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Abstract

We consider the question of an optimal transaction between two investors to minimize their
risks. We define a dynamic entropic risk measure using backward stochastic differential
equations related to a continuous-time single jump process. The inf-convolution of
dynamic entropic risk measures is a key transformation in solving the optimization
problem.
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1. Introduction

In this paper we consider the optimal structure of a contract depending on a nontradable
risk related to a nonfinancial risk, such as natural catastrophe. Barrieu and El Karoui [1],
[2] discussed a related problem in a continuous diffusion setting. In an earlier paper [13] we
constructed backward stochastic differential equations associated with a single jump process.
This process might relate to a natural disaster or default. Our results could describe how
risk should be optimally allocated between an insurer and the insured. In Section 2 we first
review risk measures used in mathematical finance, including static and dynamic risk measures.
We next recall results relating to backward stochastic differential equations associated with a
finite-horizon, continuous-time, single jump process developed in [13]. Then we introduce
the dynamic entropic risk measure based on the solution of a backward stochastic differential
equation and generate new dynamic risk measures as the inf-convolution of dynamic entropic
risk measures. Finally, we solve the problem of the optimal structure.

2. Static and dynamic risk measures

Our random variables and processes will be defined on a complete filtered probability space
(�, F , {Ft }, P). Our processes will be defined on [0, T ], where T is finite and deterministic.

2.1. Static risk measures

Suppose that X denotes a set of financial positions, that is, X is the set of bounded,
FT -measurable random variables. Following [9], a static risk measure ρ(·) is a mapping
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968 L. SHEN AND R. ELLIOTT

ρ : X → R, which satisfies some of the following properties for all X, Y in X.

• Monotonicity: ρ(X) ≥ ρ(Y ) if X ≤ Y almost surely (a.s.).

• Convexity: ρ(αX + (1 − α)Y ) ≤ αρ(X) + (1 − α)ρ(Y ) for all α ∈ (0, 1).

• Positivity: X ≥ 0 a.s. implies that ρ(X) ≤ ρ(0).

• Constancy: ρ(α) = −α for all α ∈ R.

• Translatability: ρ(X + β) = ρ(X) − β for all β ∈ R.

• Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

• Lower semicontinuity: {X ∈ X : ρ(X) ≤ γ } is closed in X for any γ ∈ R.

A functional ρ is called a convex risk measure if it satisfies monotonicity, convexity, lower
semicontinuity, and ρ(0) = 0. The convexity property implies that diversification of investment
strategies should not increase risk [10].

Example 2.1. For any X in X, an important example of a convex risk measure is the entropic
risk measure:

eγ (X) = sup
Q∈M1

(EQ[−X] − γ h(Q | P)) = γ ln EP

[
exp

(
− 1

γ
X

)]
. (2.1)

Hereγ is the risk tolerance coefficient, M1 is the set of all probability measures on the considered
space, and h(Q | P) is the relative entropy of Q with respect to the probability of P, which is
defined as

h(Q | P) =
⎧⎨
⎩

EP

[
dQ

dP
ln

dQ

dP

]
if Q � P,

+∞ otherwise.

Another convex risk measure is the inf-convolution of convex functionals. This is established
in the following theorem. For the proof, see [1].

Theorem 2.1. Let ρ1 and ρ2 be two convex risk measures. The inf-convolution of ρ1 and ρ2,
ρ1,2, is defined as

ρ1,2(X) = ρ1�ρ2(X) = inf
S∈X

{ρ1(X − S) + ρ2(S)}.

We assume that ρ1,2(0) > −∞. Then ρ1,2 is a convex risk measure, which is finite for all
X ∈ X.

2.2. Dynamic risk measures

A static risk measure as described above applies to a single-stage portfolio allocation prob-
lem. However, most investors make portfolio allocations dynamically over time. Consequently,
they need time-consistent dynamic risk measures which are appropriate not only for the final
time horizon but also for intermediate times as the process evolves. In fact, dynamic risk
measures can be defined using backward stochastic differential, or in discrete time difference,
equations.

A dynamic risk measure is a map satisfying some of the following conditions.

• ρt : X → L0(Ft ) for all t ∈ [ 0, T ].
• ρ0 is a static risk measure.
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• ρT (X) = −X for all X ∈ X.

• Convexity: for all t ∈ [ 0, T ], ρt is a convex risk measure.

• Positivity: X ≥ 0 implies that, for all t ∈ [0, T ], ρt (X) ≤ ρt (0) a.s.

• Constancy: for all t ∈ [0, T ] and all c ∈ R, ρt (c) = −c.

• Translatability: for all t ∈ [0, T ] and all X ∈ X, ρt (X + a) = ρt (X) − a a.s.

• Subadditivity: for all t ∈ [0, T ] and X, Y ∈ X, ρt (X + Y ) ≤ ρt (X) + ρt (Y ).

3. Backward stochastic differential equations for the single jump process

Suppose that g is an R-valued, Ft -adapted process

g = g(ω, t, y, z) : � × [0, T ] × R × R
d �→ R

satisfying suitable conditions.
A backward stochastic differential equation (BSDE) is an equation of the form

Yt = Y0 −
∫

[0,t]
g(u, Yu, Zu) du +

∫
[0,t]

Zu dMu for all t ∈ [0, T ], YT = X. (3.1)

In the work of Peng [12] and Pardoux and Peng [11], M is a Brownian motion. A solution
of (3.1) is a pair (Y, Z) of adapted processes. In [11] it was shown that, for a given terminal
condition X ∈ L2(FT ), (3.1) has a unique solution (Y, Z) if g satisfies some regular conditions.
The solution (Y, Z) is required to be adapted to the forward filtration, and Z is required to be
predictable. More general martingales M were considered by El Karoui and Huang [7]. Cohen
and Elliott [4], [5] discussed backward stochastic differential and difference equations when the
martingale term M is related to a finite-state Markov chain or some other finite-state processes.

For appropriate coefficients g, a general dynamic risk measure ρ can be defined using the
solutions of the BSDE (3.1) by putting ρt (X) = −Yt . The dynamic risk measure (ρt )t∈[0,T ]
then provides a measure of risk of a position X at intermediate times t between the initial time 0
and the final time T . Depending on the properties of g, ρt will be a dynamic risk measure.
Furthermore, ρT will be the opposite of the final risky position, i.e. ρT (X) = −X. See [3].

3.1. The continuous finite-time single jump process

Consider a continuous finite-time single jump process W(ω) = {Wt(ω), t ∈ [0, L]}, where
L is a finite deterministic terminal time. In fact, W(ω) remains at 0 until a random time τ(ω)

(where 0 < τ(ω) ≤ L a.s.), when it jumps to 1. The random time τ might model the time of
an insurance event or a default.

Then W can be defined on the filtered probability space (�, F , {Ft }0≤t≤L, µ), where
� = [0, L], F = B([0, L]), Ft is the completed σ -field generated by {Ws, s ≤ t}, and
µ : F → [0, 1] is a probability measure on (�, F ). We suppose that the probability of a jump
at time zero is zero.

Write Ft for the probability that τ ∈ (t, L]. Then Ft is monotonic and nonincreasing. We
suppose that Ft is continuous.

For t ∈ (0, L], write

pt = 1{τ(ω)≤t}, p̃t =
∫

(0,τ (ω)∧t]
1

Fs

d(−Fs).

Then qt = pt − p̃t is an Ft -martingale. (See [6] and [8].)
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Consider the set L1(�, F , µ) of functions such that
∫
�

|f | dµ < +∞. For g ∈ L1(µ), we
define the Stieltjes integrals, with � = [0, L],∫

[0,L]
g(u) dpu = g(τ(ω)),

∫
[0,L]

g(u) dp̃u =
∫

(0,τ (ω)]
g(u)

1

Fu

d(−Fu).

Put ∫
[0,L]

g(u) dqu =
∫

[0,L]
g(u) dpu −

∫
[0,L]

g(u) dp̃u

and ∫
(0,t]

g(u) dqu =
∫

[0,L]
1{u≤t} g(u) dqu.

We have the following martingale representation theorem (see [6] and [8]).

Theorem 3.1. For any Ft -martingale Mt defined on (�, F , {Ft }0≤t≤L, µ), there exists
g ∈ L1(µ) such that Mt = M0 + M

g
t a.s., where M

g
t = ∫

(0,t] g(u) dqu.

3.2. BSDEs

A BSDE based on the martingale random measure q is an equation of the form

Yt +
∫

(t,L]
H(ω, u, Zu(·)) d(−Fu) +

∫
(t,L]

Zu dqu = Q (3.2)

for t ∈ [0, L]. Here, H is an adapted function H : � × [0, L] × R → R. A solution of the
BSDE (3.2) is a pair of adapted processes (Y, Z) which satisfies (3.2) with YL(ω) = Q(ω) for
ω ∈ �. We assume that Yu is left continuous. Also, we suppose that H(ω, u, Zu(·)) ∈ L2(Fu)

for all u.

Theorem 3.2. Assume that H is Lipschitz continuous as follows: there exists c ∈ R
+ such

that, for all u ∈ [0, L],
|H(ω, u, Z1

u(·)) − H(ω, u, Z2
u(·))| ≤ c|Z1

u − Z2
u|.

Then, for any FL-measurable terminal condition Q, the BSDE (3.2) has an adapted unique
solution (Y, Z). (See [13].)

4. Optimal design problem

In the following we focus on an optimal transaction between two economic agents, denoted
respectively by A and B, who exist in an uncertain universe modeled by the filtered probability
space (�, F , {Ft }0≤t≤L, µ). In the work of Barrieu and El Karoui [2], a problem is considered
where uncertainty is modeled by a Brownian filtration.

Suppose that agent A invests a dollars in a defaultable zero-coupon bond with maturity T

(0 < T < L) at time 0. Agent A is exposed towards a nonhedgeable risk associated with the
possible default. Default might occur at a random time τ (where τ is defined on the above
probability space (�, F , µ) and 0 < τ ≤ L). For t ∈ (0, T ], the time-t value X of the
defaultable zero-coupon bond, with maturity T , deterministic interest rate (r(s); s ≥ 0), and
constant rebate δ (0 < δ < 1), is defined as

• the payment of a exp(
∫
(0,T ] r(s) ds) at time T if default τ has not occurred before time T ;

• a payment of aδ exp(
∫
(0,T ] r(s) ds), made at maturity, if the default time τ ≤ T .
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That is,

X = a exp

(∫
(0,T ]

r(s) ds

)
(1{τ>T } +δ 1{τ≤T }).

Agent A wishes to issue a financial product S(τ) and sell it to agent B for a forward price paid
at time T , denoted by π , to reduce his exposure.

4.1. Optimal structure in a static framework

Suppose that both agents assess the risk associated with their respective positions using an
entropic risk measure as defined by (2.1), denoted respectively by eγ and eγ ′

. Here agents A

and B have risk tolerances γ and γ ′, respectively.
The issuer, agent A, wants to determine the structure (S, π) in order to minimize his/her

global risk measure
inf
S,π

eγ (X − S + π)

with the constraint
eγ ′

(S − π) ≤ eγ ′
(0) = 0.

Using the translatability property in Section 2.1 and binding the constraint at the optimum,
the pricing rule of the S-structure is fully determined by the buyer as

π∗ = −eγ ′
(S).

Using the translatability property again, the optimization program simply becomes

inf
S

(eγ (X − S) + eγ ′
(S)).

4.2. Solving the inf-convolution in a dynamic framework

We extend the notion of static entropic risk measure defined by (2.1) to a dynamic one on
the filtered probability space (�, F , {Ft }0≤t≤L, µ).

For t ∈ (0, T ], consider the martingale

M
γ
t = E

[
exp

(
−X − S

γ

) ∣∣∣∣ Ft

]
,

where the risk tolerance coefficient γ is strictly positive. Define the dynamic entropic risk
measure associated with receiving X and paying S at time T by

e
γ
t (X − S) = γ log M

γ
t .

We now prove the following result.

Theorem 4.1. (−e
γ
t (X − S), Z

γ
t ) is the solution of the BSDE

−e
γ
t (X − S) +

∫
(t,T ]

Hγ (ω, u, Z
γ
u (·)) d(−Fu) +

∫
(t,T ]

Z
γ
u dqu = X − S, (4.1)

where

Hγ (ω, t, Z
γ
t (·)) = 1{t≤τ }

Ft

(
Z

γ
t + γ exp

(
−Z

γ
t

γ

)
− γ

)
.
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Proof. We prove that −e
γ
t (X − S) is the solution of the BSDE (4.1). Clearly, e

γ

T (X − S) =
−(X − S).

By the martingale representation theorem, for the single jump process (see [6] and [8]), there
exists a unique ϕγ ∈ L1(µ) such that, for t ∈ (0, T ],

M
γ
t = M

γ
0 +

∫
(0,t]

ϕ
γ
s dqs.

For the expression for ϕγ , see Appendix A. By the Itô formula (see [8]),

e
γ
t (X − S) = γ log M

γ
0 + γ

∫
(0,t]

1

M
γ
u−

ϕ
γ
u (dpu − dp̃u)

+ γ
∑

0<u≤t

(
log M

γ
u − log M

γ
u− − 1

M
γ
u−

�M
γ
u

)

= γ log M
γ
0 + γ

(
1{τ≤t}

ϕ
γ
τ

M
γ
τ−

−
∫

(0,τ∧t]
ϕ

γ
u

M
γ
u−

1

Fu

d(−Fu)

)

+ γ 1{τ≤t}
(

log

(
1 + ϕ

γ
τ

M
γ
τ−

)
− ϕ

γ
τ

M
γ
τ−

)

= γ log M
γ
0 − γ

∫
(0,τ∧t]

ϕ
γ
u

M
γ
u−

1

Fu

d(−Fu) + γ

∫
(0,t]

log

(
1 + ϕ

γ
u

M
γ
u−

)
dpu

= γ log M
γ
0 + γ

∫
(0,τ∧t]

log

(
1 + ϕ

γ
u

M
γ
u−

)
1

Fu

− ϕ
γ
u

M
γ
u−

1

Fu

d(−Fu)

+ γ

∫
(0,t]

log

(
1 + ϕ

γ
u

M
γ
u−

)
dqu.

Define

Z
γ
u = −γ log

(
1 + ϕ

γ
u

M
γ
u−

)
.

Then
ϕ

γ
u

M
γ
u−

= exp

(
−Z

γ
u

γ

)
− 1.

Hence,

e
γ
t (X − S) = γ log M

γ
0 −

∫
(0,τ∧t]

(
Z

γ
u

Fu

+ γ

Fu

(
exp

(
−Z

γ
u

γ

)
− 1

))
d(−Fu)

−
∫

(0,t]
Z

γ
u dqu

= γ log M
γ
0 −

∫
(0,t]

1{u≤τ }
Fu

(
Z

γ
u + γ exp

(
−Z

γ
u

γ

)
− γ

)
d(−Fu)

−
∫

(0,t]
Z

γ
u dqu.

Write

Hγ (ω, u, Z
γ
u (·)) = 1{u≤τ }

Fu

(
Z

γ
u + γ exp

(
−Z

γ
u

γ

)
− γ

)
.
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Then

e
γ
t (X − S) = γ log M

γ
0 −

∫
(0,t]

Hγ (ω, u, Z
γ
u (·)) d(−Fu) −

∫
(0,t]

Z
γ
u dqu.

Since

e
γ

T (X − S) = −(X − S) = γ log M
γ
0 −

∫
(0,T ]

Hγ (ω, u, Z
γ
u (·)) d(−Fu) −

∫
(0,T ]

Z
γ
u dqu,

then

−e
γ
t (X − S) +

∫
(t,T ]

Hγ (ω, u, Z
γ
u (·)) d(−Fu) +

∫
(t,T ]

Z
γ
u dqu = X − S.

By Theorem 3.2, (−e
γ
t (X − S), Z

γ
t ) is the unique solution of the BSDE (4.1) with terminal

condition X − S. This completes the proof.

We now discuss the inf-convolution of two entropic risk measures.
Similarly to the above, for γ ′, define

M
γ ′
t = E

[
exp

(
− S

γ ′

) ∣∣∣∣ Ft

]

and
e
γ ′
t (S) = γ ′ log M

γ ′
t .

Then, as above, there exists a unique ϕγ ′ ∈ L1(µ) such that, for t ∈ (0, T ],

M
γ ′
t = M

γ ′
0 +

∫
(0,t]

ϕ
γ ′
s dqs.

For the expression for ϕγ ′
, see Appendix A. Also, from Theorem 4.1,

−e
γ ′
t (S) +

∫
(t,T ]

Hγ ′
(ω, u, Z

γ ′
u (·)) d(−Fu) +

∫
(t,T ]

Z
γ ′
u dqu = S, (4.2)

where

Z
γ ′
u = −γ ′ log

(
1 + ϕ

γ ′
u

M
γ ′
u−

)

and

Hγ ′
(ω, u, Z

γ ′
u (·)) = 1{u≤τ }

Fu

(
Z

γ ′
u + γ ′ exp

(
−Z

γ ′
u

γ ′

)
− γ ′

)
.

Here e
γ ′
t (S) is the dynamic entropic risk measure of S when the risk tolerance is γ ′.

We now study, for any t ∈ (0, T ], the inf-convolution of the dynamic entropic risk measures

e
γ
t and e

γ ′
t . As in Theorem 2.1, this is defined as

(eγ �eγ ′
)t (X) = inf

S
(e

γ
t (X − S) + e

γ ′
t (S)).

This quantity describes the optimum minimal total remaining risk for the two investors if B

buys an insurance product of value S from A.
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Write Zu = Z
γ
u + Z

γ ′
u . Then we have

Hγ (ω, u, Z
γ
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·)) = Hγ (ω, u, Zu(·) − Z

γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·)).

Define

Hγ �Hγ ′
(ω, u, Zu(·)) = inf

Z
γ ′
u

(Hγ (ω, u, Zu(·) − Z
γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·))).

We now prove the following theorem.

Theorem 4.2. It holds that

Hγ �Hγ ′
(ω, u, Zu(·)) = Hγ+γ ′

(ω, u, Zu(·)). (4.3)

Also,

(eγ �eγ ′
)t (X) =

∫
(t,T ]

Hγ+γ ′
(ω, u, Zu(·)) d(−Fu) +

∫
(t,T ]

Zu dqu − X

= (eγ+γ ′
)t (X). (4.4)

Proof. Adding (4.1) and (4.2), we have

e
γ
t (X − S) + e

γ ′
t (S) =

∫
(t,T ]

(Hγ (ω, u, Z
γ
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·))) d(−Fu)

+
∫

(t,T ]
(Z

γ
u + Z

γ ′
u ) dqu − X.

With Zu = Z
γ
u + Z

γ ′
u , then

e
γ
t (X − S) + e

γ ′
t (S) =

∫
(t,T ]

(Hγ (ω, u, Zu(·) − Z
γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·))) d(−Fu)

+
∫

(t,T ]
Zu dqu − X. (4.5)

Consider the functional

Hγ (ω, u, Zu(·) − Z
γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·))

= 1{u≤τ }
Fu

(
Zu + γ exp

(
−Zu − Z

γ ′
u

γ

)
+ γ ′ exp

(
−Z

γ ′
u

γ ′

)
− γ − γ ′

)
. (4.6)

This is a convex function with respect to Z
γ ′
u , since the second derivative of (4.6) with respect

to Z
γ ′
u is, for each ω,

1{u≤τ }
Fu

(
1

γ
exp

(
−Zu − Z

γ ′
u

γ

)
+ 1

γ ′ exp

(
−Z

γ ′
u

γ ′

))
≥ 0.

Therefore, for each ω, the minimum of (4.6) with respect to Z
γ ′
u occurs when the first derivative

of (4.6) with respect to Z
γ ′
u is 0. That is, when

1{u≤τ }
Fu

(
exp

(
−Zu − Z

γ ′
u

γ

)
− exp

(
−Z

γ ′
u

γ ′

))
= 0.
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Write Z
∗γ ′
u for the value at which the minimum is attained. Clearly, Z

∗γ ′
u is unique, and

Z
∗γ ′
u = γ ′

γ + γ ′ Zu.

Therefore,

Hγ �Hγ ′
(ω, u, Zu(·)) = inf

Z
γ ′
u

(Hγ (ω, u, Zu(·) − Z
γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·)))

= Hγ (ω, u, Zu(·) − Z
∗γ ′
u (·)) + Hγ ′

(ω, u, Z
∗γ ′
u (·))

= 1{u≤τ }
Fu

(
Zu + (γ + γ ′) exp

(
− Zu

γ + γ ′

)
− (γ + γ ′)

)

= Hγ+γ ′
(ω, u, Zu(·)).

This establishes (4.3).
By (4.3) and (4.5), we obtain

e
γ
t (X − S) + e

γ ′
t (S) ≥

∫
(t,T ]

(Hγ+γ ′
(ω, u, Zu(·))) d(−Fu) +

∫
(t,T ]

Zu dqu − X;

therefore,

inf
S

(e
γ
t (X − S) + e

γ ′
t (S)) ≥

∫
(t,T ]

(Hγ+γ ′
(ω, u, Zu(·))) d(−Fu) +

∫
(t,T ]

Zu dqu − X.

Take S∗ = (γ ′/(γ + γ ′))X. We will show that

e
γ
t (X − S∗) + e

γ ′
t (S∗) =

∫
(t,T ]

(Hγ+γ ′
(ω, u, Zu(·))) d(−Fu) +

∫
(t,T ]

Zu dqu − X.

In fact, with S∗ = (γ ′/(γ + γ ′))X,

X − S∗

γ
= S∗

γ ′ .

Therefore, the martingales

M
γ
t = E

[
exp

(
−X − S∗

γ

) ∣∣∣∣ Ft

]
and M

∗γ ′
t = E

[
exp

(
−S∗

γ ′

) ∣∣∣∣ Ft

]

are equal, as well the integrands ϕγ and ϕ∗γ ′
in their martingale representations. Then, with

Z
γ
u = −γ log

(
1 + ϕ

γ
u

M
γ
u−

)
and Z

∗γ ′
u = −γ ′ log

(
1 + ϕ

∗γ ′
u

M
∗γ ′
u−

)
,

we have
γZ

∗γ ′
u = γ ′Zγ

u .

With

Zu = Z
γ
u + Z

∗γ ′
u = γ + γ ′

γ ′ Z
∗γ ′
u ,
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we have

Z
∗γ ′
u = γ ′

γ + γ ′ Zu.

Consequently, as in (4.3), this Z
∗γ ′
u is such that

inf
Z

γ ′
u

(Hγ (ω, u, Zu(·) − Z
γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·)))

= Hγ (ω, u, Zu(·) − Z
∗γ ′
u (·)) + Hγ ′

(ω, u, Z
∗γ ′
u (·))

= Hγ �Hγ ′
(ω, u, Zu(·))

= Hγ+γ ′
(ω, u, Zu(·)).

This establishes (4.4).

We have established that, for all t ∈ (0, T ], when S = S∗ and Z
γ ′
t = Z

∗γ ′
t , we have

inf
S

(e
γ
t (X − S) + e

γ ′
t (S))

= e
γ
t (X − S∗) + e

γ ′
t (S∗)

=
∫

(t,T ]
inf
Z

γ ′
u

(Hγ (ω, u, Zu(·) − Z
γ ′
u (·)) + Hγ ′

(ω, u, Z
γ ′
u (·))) d(−Fu)

+
∫

(t,T ]
Zudqu − X

=
∫

(t,T ]
Hγ (ω, u, Zu(·) − Z

∗γ ′
u (·)) + Hγ ′

(ω, u, Z
∗γ ′
u (·)) d(−Fu)

+
∫

(t,T ]
Zu dqu − X.

By Theorem 3.2, (−e
γ ′
t (S∗), Z∗γ ′

t ) is the unique solution of the BSDE (4.2) with terminal
condition S∗. We note that, for any constant c,

e
γ
t (X − S − c) = e

γ
t (X − S) + c and e

γ ′
t (S + c) = e

γ ′
t (S) − c.

Therefore, S∗ + c is also optimal.

5. Conclusion

We obtained an optimal solution for the inf-convolution problem of the dynamic entropic
risk measures. This is the minimum remaining risk if investor B buys an insurance product of
value S from A.

Appendix A. The expressions for ϕγ and ϕγ ′

Clearly, S is FT -measurable; therefore, S is defined as

S = h(τ) 1{τ≤T } +b 1{τ>T },

where h ∈ L1(µ) and b is constant.
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As in [6], for all t ∈ (0, T ], the integrands have the form

ϕ
γ
t = exp

(
− 1

γ

(
aδ exp

(∫
(0,T ]

r(s) ds

)
− h(t)

))

− 1

Ft

∫
(t,T ]

exp

(
− 1

γ

(
aδ exp

(∫
(0,T ]

r(s) ds

)
− h(u)

))
d(−Fu)

− FT

Ft

exp

(
− 1

γ

(
a exp

(∫
(0,T ]

r(s) ds

)
− b

))

and

ϕ
γ ′
t = exp

(
−h(t)

γ ′

)
− 1

Ft

∫
(t,T ]

exp

(
−h(u)

γ ′

)
d(−Fu) − FT

Ft

exp

(
− b

γ ′

)
.
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