliers are precisely the functions G ∈ H∞ with the property

G ′(z) = O
( 1

(1 − |z|) log
(

1/(1 − |z|)
)

)

, |z| → 1.
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6 Coefficient Multipliers

Following our discussion of isometric pointwise multipliers, it is natural to ask for

a description of isometric coefficient multipliers. In terms of a complex sequence

Λ = {λn}, the coefficient multiplier operator MΛ is defined formally on functions f

analytic in the unit disk by

(MΛ f )(z) =

∞
∑

n=0

λnanzn, where f (z) =

∞
∑

n=0

anzn.

If X and Y are spaces of analytic functions in D, the sequence Λ is called a coefficient

multiplier of X into Y if MΛ maps X into Y . It is an isometric coefficient multiplier of

X into Y if ‖MΛ f ‖Y = ‖ f ‖X for all f ∈ X.

It is easy to see that Λ is a multiplier of the Hardy space H2 into itself, or of the

Bergman space A2 into itself, if and only if it is a bounded sequence. It is an isometric

multiplier if and only if |λn| = 1 for all n. For p 6= 2, however, the situation is

quite different. Then the spaces H p and Ap are not solid: they need not be preserved

under multiplication by a bounded sequence Λ. (See [2] for a full discussion of this

phenomenon.) On the other hand, rotations are isometries that can be described

by coefficient multipliers. The following theorem says that the given spaces have no

other isometric coefficient multipliers.

Theorem 6.1 For 1 ≤ p < ∞, with p 6= 2, the only isometric coefficient multipliers

of the Hardy space H p or the standard weighted Bergman space A
p
α are those of the form

Λ = {cλn}, where |c| = |λ| = 1. The same is true for the Bloch space B and the little

Bloch space B0.

The proof will use the following descriptions of the surjective isometries of Hardy

spaces, Bergman spaces, and the Bloch space, due respectively to Forelli [8], Kolaski

[10], and Cima and Wogen [3].

Theorem A Let 1 ≤ p < ∞ and p 6= 2. Then every linear surjective isometry

T : H p → H p has the form

T f = a( f ◦ ϕ)(ϕ ′)1/p, f ∈ H p,

for some conformal automorphism ϕ : D → D and some unimodular constant a.

Theorem B Let 1 ≤ p < ∞, p 6= 2, and α > −1. Then every linear surjective

isometry T : A
p
α → A

p
α has the form

T f = a( f ◦ ϕ)(ϕ ′)(2+α)/p, f ∈ Ap
α,

for some conformal automorphism ϕ : D → D and some unimodular constant a.

It may be noted that the spaces H2 and A2
α are Hilbert spaces and so have many

surjective isometries.
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Theorem C Every linear surjective isometry T : B → B has the form

T f = a
(

f ◦ ϕ − f
(

ϕ(0)
)

+ f (0)
)

, f ∈ B0

for some conformal automorphism ϕ : D → D and some unimodular constant a. More-

over, every linear isometry of B0 has the same form and is therefore surjective.

Note that the action of surjective isometries of B is described only on the sub-

space B0. This will not affect our proof, however, since B0 contains the polynomials.

Proof of Theorem 6.1 The strategy is to show that whenever a coefficient multiplier

is isometric, it is automatically surjective, so that Theorems A and B apply. We will

carry out the proof only for the space A
p
α, as the discussions for H p and B are essen-

tially the same. If an analytic function f (z) =
∑∞

n=0 anzn belongs to A
p
α, then so does

the function f ∗(z) = f (z) =
∑∞

n=0 anzn, and the two functions have equal norms.

Hence it is easy to see that if Λ is a coefficient multiplier of A
p
α into itself, then so is

Λ = {λn}. Moreover, Λ is an isometric multiplier if Λ is. But if Λ is an isometric

multiplier of A
p
α, then by applying it to the monomials zn we readily see that |λn| = 1

for all n. This shows that the identity operator on A
p
α satisfies I = MΛM

Λ
. Hence MΛ

is surjective, and is therefore a weighted composition operator of the form specified

in Theorem B. Applying this to the identity function f (z) = z, we obtain

λ1z = aϕ(z)
(

ϕ ′(z)
) (2+α)/p

,

which shows that the conformal automorphism ϕ must be a rotation: ϕ(z) = λz for

|λ| = 1. Therefore,

(MΛ f )(z) = c f (λz) = c

∞
∑

n=0

anλ
nzn,

where |c| = 1, as claimed.

As a simple consequence, we find that the result holds also for the Dirichlet-type

spaces D
p
α = D

p
wα with standard radial weights wα.

Corollary For 1 ≤ p < ∞, p 6= 2, and α > −1, the only isometric coefficient

multipliers of the Dirichlet-type space D
p
α are those of the form Λ = {cλn}, where

|c| = |λ| = 1.

In closing, it may be remarked that the isometric composition operators of the

Bloch space, the Dirichlet space, and various other spaces were recently described

in [4, 11–13]. As a common generalization of those results and the ones in the cur-

rent paper, it would be interesting to find a description of the isometries among the

weighted composition operators.
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