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Abstract

We show how to incorporate rewriting into the Calculus of Constructions and we prove that

the resulting system is strongly normalizing with respect to beta and rewrite reductions. An

important novelty of this paper is the possibility to define rewriting rules over dependently

typed function symbols. We prove strong normalization for any term rewriting system, such

that all function symbols satisfy the, so called, star dependency condition, and every rule is

accepted by the Higher Order Recursive Path Ordering (which is an extension of the method

created by Jouannaud and Rubio for the setting of the simply typed lambda calculus). The

proof of strong normalization is done by using a typed version of reducibility candidates due

to Coquand and Gallier. Our criterion is general enough to accept definitions by rewriting

of many well-known higher order functions, for example dependent recursors for inductive

types or proof carrying functions. This makes it a very good candidate for inclusion in a

proof assistant based on the Curry-Howard isomorphism.

1 Introduction

The aim of this paper is to incorporate a rewriting mechanism into the Calculus

of Constructions and to present a method for proving strong normalization of the

combined calculus.

Practical motivations of our work concern proof assistants based on the Calculus

of Constructions and their extension with rewriting-style function definitions. Defin-

ing functions by rewriting, instead of Fix and Cases (if we take Coq (Barras et al.,

1999) as an example), is not only easier but also more powerful, as it can enrich

significantly the conversion relation of the system. And the richer the conversion

relation is, the more compact and easier to automate the proofs in the system

are.

In this respect, our paper contributes to the work on the separation between

deduction and computation. Computations are steps that can be mechanically

performed and reproduced (like rewriting), and therefore there is no need to keep
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them in the proof (they are just hidden in conversion). On the other hand, the

reasoning consists of conscious choices of the logical inference rules to be applied.

When combining rewriting with λ-calculus, one has to address the question of

mutual relationship of user-defined rewriting and the beta reduction rule. One

solution is to treat both equally, using first order (syntactic) matching to decide if a

rewrite rule can be applied to a given term, and to consider the reduction relation of

the system to be the sum of beta and rewrite relations (Jouannaud & Okada, 1991;

Breazu-Tannen & Gallier, 1991). Other approaches consist of applying rewrite rules

only to terms in beta normal form (Nipkow, 1991; Lorı́a-Sáenz & Steinbach, 1992;

Jouannaud & Rubio, 1998), or using higher order matching (modulo beta) to decide

if a rewrite rule can be applied (Klop, 1980; Klop et al., 1993). In our paper we

consider higher order rewriting with syntactic matching.

Incorporating rewriting to the Calculus of Constructions is not straightforward,

because the definition of rewriting and the definition of the typing system are

mutually dependent. Once this problem solved, there are crucial meta-theoretical

properties to be studied: normalization, confluence and logical consistency. Our

paper focuses on the strong normalization property. To address this question one

has to give a termination criterion, that is satisfied by a set of rewriting rules only

if the relation generated by these rules and the beta rule is terminating. Ideally, this

criterion should be an automatic decision procedure, running in reasonable time and

strong enough to accept the rules which are already known to be terminating, like

the elimination rules for inductive types (also called recursor rules).

Few techniques are known for proving strong normalization of rewriting in the

higher-order setting. Strict functionals presented in van de Pol & Schwichtenberg

(1995) are a very powerful method, but a lot of user interaction is subsequently

needed for proving their properties when used as interpretations. In general, this

concerns also other semantical methods of proving termination.

Syntactical methods are meant to be more practical and to be the base of (par-

tially) automated termination techniques. Avenhaus & Loria-Sáenz (1995) initiated

ordering based syntactical methods in the context of simply-typed lambda calculus.

Although Lysne & Piris (1995) improves over Avenhaus & Loria-Sáenz (1995), the

resulting method is still rather weak.

The General Schema was originally defined in Jouannaud & Okada (1991) in the

context of simply typed lambda calculus (see also Jouannaud & Okada (1997)). It

was later used in Barbanera et al. (1994, 1997), where higher-order rewriting in the

Calculus of Constructions was introduced for the first time. The authors restricted

themselves to some predefined, basic types and function symbols of algebraic types.

The latter result was further extended in Blanqui et al. (1999) by strengthening the

General Schema and adding a powerful mechanism, called the Computable Closure,

designed to use the information offered by Girard’s reducibility candidates (the

method on which termination proofs are based in this context). This mechanism

allowed to take care of complex rules such as recursor rules for Brouwer’s ordinals.

Very recently, Blanqui (2001) generalized the General Schema to the rewriting on

types.

Another method for proving strong normalization of higher-order rewriting is
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the Higher Order Recursive Path Ordering (HORPO), which is an extension of the

first order RPO (Dershowitz, 1982) to higher-order terms. This reduction ordering

was presented in Jouannaud & Rubio (1999), in the context of the simply typed

lambda calculus. Due to the recursive structure of the HORPO, this method is

inherently more powerful than the General Schema, although both methods bear

some similarities (like the use of the computable closure).

In this paper, we extend HORPO to the typing discipline of the Calculus of

Constructions. We consider a Calculus of Constructions with constants, represent-

ing type constructors, constructors and function symbols, and we use (an extended

version of) HORPO to control rewriting. Type constructors and constructors are

used to build inductive types, function symbols serve to define rewriting. For tech-

nical reasons every function symbol has two kinds of arguments: parameters and

other arguments. The division of arguments is correct if it satisfies the so called

star dependency condition. The division has also an influence on the form of the

rules accepted by HORPO. The star dependency condition and its interaction with

HORPO are the most important concepts of this paper.

Compared to Blanqui (2001), in our system all constants may have polymorphic

and dependent types and consequently we can handle rewriting of dependently

typed function symbols. By means of type constructors and constructors we can

define small strictly positive inductive types. There is a technical restriction imposed

on the form of the types of constructors, but this restriction does not seem to

exclude natural examples we have seen so far. Elimination rules for inductive

types are presented as rewriting rules and they are meant to be accepted by

HORPO. For the moment we cannot accept elimination rules for inductive types

with functional arguments (like Brouwer’s ordinals) but we hope to do this very

soon (so from the elimination rule point of view, we accept only “basic” induc-

tive types). It is important to stress that, just like all previously mentioned papers

(except of Blanqui (2001)), we consider only object level rewriting, that is rewrit-

ing that does not create types (strong elimination is out of the scope of this

paper).

The proof of strong normalization of our calculus is done by using a typed version

of the reducibility candidates method due to Coquand & Gallier (1990).

Before we go into details, there are two more points to be explained. The first one

concerns the status of inductive types. There are no inductive types in the Calculus

of Constructions (contrary to the Calculus of Inductive Constructions (Coquand

& Paulin-Mohring, 1990)), which is the starting point of our work. As we have

already said, in our calculus, we are able to simulate inductive types and their

elimination rules by imposing some positivity conditions on types of constructors

and by using rewriting. But inductive types are not necessary to define rewriting in

the Calculus of Constructions. One can perfectly imagine the system without the

conditions mentioned above, where constructors are just function symbols that do

not rewrite. We decided to present the version with inductive types, that is with

positivity conditions on types of constructors, because these conditions allow us to

accept some rules that would not be accepted otherwise. Accounting for inductive

types turned out to be a non-trivial task.
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The second point to be discussed concerns the system for which we prove strong

normalization. Instead of proving strong normalization for every set of rules accepted

by HORPO, we do it for HORPO itself. More precisely, we mix together the Calculus

of Constructions with the rewrite relation generated by all valid HORPO judgments

and show that the resulting calculus is strongly normalizing. Termination for a

particular rewrite system accepted by HORPO follows easily.

The framework we use is described in section 2. Section 3 gives the definition

of HORPO and CC+H, which is the system resulting from mixing the Calculus of

Constructions with the rewriting relation induced by HORPO. We study part of the

meta-theory of CC+H in section 4 and continue in section 5 with the proof of strong

normalization. We use this fact to show in section 6 the strong normalization of any

CC+R – a Calculus of Constructions with rewriting generated by user-defined rules

verifying HORPO. Section 7 provides a discussion on the star dependency condition

and its importance for the proof of strong normalization. In section 8 we present

several examples illustrating the power and deficiencies of HORPO. Two problems,

important from the practical point of view, are discussed in section 9: decidability

and modularity. We conclude with the discussion of restrictions we have imposed

and potential improvements.

The reader is expected to be familiar with the basics of term rewriting systems

(Dershowitz & Jouannaud, 1990) and typed lambda calculi (Barendregt, 1990;

Barendregt, 1993), and in particular with the Calculus of Constructions (Coquand

& Huet, 1988).

The preliminary version of this paper was presented at the Workshop on Logical

Frameworks and Meta-languages in Santa Barbara, California, in July 2000.

2 Preliminaries

The calculus that we present in this paper is constructed upon the set of symbols

and the typing information provided by the user. This section will explain these

requirements and introduce the basic notions used in the rest of the paper.

The section is organized as follows. From a given set of symbols we construct

pseudoterms in section 2.1. Then, we recall the definition of the standard Calculus

of Constructions (section 2.2). We continue with conditions imposed on types that

are assigned to symbols: star dependency condition in section 2.4.1, strict positivity

in section 2.4.2 and typing conditions in section 2.4.3. The last part of this section

introduces basic definitions concerning relations and orderings.

2.1 Terms

We assume given two disjoint sets of variables: one for small variables (Var?) and

one for big variables (Var2) and three disjoint sets of constants: for type constructors

(T C), constructors (CS) and function symbols (F).

Function and constructor symbols will have their arguments classified as par-

ameters and other arguments. Consequently, their arities will be pairs of natural

numbers. We write F (r,n) (CS (r,n)) for the set of function (constructor) symbols
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taking first r parameters and then n other arguments. We simply write f ∈ Fm
(c ∈ CSm) with m = r + n, in case the knowledge of r is not needed. An arity of a

type constructor is always a natural number. We write s ∈ T Cm if a type constructor

s is of arity m.

Definition 2.1.1 (Pseudoterms)

Pseudoterms are built from the usual constructions and from the constants, respect-

ing the arity. Below, s denotes a type constructor, c a constructor and f a function

symbol.

a ::= x | ? | 2 | λx :a.a | (x :a).a | a a | s(a1, . . . an) | c(a1, . . . an) | f(a1, . . . an)

The pseudoterm u v, written also @(u, v), denotes the application of u to v. In the

sequel we will also use terms of the form @(u, v1, . . . vn). If a = (. . . ((u v1)v2) . . . vn)

then @(u, v1, . . . vn) is a left-flattening of a. Note that u may still be an application.

The pseudoterm (x :u).v denotes a product (traditionally, it is written Πx :u.v). If x

does not occur in v, we write it also as u → v. Throughout the paper we will often

write f(~a,~b) to denote a term headed by a symbol f ∈ F (r+n) applied to r parameters

~a and n other arguments ~b. The same applies to c ∈ CS (r,n).

Pseudoterms are identified with finite labeled trees by considering λx and Πx

as binary function symbols different for every x. Positions are finite sequences of

natural numbers and we use Λ for the root position. The subterm of a pseudoterm

a at position p is denoted by a|p and the pseudoterm obtained by replacing a|p by

b is written a[b]p. The strict subterm relation (when p 6= Λ) is denoted by � and its

nonstrict version by �. A subterm at position p 6= Λ is called constructor subterm if

all symbols on the path from the root down to but not including p are constructors.

We write a� b if b is a subterm of a and a�CS b if b is a constructor subterm of a.

We denote by FV(a) the set of free variables of a. This notation easily extends

to sets: FV(A) =
⋃
a∈A FV(a). We assume that bound variables in a pseudoterm

are all different, and are different from the free ones. As usual, we work modulo

α-conversion that is identifying the terms that only differ in their bound variables.

The notation ~a denotes a list of pseudoterms, but it will sometimes be used for

multisets.

Substitutions are written as in [a1/x1, . . . an/xn] or [~a/~x]. The set {x1, . . . xn} is called

the domain (dom) of the substitution. Substitutions expand to applications defined

on all pseudoterms, by replacing each free variable by its image, and avoiding

captures. We use letters θ, ρ, µ for substitutions and postfix notation for their

application to pseudoterms.

Given two substitutions ρ1 and ρ2 with the domains D1 and D2, a parallel

composition of ρ1 and ρ2, denoted by ρ1 ∪ ρ2, is a substitution with the domain

D1 ∪ D2 defined by

x(ρ1 ∪ ρ2) =

{
xρ1 if x ∈ D1

xρ2 if x ∈ D2

and provided that D1 ∩ D2 = ∅.
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A sequential composition, denoted by ρ1ρ2, is a substitution defined by

x(ρ1ρ2) = (xρ1)ρ2

A declaration is a pair x : a where x is a variable and a is a pseudoterm. An

environment Γ is an ordered sequence of declarations, where all variables are distinct.

For Γ = x1 : a1, . . . , xn : an the domain of Γ (dom(Γ)) is the list x1, . . . , xn, and

Γ(xi) = ai. A sequent is a pair (Γ, a) consisting of an environment and a pseudoterm.

We will write sequents as Γ ` a, since they will be used in situations where a is a

well-typed term in the environment Γ in a given typing system.

The sequence of declarations x1 : a1, . . . , xn : an may be denoted by −−→x : a, if n is

irrelevant or clear from the context. Vectors of declarations usually serve to denote

environments, but we will sometimes use them to form a long product (shortening

(x1 : b1) . . . (xn : bn).c by
−−−→
(x : b).c). By convention, the type

−−−→
(x : b).c is simply c if−−−→

(x : b) is empty. For simplicity, we will also write (Γ).c for the product
−−−→
(x : b).c if Γ

is the environment x1 : b1, . . . xn : bn.

2.2 Calculus of Constructions

The Calculus of Constructions (CC), originally defined in Coquand & Huet (1988),

is the starting point of our work. The typing relation of this system will be used

directly to check the types of constants from (F ∪ CS ∪ T C) and to check the types

of terms in HORPO (Definition 3.4.1) and computable closure (Definition 3.3.2).

Definition 2.2.1 (Calculus of Constructions)

(ax) `CC ? : 2

(var)
Γ `CC a : p

Γ, x : a ` x : a
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

(weak)
Γ `CC a : b Γ `CC c : p

Γ, x : c `CC a : b
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

(abs)
Γ, x : a `CC b : c Γ `CC (x :a).c : p

Γ `CC λx :a.b : (x :a).c
(x 6∈ dom(Γ), p ∈ {?,2})

(app)
Γ `CC a : (x :b).c Γ `CC d : b

Γ `CC a d : c[d/x]

(prod)
Γ `CC a : p Γ, x : a `CC b : q

Γ `CC (x :a).b : q
(x 6∈ dom(Γ), p, q ∈ {?,2})

(conv)
Γ `CC a : b Γ `CC b′ : p

Γ `CC a : b′
(p ∈ {?,2}, b ∗→β b

′ or b′ ∗→β b)

The relation which occurs in the (conv) rule is the beta reduction. It is the

reflexive and transitive closure of →β , which is defined as the compatible closure of

the β-reduction rule: λx :a.b c→ b[c/x].

The Calculus of Constructions is confluent and terminating with respect to the

beta reduction. As a consequence, the type-checking in this calculus is decidable.
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If we want to type-check terms that are headed by a constant (like f(~a)) we must

add a new rule for it. But first we will provide all constants with types and check

that these types are well-typed terms in the Calculus of Constructions.

By signature we mean a list of declarations assigning a type (a pseudoterm) to

every constant. Because of possible dependencies these types may use constants, for

example in the declaration f : (P : nat → ?)(n : nat).P (g(n)) the type of f uses

constants nat and g.

Definition 2.2.2

We say that the signature Σ is well-typed if every constant of arity m has a type

of the form (x1 : A1) . . . (xm : Am).B and if Σ `CC ? : 2 in the original Calculus of

Constructions, treating f(~a) like a variable f applied successively to terms a1, . . . an.

Given a well-typed signature we can construct the system which apart from the

seven usual rules of the Calculus of Constructions contains also:

(fun)
Γ `CC ? : 2 ∀ i Γ `CC ai : Ai[~a/~x]

Γ `CC f(~a) : B[~a/~x]
f :
−−−−→
(x : A).B ∈ Σ

Since Σ `CC ? : 2, the extended system may be seen as the original one where

some variables (representing constants of arity m) are always applied to at least m

arguments.

Of course this extended version of the Calculus of Constructions is still confluent

and terminating with respect to the beta reduction. Consequently the type-checking

in this system is decidable. From now on we will refer to it as the Calculus of

Constructions and we will call the original one the pure Calculus of Constructions

or the Calculus of Constructions without Constants.

In section 3 we will define CC+H – an extension of the Calculus of Constructions

by rewriting. To distinguish between the standard and the new systems we will

always use the subscript CC , whenever talking about the typing relation of the

Calculus of Constructions (like in Γ `CC a : b). Following the notation used further

for CC+H, where the reduction used in the conversion rule needs an environment,

we may also write Γ `CC b→β b
′ for the beta reduction b→β b

′ and Γ `CC b ∗↔ b′

for the fact that b and b′ are beta equal (Γ ` b ∗↔ b′ will mean that b and b′ are

convertible in CC+H).

2.3 Extended signature

In the previous section the signature was just a list of declarations. For our purposes,

it is more convenient to put together the information about a type constructor and

its constructors and have a single inductive definition.

Definition 2.3.1 (Extended signature)

An extended signature Σ is a (possibly dependent) sequence of declarations, each

declaration being of the form:

• f :
−−−→
(x : b).c, where f ∈ F and ~b, c are pseudoterms, or
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• Ind[p1 : P1, . . . pr : Pr](s : A := c1 : C1, . . . cm : Cm), where s ∈ T C, c1, . . . cm ∈ CS
(constructors of the inductive type s) and A, ~C are pseudoterms. Variables

p1, . . . pr are called parameters of the inductive type s.

Moreover, we suppose that every e ∈ F ∪ T C ∪ CS has exactly one declaration in Σ.

The type of an e ∈ T C ∪ CS is not explicitly mentioned in the extended signature.

To obtain it, we have to destructure the inductive definition which includes this e.

(type constructor)
Ind[p1 : P1, . . . pr : Pr](s : A := c1 : C1, . . . cm : Cm) ∈ Σ

s : (p1 : P1) . . . (pr : Pr).A ∈ Σ

(constructor)
Ind[p1 : P1, . . . pr : Pr](s : A := c1 : C1, . . . cm : Cm) ∈ Σ

ci : (p1 : P1) . . . (pr : Pr).Ci[s(p1, . . . pr)/s] ∈ Σ

where s is a special variable corresponding to the constant s and appearing in Ci’s.

Example 1

Inductive definition of polymorphic lists has the form:

Ind[A : ?](List : ? := nil : List, cons : A→ List→ List)

From this definition List : ? → ?, nil : (A : ?).List(A) and cons : (A : ?)(a : A)(l :

List(A)).List(A).

Every extended signature Σ may be seen as a simple signature assigning types

to constants and such that the declaration for a type constructor precedes the

declarations for its constructors.

2.4 Well-formedness conditions

In this section we will present all necessary conditions that must be satisfied by

constants and their types (i.e. by the signature) and we will summarize them in

the definition of well-formedness (Definition 2.4.3). From the beginning of the next

section (section 3) we will assume that we are given a well-formed extended signature.

2.4.1 Star Dependency

The star dependency condition is one of the most important concepts of this paper.

The types of function and constructor symbols provided by the user are checked

against this condition in order to make sure that the separation of arguments (into

parameters and other arguments) is correct.

For function symbols, star dependency condition influences the form of the

rewriting rules accepted by HORPO, restricting parameter arguments to be distinct

variables (see sections 3.1 and 3.4). This ensures the computability of the type

arguments of a function symbol, which is crucial in the proof of strong normalization.

For constructors, star dependency makes it possible to define the interpretation of

inductive types in section 5.2.1. For a deeper discussion of the star dependency

condition we refer the reader to section 7.
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Definition 2.4.1

The type (p1 : P1) . . . (pr : Pr)(x1 : b1) . . . (xn : bn).c satisfies the star dependency

condition with respect to f ∈ (F (r,n) ∪ CS (r,n)) if

FV(b1, . . . bn, c) ∩ Var2 ⊆ {p1, . . . pr}
In other words, this condition means that every free variable y of b1, . . . bn, c is small

(y : A : ?) or is a parameter. This condition may be seen as a generalization of the

requirement that all variables corresponding to nonparameter arguments, x1, . . . xn
belong to Var?.
Example 2

The type of map ∈ F (2,2),

(A : ?)(B : ?)(f : A→ B)(l : List A)(List B)

satisfies star dependency.

If we suppose that map ∈ F (1,3), then its type would not satisfy the star dependency

condition, as the output type of f depends on the big variable B that would not be

a parameter.

Of course, if we suppose that all arguments of map are parameters (map ∈ F (4,0)),

then its type would obviously satisfy the star dependency condition. On the other

hand this would have a negative impact on the form of the rules which can be

accepted by HORPO (every argument of map would have to be a variable as can

be seen from the forthcoming definition of the parametric rule and HORPO).

2.4.2 Strict positivity

As already said in the introduction, we consider only small strictly positive inductive

types. The inductive type s, defined by Ind[p1 : P1, . . . pr : Pr](s : A := c1 : C1, . . . cm :

Cm), is small if s is on the type level of the Calculus of Constructions (s : T : 2 for

some T ).

In the definition below, we suppose that for every type constructor s there is a

special variable s. It is used to formulate positivity conditions and it will later be

substituted by the real s applied do its parameters (s(~p)). Positivity conditions are

syntactic conditions on the form of A and ~C , which are given below (see also Barras

et al. (1999) and Paulin-Mohring (1993)).

Definition 2.4.2 (?-arity, positivity condition)

A pseudoterm A is a ?-arity if A =
−−−→
(x : b).?. We denote by A? the set of ?-arities.

A type that is generated by s is a pseudoterm of the form
−−−→
(x : b).sa1 . . . an.

A type t =
−−−→
(x : b).sa1 . . . an generated by s satisfies the positivity condition if s does

not occur in any ai and its occurrences in each domain bj of the product are strictly

positive, i.e. each bj in which s occurs is of the form
−−−→
(x : d).se1 . . . ek and s does not

occur in ~d,~e.

We write t ∈ Posm(s) if t is a type generated by s that satisfies the positivity

condition and the length of
−−−→
(x : b) is m.
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2.4.3 Well-formedness of the extended signature

The following definition summarizes all condition that must be satisfied by constants

from F ∪ T C ∪ CS .

Definition 2.4.3 (Well-formed extended signature)

An extended signature Σ is well-formed if we can deduce Σ ok in the following

system:

(start) ∅ ok
(fun)

Σ ok Σ `CC (p1 : P1) . . . (pr : Pr)(x1 : b1) . . . (xn : bn).c : ?

Σ, f : (p1 : P1) . . . (pr : Pr)(x1 : b1) . . . (xn : bn).c ok

if (p1 : P1) . . . (pr : Pr)(x1 : b1) . . . (xn : bn).c satisfies the star

dependency condition w.r.t. f ∈ F (r,n).

(ind)
Σ ok Σ,Γp `CC A : 2 ∀i Σ,Γp, s : A `CC Ci : ?

Σ, Ind[Γp](s : A := c1 : C1, . . . cm : Cm) ok

for Γp = p1 : P1, . . . pr : Pr , if the following conditions hold:

• s ∈ T Cr , ∀i∃ni ci ∈ CS (r,ni),

• A ∈ A?, ∀i Ci ∈ Posni(s),

• −−−−→(p : P ).Ci[s(~p)/s] satisfies the star dependency condition

w.r.t. ci ∈ CS (r,ni)

where `CC means that we verify the corresponding typing judgment in the Calculus

of Constructions without Constants, treating Σ as an environment, constants from

F ∪T C ∪CS as variables and terms headed by constants e(a1, . . . an) like a variable e

applied successively to terms a1, . . . an.

Obviously, the well-formedness condition given above ensures that the signature is

well-typed (i.e. Σ ` ? : 2, see Definition 2.2.2). In the sequel we will always assume

that our extended signature is well-formed.

Summarizing, the idea is that the user provides the constants, the arities and

the signature and its well-formedness is automatically checked. Well-formedness is

decidable, because the only difficult part in the its definition is type checking. The

latter is decidable since it is the type checking of the pure Calculus of Constructions.

2.5 Relations and Orderings

In this paper, rather than relations on terms we will consider relations on terms in

a given environment.

To say that terms a and b are in the relation → in the environment Γ we use

the notation Γ ` a → b or a →Γ b, Γ being fixed. We denote by
∗→Γ the reflexive

and transitive closure of →Γ. Unless stated differently, we will consider only those

relations that do not distinguish α-convertible terms. Note that given an environment

Γ, →Γ is an ordinary relation on terms. Consequently → is strongly normalizing, or
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terminating, if for every Γ, the relation →Γ is terminating, i.e. if for every term a

there is no infinite sequence a→Γ a1 →Γ a2 →Γ · · · .
Let us now introduce some useful definitions and extensions of the given (not

necessarily transitive) relation > on terms. In these extensions we will often use =,

which is a syntactic equality on terms.

The lexicographic extension of >, denoted by >lex, is defined as:

(a1, . . . an) >lex (b1, . . . bn) if ∃i ∈ {1, . . . n} ai > bi and ∀j<i aj = bj .

The multiset extension of >, denoted by >mul is defined as:

M ] P >mul M ] P ′ if P 6= ∅ and ∀b ∈ P ′ ∃a ∈ P a > b.

where ] denotes the disjoint union.

An important fact is that for a terminating relation >, the relations >lex and >mul

are also terminating (Dershowitz & Jouannaud, 1990).

Let us recall that a subterm at position p is called a constructor subterm if all

symbols on the path from the root down to but not including p are constructors.

The constructor subterm relation is denoted by �CS .

The constructor subterm extension of >, denoted by >CS is defined as:

a >CS b iff a > b or

∃c a�CS c and (c > b or c = b).

We will often use notation > for > ∪ =. Following this convention >CS is equal

to >CS ∪ = and we have a >CS b if there is a c such that a�CS c and c > b.

An ordering is a reflexive, antisymmetric and transitive relation. An ordering > is

well-founded if its strict part > (defined as a > b iff a > b and not b > a) is strongly

normalizing.

3 CC+H – Calculus of Constructions with rewriting induced by HORPO

The goal of this paper is twofold: to define a new calculus, obtained by incorporating

to the Calculus of Constructions a rewriting mechanism generated by user-defined

higher-order rewrite rules satisfying the criterion called Higher Order Recursive

Path Ordering (HORPO) and to show that every instance of this calculus is strongly

normalizing. To this end, we will actually show that the particular instance of the

calculus, obtained by incorporating at once all rules satisfying HORPO, is strongly

normalizing.

A difficulty is that rewriting is used in one of the type-checking rules – called

conversion – whereas rewriting itself must ensure type preservation, making the

definitions of rewriting and typing mutually dependent. This dependency is broken

by type-checking the rewrite rules in the Calculus of Constructions (without user-

defined rules in conversion). For the discussion about relaxing this assumption see

section 9.2.

As already mentioned in the introduction, strong normalization will be shown

under the assumption that rewriting operates on the object level. In our formalism,
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this is ensured by the requirement that for every function symbol f in the signature

f : T : ?.

Before we define HORPO in section 3.4 we introduce and describe all its compo-

nents. Throughout these definitions the typing is that of the Calculus of Construc-

tions (as defined in section 2.2).

HORPO generates a relation on terms in an environment and can compare only

terms of equal types. Every HORPO judgment has the form Γ ` l � r : A, where

Γ is an environment, l, r are terms and A is their type. If the left-hand side l is

headed by a function symbol then the whole judgment must be a parametric rule

(see below). If in addition, the right-hand side r is an application then it must also

verify the application condition (see section 3.2).

An important part of HORPO is the computable closure. It is used to enhance

the set of acceptable right-hand sides in HORPO judgments and is defined as a

possibly infinite set of terms generated by some computability preserving inference

rules from the given initial set (see section 3.3).

Although sections 3.2 and 3.3 are important for the proof of normalization and

for the expressive power of HORPO respectively, they are not essential for the

understanding of the definition of HORPO. Therefore we advise the reader to skip

these two sections for the first reading. On the contrary, the section 3.1 is crucial for

the understanding of HORPO.

3.1 Parametricity condition

Parametricity is the general condition imposed on the environment Γ and parameter

arguments of l in a HORPO judgment Γ ` l � r : A, in case l is a function symbol

headed term.

Definition 3.1.1 (Parametric rule)

The quadruple (Γ, l, r, A) is a parametric rule if

1. l starts with a function symbol f : (p1 : P1) . . . (pr : Pr)(x1 : b1) . . . (xn : bn).c,

2. Γ = p1 : P1, . . . pr : Pr, G,

3. l = f(p1, . . . pr, u1, . . . un),

4. Γ `CC l : A and Γ `CC r : A.

In other words, parametricity requires that all parameter arguments of the left-

hand side are different variables. The assumption that HORPO judgments verify

parametricity condition is crucial for the proof of strong normalization (see sec-

tion 5.4 for further explanations and section 7.1 for a counterexample).

Actually, in the above definition we could require ∀ i pi ∈ dom(Γ) and ∀ i, j pi 6= pj
instead of Γ = p1 : P1, . . . pr : Pr, G. Even if originally the p’s were not in order, we

can move them to the beginning of Γ, as Pi depends only on p1, . . . pi−1 (because

the type of f, (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).c, is a well-typed term of the

Calculus of Constructions). The fact that Pi does not depend on other variables

from Γ than p1, . . . pi−1 is very important in the proof of strong normalization and

for this reason we prefer the explicit statement Γ = p1 : P1, . . . pr : Pr, G.
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3.2 Application condition

In the definition of HORPO, there is a possibility to compare a term which starts

with a function symbol with a term which starts with an application:

−−→
p : P ,G ` f(~p,~u) �@(w0, . . . , wm) : A

But for technical reasons not every application can be a right-hand side in such

a HORPO comparison. The restricting condition concerns the type of w0 and it

demands that this type is a product, which does not depend on those from w1, . . . wm
that are big and do not belong to ~p. In other words, it expects that for every i > 0,

the term wi must be either an object, or a nondependent argument, or must belong

to ~p.

Definition 3.2.1 (Application condition)

The term @(w0, . . . , wm) satisfies the application condition in the environment

(
−−→
p : P ,G), if

−−→
p : P ,G `CC w0 : (y1 : A1) . . . (ym : Am).B

and for all yi

• yi ∈ Var?, or

• yi 6∈ FV(Ai+1, . . . Am, B), or

• yi ∈ Var2 , and wi ∈~p.
We denote it by AppCon(

−−→
p : P ,G `@(w0, . . . , wm)).

Example 3

Suppose that length ∈ F (1,1) has type (A : ?)List(A)→ Nat and let us take

w0 = λA :?.λl :List(A).length(A, l)

v0 = λl :List(Nat).length(Nat, l)

In any environment
−−→
p : P ,G we have

−−→
p : P ,G `CC w0 : (A : ?)List(A)→ Nat and−−→

p : P ,G `CC v0 : List(Nat)→ Nat

Now, the condition

AppCon(
−−→
p : P ,G `@(w0, Nat, nil(Nat)))

does not hold because in the type (A : ?)List(A) → Nat, we have A ∈ Var2 and

Nat 6∈~p. On the other hand, application conditions given below are satisfied:

AppCon(p : ?, l : List(p) `@(w0, p, l)) and

AppCon(
−−→
p : P ,G `@(v0, nil(Nat)))

3.3 Computable closure

Computable closure is used in the definition of HORPO and serves to enrich the

choice of possibilities to accept a given right-hand side of a HORPO judgment−−→
p : P ,G ` f(~p,~u) � r : A.
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Without the computable closure, to accept ri – an immediate subterm of the

right-hand side – we would use the comparison either with the whole left-hand side

f(~p,~u), or with one of its immediate subterms. The role of computable closure is to

accept ri if it results from simple “computability preserving” transformations of~p,~u

(like, for example, applying uj1 to uj2 ). Computability refers here to Tait and Girard

celebrated reducibility predicate technique.

The definition of computable closure and that of HORPO are mutually de-

pendent as one of the transformations mentioned above, Recursive call, requires

some HORPO inequalities to be satisfied. Despite this circularity the definitions are

correct, which is shown in Lemma 3.4.2.

Computable closure is a set of quintuples, whose first element is called a leading

term. We write informally ri ∈ CClf(~p,~u) if a tuple led by ri (verifying some

additional conditions) belongs to the computable closure of f(~p,~u). At the end of

this subsection there is a complete proof (in Example 5) that some term belongs to

a given computable closure.

In what follows, we will give the formal definition of the computable closure

preceded by the definition of (Gp, G)-tuples, that are the quintuples on which com-

putable closure operates. These two definitions are rather complex and at the first

reading it may be difficult to guess what their different components are for. In fact,

even though the computable closure rules operate on quintuples and have compli-

cated side-conditions, if we restrict our attention to the leading terms the rules turn

out to be quite simple (the rules are named after their operations on leading terms).

The remaining four components of tuples are necessary to prove “computability

preservation” in the fundamental technical Lemma 5.4.7.

Definition 3.3.1 ((Gp, G)-tuple)

A quintuple (t, Gm;BV ` T , µ) is called a (Gp, G)-tuple if

1. FV(T ) ∩ Var2 ⊆ Gp ∪ BV ,

2. µ is a well-typed substitution from Gp, Gm to Gp, G, such that µ |Gp= idGp ,

3. Gp, Gm, BV `CC T : ?/2,

4. Gp, G, BVµ `CC t : Tµ.

The BV component is an environment consisting of, so-called, bound variables.

In a tuple (t, Gm;BV ` T , µ) the term t is called the leading term. By FBV(a) we

denote those variables from BV that are free in a. A term a is clean if FBV(a) = ∅.
Example 4

Suppose that map ∈ F (2,2) has type (A : ?)(B : ?)(A→ B)List(A)→ List(B) and that

A : ?, B : ?, f : A→ B, a : A, l : List(A) ` map(A,B, f, cons(A, a, l)) : List(A)

holds. Then

(f, ∅; ∅ ` A→ B, [A/A, B/B]) and

(cons(A, a, l), y : A→ B; ∅ ` List(A), [A/A, B/B, f/y])

are (A : ?, B : ?, f : A→ B, a : A, l : List(A))-tuples.
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In a tuple (t, Gm;BV ` T , µ), the BV component represents variables in t and T

that will later be bound by computable closure rule Abstraction, as we are interested

only in terms that are clean. This mechanism is used to construct, for example,

λx :A.@(u, x) from @(u, x) by abstracting over a free (BV ) variable x.

In fact, the definition above considers two levels at the same time. The first one,

where T can be typed and the other, where t is of type Tµ. The reason to distinguish

these two levels is to ensure that Tµ is of very special form: all big variables of T

are included in Gp (assuming BV is empty) and µ affects only small variables of T .

This property will be crucial in Lemma 5.4.7 which says roughly that for a tuple

(t, Gm;BV ` T , µ) in the computable closure, t belongs to the interpretation of T

under the substitution µ.

Definition 3.3.2 (Computable Closure)

Let f have a type (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).c and let us suppose that

Gp, G `CC f(~p,~u) : c[~u/~x] holds for some environments Gp =
−−→
p : P and G and for

some terms ~u.

The initial set for Gp, G `f(~p,~u), denoted by Init(Gp, G `f(~p,~u)), is the following

set of (Gp, G)-tuples:

{(pi, ∅; ∅ ` Pi, idGp) | 1 6 i 6 r} ∪
{(uj , x1 : b1, . . . xj−1 : bj−1; ∅ ` bj , idGp ∪ [~u/~x]) | 1 6 j 6 n}

The terms ~p,~u are called initial terms.

The Computable Closure of Gp, G `f(~p,~u), denoted by CCl (Gp, G `f(~p,~u)), is the

smallest set containing Init(Gp, G `f(~p,~u)) and closed under the operations described

below:

Introduction of variables

Gp, Gm, BV `CC y : A, y ∈ dom(BV )

(y, Gm;BV ` A, µ)

if FV(A)∩Var2 ⊆ Gp∪BV , and µ is well-typed substitution from Gp, Gm to Gp, G,

such that µ |Gp= idGp .

Abstraction

(t, Gm;BV , y : A ` T , µ) (Aµ, Gm;BV ` p2, µ)

Gp, Gm, BV , y : A `CC T : p1 Gp, Gm, BV `CC A : p2

(λy :Aµ.t, Gm;BV ` (y :A).T , µ)

if p1, p2 ∈ {?,2}.
Application to a variable

(t, Gm;BV ` (x :A).B, µ) (y, Gm;BV ` A, µ)

(@(t, y), Gm;BV ` B[y/x], µ)

if y ∈ BV .

Application to a parameter

(t, Gm;BV ` (x :P ).B, µ)

(@(t, p), Gm;BV ` B[p/x], µ)

if p : P ∈ Gp.
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Application to a small argument

(t1, Gm;BV ` (x :A).B, µ) (t2, Gm;BV ` A, µ)

(@(t1, t2), Gm, x : A;BV ` B, µ ∪ [t2/x])

if x ∈ Var? and t2 and A are clean.

Application to a nondependent argument

(t1, Gm;BV ` (x :A).B, µ) (t2, Gm;BV ` A, µ)

(@(t1, t2), Gm;BV ` B, µ)

if x 6∈ FV(B).

Precedence

∀i (ti, Gm,
−−−−−−→
y : d[~p′/~q];BV ` di[~p′/~q], µ ∪ [~t/~y])

(g(~p′,~t), Gm,
−−−−−−→
y : d[~p′/~q];BV ` e[~p′/~q], µ ∪ [~t/~y])

if f >F g, g : (q1 : Q1) . . . (qr′ : Qr′ ).(y1 : d1) . . . (ym : dm).e, ~p′ ⊆ dom(Gp) and for

every i either ti is clean or yi 6∈ FV(di+1, . . . dm, e).

Recursive call

∀i (ti, Gm,
−−→
x : b; ∅ ` bi, µ ∪ [~t/~x])

(f(~p,~t), Gm,
−−→
x : b; ∅ ` c, µ ∪ [~t/~x])

if Gp, G ` (~p,~u) �CSstat (~p,~t), where stat is a status of f :
−−−−→
(p : P )

−−−→
(x : b).c and �CSstat is

a stat extension of the constructor extension of � (see Section 2.5).

Constructor—decomposition

(c(~a′, ~N), Gm;BV ` s(~a)~u, µ)

(a′i, Gm;BV ` Qi[~a/~q], µ)

(c(~a′, ~N), Gm;BV ` s(~a)~u, µ)

(Ni, Gm,
−−−−−−→
z : d[~a/~q];BV ` di[~a/~q], µ ∪ [~N/~z])

if c : (q1 : Q1) . . . (qr′ : Qr′ ).(z1 : d1) . . . (zk : dk).s(~q)w1 . . . wn is a constructor of

s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).?, if ~a are clean and if for every i

either Ni is clean or zi 6∈ FV(di+1, . . . dk).

Constructor

∀i (a′i, Gm;BV ` Qi[~a/~q], µ) ∀i (Ni, Gm,
−−−−−−→
z : d[~a/~q];BV ` di[~a/~q], µ ∪ [~N/~z])

Gp, Gm, BV `CC s(~a)~u : ? Gp, G, BVµ `CC c(~a′, ~N) : (s(~a)~u)µ

(c(~a′, ~N), Gm;BV ` s(~a)~u, µ)

if c : (q1 : Q1) . . . (qr′ : Qr′ ).(z1 : d1) . . . (zk : dk).s(~q)w1 . . . wn is a constructor of

s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).? and if FV(~a,~u) ∩ Var2 ⊆ Gp ∪ BV .

Type constructor

∀i (ai, Gm;BV ` Ai, µ) ∀i (ui, Gm;BV ` Ui, µ) Gp, G, BVµ `CC s(~a)~u : ?

(s(~a)~u, Gm;BV ` ?, µ)

if s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).? ∈ T C.
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Product type

(A, Gm;BV ` p1, µ) (B, Gm;BV , x : C ` p2, µ)

Gp, G, BVµ, x : A `CC B : p2 Gp, G, BVµ `CC A ∗↔ Cµ

((x :A).B, Gm;BV ` p2, µ)

if p1, p2 ∈ {?,2}.
Reduction

(t, Gm;BV ` T , µ)

(t′, Gm;BV ` T , µ)

if t→β t
′.

Weak1

(t, Gm;BV ` T , µ) Gp, Gm `CC A : ?/2 Gp, G `CC M : Aµ

(t, Gm, x : A;BV ` T , µ ∪ [M/x])

if x 6∈ dom(Gm, BV ).
Weak2

(t, Gm;BV ` T , µ) Gp, Gm, BV `CC A : ?/2

(t, Gm;BV , x : A ` T , µ)

if x 6∈ dom(Gm, BV ) and FV(A) ∩ Var2 ⊆ Gp, BV .

When no confusion can arise, the computable closure CCl (Gp, G ` f(~p,~u)) will

simply be written CClf(~l), where~l are the initial terms (~p,~u). We say that t ∈ CClf(~l)

if there is a tuple (t, Gm;BV ` T , µ) ∈ CClf(~l), such that t and T are clean. In

particular, this simpler notation (t ∈ CClf(~l)) will be used in the definition of

HORPO.

Lemma 3.3.3
Let us suppose that

−−→
p : P ,G ` f(~p,~u) : A holds. Then every quintuple (t, Gm;BV `

T , µ) ∈ CClf(~p,~u) is a (
−−→
p : P ,G)-tuple.

Proof
Easy induction on the derivation of the tuple. q

Example 5
Let map ∈ F (2,2) be of type (A : ?)(B : ?)(A → B)List(A) → List(B). We

will show that @(f, a) ∈ CCl (A : ?, B : ?, f : A → B, a : A, l : List(A) `
map(A,B, f, cons(A, a, l))). The tuples

(f, ∅; ∅ ` A→ B, [A/A, B/B]) and

(cons(A, a, l), y : A→ B; ∅ ` List(A), [A/A, B/B, f/y])

are in the computable closure by the definition of the initial set. By Weak1 and

Constructor-decomposition applied respectively to the above tuples, we get

(f, y : A→ B; ∅ ` A→ B, [A/A, B/B, f/y]) and

(a, y : A→ B; ∅ ` A, [A/A, B/B, f/y])

Now it is sufficient to use Application to a nondependent argument to obtain

(@(f, a), y : A → B; ∅ ` B, [A/A, B/B, f/y]). Since @(f, a) and B are obviously

clean (BV = ∅) we obtain @(f, a) ∈ CClmap(A,B, f, cons(A, a, l)).
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3.4 HORPO

The Higher Order Recursive Path Ordering (HORPO) presented in definition 3.4.1

below is an adaptation of HORPO (Jouannaud & Rubio, 1999) to the Calculus of

Constructions, which was itself a generalization of the well-known RPO (Dershowitz,

1982) to the simply typed lambda calculus (with a polymorphism “à la ML”).

A HORPO judgment has the form Γ ` l � r : A, where Γ is an environment,

l, r are terms and A their type. The definition of HORPO involves many different

ingredients:

• a well-founded ordering on F , called precedence,

• a partition of F into symbols of lexicographic (Lex) or multiset (Mul) status;

the status tells us how to compare recursively immediate subterms of two

terms headed by the same symbol.

• the parametricity condition (Definition 3.1.1), which must be satisfied if l is a

function symbol headed term,

• the application condition (Definition 3.2.1), which must be satisfied if l is a

function symbol headed term and r is an application,

• �, the union of � and =, that is the syntactic equality on terms,

• �CS , the constructor extension of � and �CS defined as �CS ∪ = (see

section 2.5),

• �CSlex , �CSmul that are respectively lexicographic and multiset extensions of �CS
(see section 2.5),

• and finally the computable closure CClf(~l) of the term f(~l) with f ∈ F , which

is a set of terms built from~l by using “computability preserving” operations

(see section 3.3).

Compared to RPO (Dershowitz, 1982), HORPO has two new cases allowing

to deal with an application and constructor headed term on the right-hand side

(in Part I) and four cases corresponding to monotonicity rules for application,

abstraction, product and constants from T C ∪ CS (Part II). Moreover, it has more

possibilities to deal with subterms of the right-hand side, which is described by the

condition P:

∀wi ∈ ~w Γ ` f(~l) � wi : A or Γ ` lj �CS wi for some lj or wi ∈ CClf(~l)

It says that each subterm wi of the right-hand side is recursively compared either

with the whole left-hand side f(~l), or with some constructor subterm, by �CS ,

or otherwise must belong to the computable closure CClf(~l). The choice in P is

meant to compensate the requirement that HORPO compares only terms of equal

types and to prevent the situation where we cannot limit some “evidently smaller”

subterm of the right-hand side because there is no left-hand side subterm of the

same type.

Definition 3.4.1 (HORPO)

Let >F be a precedence and let P denote the condition:

∀wi ∈ ~w Γ ` f(~l) � wi : A or Γ ` lj �CS wi for some lj or wi ∈ CClf(~l)
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By induction with respect to (|l|, |r|)lex we define the strict comparison in HORPO

as follows:

Γ ` l � r : A if

Γ `CC l : A Γ `CC r : A and

Part I Γ = (p1 : P1) . . . (pr : Pr), G,

l = f(~p,~u) = f(l1, . . . , lm),

f : (x1 : T1) . . . (xr+n : Tr+n).T ∈ F (r,n)

and

1. r ∈ CClf(~l) or Γ ` li �CS r for some i, or

2. r = g(~p′, ~w), g ∈ F , f >F g, ~p′ ⊆~p and P, or

3. r = f(~p,~w), f ∈Mul and Γ ` (~p,~u) �CSmul (~p,~w), or

4. r = f(~p,~w), f ∈ Lex, Γ ` (~p,~u) �CSlex (~p,~w) and P

5. r = c(~w), c ∈ CS and P, or

6. @(w0, . . . , wm) is a left-flattening of r, P and AppCon(
−−→
p : P ,G `@(w0, . . . , wm))

hold and

• Γ ` l � w0 : T [~l/~x], or

• Γ ` lj �CS w0 for some j,

Part II

1. l = λx : l1.l2, r = λx : r1.r2 and there exists C such that Γ `CC A ∗↔ (x : l1).C ,

Γ `CC l1 ∗↔ r1 and Γ, x : l1 ` l2 � r2 : C , or

2. l = (x : l1).l2, r = (x :r1).r2 and Γ `CC l1 ∗↔ r1 and Γ, x : l1 ` l2 � r2 : A, or

3. l = l1 l2, r = r1 r2 and there exist B,C such that Γ `CC A
∗↔ C[l2/x],

Γ ` l1 � r1 : (x :B).C , Γ ` l2 � r2 : B and at least one of these comparisons

is strict, or

4. l = e(l1, . . . ln), r = e(r1, . . . rn), e :
−−−→
(x : b).c ∈ T C∪CS , for all i Γ ` li � ri : bi[~l/~x]

and at least one of these comparisons is strict.

The correctness of this definition follows from the lemma given below:

Lemma 3.4.2

Whenever in the definition of Γ ` l � r : A we refer to Γ′ ` l′ � r′ : A′, we always

have (|l|, |r|) >lex (|l′|, |r′|).
Proof

It is easy to check that in all HORPO cases direct recursive calls of � are made

on smaller terms. In the computable closure, HORPO is used only in the Recursive

call rule. Note that computable closure is used only when l = f(~l). The Recursive

call rule proves that f(~t) ∈ CClf(~l) for some ~t already in CClf(~l) and such that

Γ `~l �CSstat~t, where stat is the status of f. This finishes the proof, since~l are subterms

of l. q

Part I is the heart of HORPO, as its cases 1, 2, 3, 4 correspond to the RPO. In

Part I the left-hand side is always a function symbol headed term. The right-hand

side can be either a function symbol headed term (cases 2, 3, 4), a constructor headed
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term (case 5) or an application (case 6). We can also choose a recursive comparison

with an immediate subterm of the left-hand side (case 1). In case 6 the appropriate

left-flattening has to be chosen non-deterministically. This non-determinism aims at

easing the recursive comparison in case of type incompatibility (HORPO compares

only terms of the same type).

As a consequence of being defined for symbols that have dependent types, HORPO

pays special attention to parameters of function symbols. In Part I the left-hand side

must always have different variables ~p on its parameter positions (according to the

parametricity condition 3.1.1), and if the right-hand side is also a function symbol

headed term then its arguments on parameter positions must be included in ~p. This

property guarantees that during the rewriting with such a rule, we know exactly all

big arguments of the right-hand side (as they may occur only at parameter positions

and parameters are passed unchanged) which is very important in the proof of

strong normalization.

The use of the application condition (see Section 3.2) in case 6 obeys to the same

idea. It says roughly that f(~p,~u) can be compared with @(t0, t1, . . . tm), only if all big

terms within t1, . . . tn belong to ~p.

3.5 Examples

Example 6

Let map ∈ F (2,2) be of type (A : ?)(B : ?)(A→ B)List(A)→ List(B) with map ∈Mul

and let the rules be the following:

A : ?, B : ?, f : A→ B ` map(A,B, f, nil(A)) → nil(B) : List(B)

A : ?, B : ?, f : A→ B, a : A, l : List(A)

` map(A,B, f, cons(A, a, l)) → cons(@(f, a), map(A,B, f, l)) : List(B)

The first rule is accepted by case I.5, since A : ?, B : ?, f : A→ B ` B �CS B.

For the second rule let us call the environment A : ?, B : ?, f : A → B, a : A, l :

List(A) by Γ. We can use case I.5 and we are left with the following subgoals:

@(f, a) ∈ CClmap(A,B, f, cons(A, a, l))

Γ ` map(A,B, f, cons(A, a, l)) � map(A,B, f, l) : List(B)

For the latter, we can apply case I.3 of HORPO and then show

Γ ` (A,B, f, cons(A, a, l)) �CSmul (A,B, f, l)

which follows from

Γ ` cons(A, a, l) �CS l
which is true by the definition of the constructor extension.

The formal proof of that @(f, a) ∈ CClmap(A,B, f, cons(A, a, l)) is given in Exam-

ple 5. Note that without the computable closure it is not possible to accept this rule

since there is no subterm of the left-hand side of type B.
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Example 7

Suppose that map ∈ F (2,2) is the same as in the previous example. The rule

C : ?, l : List(C) ` map(C,C, λx :C.x, l)→ l : List(C)

cannot be accepted by HORPO because it is not parametric (the arguments at

parameter positions are not distinct variables)

It may be surprising that the rule from example 7 is rejected by our framework.

We do not think this particular rule leads to nontermination, but section 7.1 shows

an example (derived from (Girard, 1971)), where one easily gets a nonterminating

term precisely because the condition about the arguments at parameter positions is

violated.

Our formulation of HORPO is not stable under instantiation (of big variables).

The reason is that when comparing Γ ` f(~l) � r : A, the definition of HORPO

requires that the arguments of f at parameter positions are different variables.

Consequently if we take a substitution that equalizes two parameters then the result

would not be accepted by HORPO.

Example 8

HORPO is not stable under instantiation, because

A : ?, B : ?, f : A→ B, a : A, l : List(A) `
map(A,B, f, cons(A, a, l)) � cons(@(f, a), map(A,B, f, l)) : List(B)

holds (as proved in Example 6), and

C : ?, f : C → C, a : C, l : List(C) `
map(C,C, f, cons(C, a, l)) � cons(@(f, a), map(C,C, f, l)) : List(C)

does not (since parameter arguments of map on the left-hand side are not different

variables as required).

Note also that HORPO is not an ordering, as it is not transitive (mainly due to

the use of the computable closure). This is not really a problem, since we will show

that HORPO is well-founded, hence allowing us to reason with its transitive closure.

On the other hand, the transitive closure is of course not decidable. In practice, as

shown in (Jouannaud & Rubio, 2001), it may be useful to use two successive steps

of HORPO for solving some particular examples. Below, is a counterexample to

transitivity.

Example 9

Suppose that f ∈ F (1,1) and g ∈ F (2,1) have types:

f : (A : ?)s1(A)→ (A→ A)

g : (A : ?)(B : ?)s2(B)→ (A→ A)

where s1 and s2 are inductive types defined by:

Ind[A : ?](s1 : ? := c1 : (A→ A)→ s1)

Ind[B : ?](s2 : ? := c2 : s2 → s2)
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and that Γ = A : ?, B : ?, b : s2(B). Then

Γ ` f(A, c1(A, g(A,B, c2(B, b)))) � λz :A.@(g(A,B, c2(B, b)), z) : A→ A

holds by case I.1 of HORPO, and more precisely because λz :A.@(g(A,B, c2(B, b)), z)

∈ CClf(A, c1(A, g(A,B, c2(B, b)))) and

Γ ` λz :A.@(g(A,B, c2(B, b)), z) � λz :A.@(g(A,B, b), z) : A→ A

holds by cases II.1 and II.3 of HORPO. But

Γ ` f(A, c1(A, g(A,B, c2(B, b)))) � λz :A.@(g(A,B, b), z) : A→ A

does not hold.

The proof of the strong normalization (in section 5) will of course concern

the rewrite relation generated by HORPO, that is its closure by instantiation and

context.

More examples and non-examples can be found in section 8.

3.6 CC + H

CC+H is the result of mixing together the judgments of the Calculus of Construc-

tions and of HORPO. Except for the last two rules, all the rules are those of the

Calculus of Constructions.

The rule (rew) defines rewriting as a closure by substitution and context of valid

HORPO judgments. It is similar to first order rewriting, but typability has to be

taken care of.

Let a be a term with a potential redex at position p that we want to rewrite using

the rule G ` l � r : T and substitution θ. Because of abstractions and products

we need to allow θ to substitute the free variables in l by terms in which variables

bound above p in a may occur. Let us introduce the environment PV(a, p) (for path

variables) consisting of the list of these variables, found along the path from the

root to the position p in a, together with their types.

PV(a,Λ) = [ ]

PV(λx :b.c, 1 · q) = PV(b, q)

PV(λx :b.c, 2 · q) = (x : b) :: PV(c, q)

PV((x :b).c, 1 · q) = PV(b, q)

PV((x :b).c, 2 · q) = (x : b) :: PV(c, q)

PV(b c, 1 · q) = PV(b, q)

PV(b c, 2 · q) = PV(c, q)

PV(e(b1, . . . , bn), i · q) = PV(bi, q) if e ∈ F ∪ T C ∪ CS
Assuming moreover that a is well-typed in the environment Γ, θ must substitute

variables from G (the environment of the HORPO judgment) by terms that are

well typed in the environment Γ,PV(a, p). Such a substitution θ is written θ : G→
Γ,PV(a, p) and is called a well-typed substitution.
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The other difference of our calculus with respect to the Calculus of Constructions

is the conversion rule (conv) which now incorporates not only beta but also the

rewrite relation generated by HORPO.

Although the following two definitions are mutually dependent we give them

separately for the sake of clarity.

Definition 3.6.1 (Well-typed substitution)

A substitution θ is a well-typed substitution from the environment ∆1 = x1 : A1 . . . xn :

An to the environment ∆2, denoted by θ : ∆1 → ∆2, if for all xi ∈ dom(∆1) we have

∆2 ` xiθ : Ai[x1θ/x1 . . . xi−1θ/xi−1].

Definition 3.6.2 (CC+H )

Given a precedence and a status function for HORPO, the system CC+H is defined

as follows:

(ax) ` ? : 2

(var)
Γ ` a : p

Γ, x : a ` x : a
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

(weak)
Γ ` a : b Γ ` c : p

Γ, x : c ` a : b
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

(const)
Γ `CC ? : 2 ∀i Γ ` ai : bi[a1/x1, . . . , ai−1/xi−1]

Γ ` e(a1, . . . , an) : c[a1/x1, . . . , an/xn]
(e :
−−−→
(x : b).c ∈ Σ)

(abs)
Γ, x : a ` b : c Γ ` (x :a).c : p

Γ ` λx :a.b : (x :a).c
(x 6∈ dom(Γ), p ∈ {?,2})

(app)
Γ ` a : (x :b).c Γ ` d : b

Γ ` a d : c[d/x]

(prod)
Γ ` a : p Γ, x : a ` b : q

Γ ` (x :a).b : q
(x 6∈ dom(Γ), p, q ∈ {?,2})

(rew)
G ` l � r : T a|p = lθ θ : G→ Γ,PV(a, p)

Γ ` a[lθ]p →H a[rθ]p

(conv)

Γ ` a : b Γ ` b′ : p

Γ ` b(→β ∪ →H )∗b′ or Γ ` b′(→β ∪ →H )∗b
Γ ` a : b′

(p ∈ {?,2})
In the rules above, Γ ` a →H b stands for the closure of HORPO by instantiation

and context. The environment Γ is necessary (see section 2.5), so we could also write

a →Γ
H b, but not a →H b (the superscript Γ cannot be omitted). The relation (→β

∪ →H )Γ stands for the union of beta and the rewrite relations and ((→β ∪ →H )Γ)∗
is used for its reflexive and transitive closure. For simplicity, we write Γ ` a→ b for

Γ ` a(→β ∪ →H )b. We also use the notation →Γ for this relation.

By
∗↔Γ we denote the conversion relation: Γ ` a ∗↔ b holds if there is a sequence

a = a0
∗→ a1

∗← a2
∗→ . . .

∗← an = b such that every ai satisfies Γ ` ci : ai or
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Γ ` ai : pi for some ci, pi (like in the premises of (conv) rule). Hence conversion is

a restricted version of reflexive, symmetric and transitive closure of →.

According to the definition of rewriting given in the beginning of this section one

would expect Γ ` a : A to be among the premises of (rew). However we prefer

not to include this premise because of technical problems in the proof of subject

reduction. In fact, the system given above is equivalent (derives the same typing

judgments) to the system where Γ ` a : A is a premise of (rew) and the rule (conv)

is defined for one step of beta or rewrite reduction.

Definition 3.6.3 (Well-typed terms)
The set of well-typed terms, denoted by T , is defined by:

T = {a | ∃Γ ∃b Γ ` a : b} ∪ {2}
where a, b are pseudoterms. A Γ-term is a term which is typable (or is a type

of some term) in the environment Γ. Among Γ-terms we distinguish Γ-objects

{a | ∃b Γ ` a : b and Γ ` b : ?}. Every Γ-term that is not a Γ-object is called

Γ-nonobject.

Lemma 3.6.4
Let Γ1, Γ2 and ∆ be environments. If ρ1 : Γ1 → ∆ and ρ2 : Γ2 → ∆ are well-typed

substitutions such that dom(Γ1)∩dom(Γ2) = ∅ then their parallel composition ρ1∪ρ2

is a well-typed substitution from (Γ1,Γ2) to ∆.

Similarly if ρ1 : Γ1 → Γ2 and ρ2 : Γ2 → ∆ are well-typed substitution then their

sequential composition ρ1ρ2 is a well-typed substitution from Γ1 to ∆.

Summarizing, we may say that the definitions appear in the following order:

1. Γ `CC a : b, the definition of the Calculus of Constructions,
2. Γ ` a→β b, the definition of beta reduction (the same as a→β b),
3. Γ ` a � b : T , the definition of HORPO, uses 1,
4. Γ ` a →H b, the definition of rewriting, mutually defined with Γ ` a : b

(typing judgments in of CC+H); they use 2 and 3.

4 Basic meta-theory

This section contains some basic meta-theory of CC +H . The strong normalization

proof is given in the next section.

4.1 Structural properties

We present here some structural properties of CC+H. These are well known prop-

erties of the Calculus of Constructions and our rewriting does not change them.

Lemma 4.1.1 (Substitution property)
Let Γ1 ` d : a. Then

Γ1, x : a,Γ2 ` b : c implies Γ1,Γ2[d/x] ` b[d/x] : c[d/x]

Γ1, x : a,Γ2 ` b→H b
′ implies Γ1,Γ2[d/x] ` b[d/x]→H b

′[d/x]

Moreover the same holds for →β instead of →H .

As a corollary we get that Γ ` b : c and θ : Γ→ ∆ imply ∆ ` bθ : cθ.
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Lemma 4.1.2

If Γ1, x : a, y : b,Γ2 ` c : d and x 6∈ FV(b) then Γ1, y : b, x : a,Γ2 ` c : d.

Lemma 4.1.3 (Stripping)

Let Γ ` a : b. Then:

• if a = p then p = ?, Γ ` b ∗↔ 2,

• if a = x then x : b′ ∈ Γ, Γ ` b′ : p, p ∈ {?,2}, Γ ` b ∗↔ b′
• if a = f(a1, . . . an) then

f : (x1 : b1) . . . (xn : bn).c ∈ Fn,
∀i Γ ` ai : bi[a1/x1, . . . , ai−1/xi−1],

Γ ` b ∗↔ c[a1/x1, . . . , an/xn]

• if a = s(a1, . . . ar) then

s : (p1 : P1) . . . (pr : Pr).d ∈ T Cr , d ∈ A?,
∀i Γ ` ai : Pi[a1/p1, . . . , ai−1/pi−1],

Γ ` b ∗↔ d[~a/~x],

• if a = c(a1, . . . ar, a
′
1, . . . a

′
n) then

c : (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).s(~p)~w ∈ CS (r,n)

s : (p1 : P1) . . . (pr : Pr).(y1 : d1) . . . (ym : dm).? ∈ T Cr ,
∀i Γ ` ai : Pi[a1/p1, . . . , ai−1/pi−1],

∀i Γ ` a′i : bi[a1/p1, . . . , ar/pr][a
′
1/x1, . . . , a

′
i−1/xi−1],

c is a constructor of s, Γ ` b ∗↔ (s(~p)~w)[~a/~p][~a′/~x]

• if a = λx :a1.a2 then

∃c Γ, x : a1 ` a2 : c, Γ ` (x :a1).c : p,

p ∈ {?,2}, Γ ` b ∗↔ (x :a1).c

• if a = (x :a1).a2 then

Γ ` a1 : p1, Γ, x : a1 ` a2 : p2, p1, p2 ∈ {?,2},
Γ ` b ∗↔ p2

• if a = a1 a2 then

∃c, d Γ ` a1 : (x :c).d, Γ ` a2 : c, Γ ` b ∗↔ d[a2/x]

Definition 4.1.4

Terms of CC+H are split into the following categories:

Kind = {K ∈ T | ∃Γ Γ ` K : 2}
Constr = {A ∈ T | ∃Γ, ∃K ∈ Kind Γ ` A : K}
Type = {T ∈ T | ∃Γ Γ ` T : ?}
Obj = {M ∈ T | ∃Γ, ∃T ∈ Type Γ `M : T }

By Γ-kind, Γ-constr, . . . we mean a Γ-term belonging to the appropriate class.

Note that Type is a special case of Constr. The other cases are disjoint by the

Classification Lemma : Kind ∩ Type = Constr ∩ Obj = ∅.
For the sake of uniformity we will write “a has the type b in the environment

Γ” to denote the fact that the judgment Γ ` a : b is derivable, even though b may

actually be a kind or 2.
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Now we can describe terms in each class. The letters K , A, T , M denote elements

of Kind, Constr, Type and Obj respectively; s denotes a type constructor, c a

constructor, f a function symbol, x a variable from Var? and y from Var2:

K ::= ? | (x :T ).K | (x :K).K

A ::= s(a1, . . . an) | y | (x :T ).T | (x :K).T | λx :T .A | λx :K.A | AM | AA
M ::= x | f(a1, . . . an) | c(a1, . . . an) | λx :T .M | λx :K.M |MM |MA

4.2 Subject reduction

To show that →Γ has the subject reduction property, it suffices to show it for the

rewrite reduction (→Γ
H ) and the beta reduction (→β) separately. Most of the section

is devoted to the subject reduction of →Γ
H , which is rather involved due to the fact

that →Γ
H depends on the environment Γ. For the subject reduction of →β , we only

sketch how to reuse the proof given by Barbanera, Fernández and Geuvers (1994,

1997). This proof is more complicated than the proof of subject reduction for the

pure Calculus of Constructions, because the relation that is used in the conversion

rule of CC+H, (→β ∪ →H )Γ, is not confluent.

We begin with some auxiliary lemmas:

Lemma 4.2.1 (Stability under context)

Relations →β and →Γ
H are stable under context, that is if Γ ` a (→β ∪ →H )a′ then

for any environment ∆, term c and position p, such that Γ ⊆ ∆,PV(c, p) we have

∆ ` c[a]p(→β ∪ →H )c[a′]p.

Proof

For →β it is obvious by its definition.

For →Γ
H , let G ` l → r : T and θ : G → Γ,PV(a, q) be the rewrite rule and the

well-typed substitution that justify Γ ` a→H a
′. Then the same rule and substitution

justify also ∆ ` c[a]p →H c[a′]p. Indeed, θ may be seen as a well-typed substitution

from G to ∆,PV(c[a]p, p·q), because Γ,PV(a, q) ⊆ ∆,PV(c[a]p, p·q) by the assumption

that Γ ⊆ ∆,PV(c, p) and the fact that PV(c[a]p, p · q) = PV(c, p),PV(a, q) . q

Lemma 4.2.2

Let Γ, x : b,Γ′ ` a : T hold and let c, c′ be terms satisfying Γ ` c : b and Γ ` c′ : b.

If Γ ` c→H c
′ then Γ,Γ′[c/x] ` a[c/x]

∗→H a[c
′/x]. The same holds for →β instead

of →Γ
H .

Proof

It is obvious for →β by definition. For →Γ
H , we do the proof by induction on the

derivation of Γ, x : b,Γ′ ` a : T . Below, we give the proof for the case where the

last rule in the derivation is (const):

∀i Γ, x : b,Γ′ ` ai : di[a1/y1, . . . , ai−1/yi−1]

Γ, x : b,Γ′ ` e(a1, . . . , an) : v[a1/y1, . . . , an/yn]
(e : (y1 : d1) . . . (yn : dn).v ∈ Σ)
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We have to show that Γ,Γ′[c/x] ` e(a1, . . . , an)[c/x]
∗→H e(a1, . . . , an)[c

′/x]. By

induction hypothesis, for every i = 1 . . . n Γ,Γ′[c/x] ` ai[c/x]
∗→H ai[c

′/x] holds.

Since e(a1, . . . , an)[c/x] = e(a1[c/x], . . . an[c/x]), it is sufficient to use Lemma 4.2.1 n

times to get the conclusion. q

Definition 4.2.3 (Rewriting of environments)

Let Γ = x1 : A1 . . . xn : An be an environment. We say that Γ →H Γ′ (Γ →β Γ′)
if there is some i such that x1 : A1 . . . xi−1 : Ai−1 ` Ai(→β ∪ →H )A′i and Γ′ = x1 :

A1 . . . xi−1 : Ai−1, xi : A′i, xi+1 : Ai+1 . . . xn : An.

4.2.1 Subject Reduction of rewriting

Subject reduction of →Γ
H will be a consequence of the following lemma.

Lemma 4.2.4

For all environments Γ, Γ′ and all terms a, a′, b, c, c′:

(1). Γ ` a : b and Γ ` a→H a
′ imply Γ ` a′ : b,

(2). Γ ` a : b and Γ→H Γ′ imply Γ′ ` a : b,

(3). Γ ` c→H c
′ and Γ→H Γ′ imply Γ′ ` c→H c

′,
(4). Γ ` c→∗c′ and Γ→H Γ′ imply Γ′ ` c→∗c′.
Proof

The proof is done by mutual induction on the derivation of Γ ` a : b, Γ ` c→H c
′

and Γ ` c→∗c′. Let us detail the proofs of (3) and (4) and the proof of (1) in case

the last rule in the derivation of Γ ` a : b is (const).

(1) (const)

∀i Γ ` ai : di[a1/y1, . . . , ai−1/yi−1]

Γ ` e(a1, . . . , an) : v[a1/y1, . . . , an/yn]
(e : (y1 : d1) . . . (yn : dn).v ∈ Σ)

Let Γ ` e(a1, . . . , an)→H w. We have to check that Γ ` w : v[a1/y1, . . . , an/yn].

There are two cases: either there is a j such that Γ ` aj →H a′j or e(~a) is a

redex itself. In the first case, by induction hypothesis we have Γ ` a′j : dj[~a/~y]

and Γ ` ai : di[~a/~y] for every i different from j. Let us set a′i = ai for i 6= j and

γ′i = [a′1/y1, . . . a
′
i−1/yi−1] for all i. To apply the (const) rule to a′1, . . . a′n we first have

to convert the type for a′i for i > j.

Since e : (y1 : d1) . . . (yn : dn).v ∈ Σ, we have
−−→
y : d ` v : ? and for every i = 1, . . . n

there is some pi ∈ {?,2} such that y1 : d1, . . . yi−1 : di−1 ` di : pi. We will show that

for every i:

Γ ` diγ′i : pi and Γ ` a′i : diγ
′
i (∗)

This is trivial for i < j, since a′i = ai. For i = j we have Γ ` aj →H a′j and

Γ ` a′j : djγ
′
j by induction hypothesis. The judgment Γ ` djγ′j : pj is again trivial.

Now suppose that we have (∗) for all natural numbers smaller or equal to some

i > j. We will show (∗) for i+ 1.

By (∗), γ′i+1 is a well-typed substitution from y1 : d1, . . . yi : di to Γ and therefore y1 :

d1, . . . yi : di ` di+1 : pi+1 implies Γ ` di+1γ
′
i+1 : pi+1 by Substitution property 4.1.1.
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Now, by Lemma 4.2.2, Γ ` di+1[~a/~y]
∗→H di+1γ

′
i+1. We can apply the (conv) rule to

obtain Γ ` a′i+1 : di+1γ
′
i+1 and we have (∗). Similarly we get Γ ` vγ′n+1 : ? and

Γ′ ` v[~a/~y]
∗→H vγ

′
n+1.

Now, having (∗) for all i = 1, . . . n, we deduce Γ ` e(a1, . . . a
′
j , . . . an) : vγ′n+1. To

obtain the conclusion, we have to use once again the conversion rule together with

the facts that Γ′ ` v[~a/~y]
∗→H vγ

′
n+1 and Γ ` vγ′n+1 : ?.

If e(~a) is a redex itself then, by the definition of rewriting, there is a rule

G ` l → r : T and a well-typed substitution θ : G → Γ such that G ` l : T ,

G ` r : T , e(~a) = lθ, w = rθ and Γ ` Tθ ∗↔ v[~a/~y]. Applying θ to G ` r : T we get

Γ ` w : Tθ, which implies, together with Γ ` Tθ ∗↔ v[~a/~y], that Γ ` w : v[~a/~y].

(3) (rew)

G ` l � r : T a|p = lθ θ : G→ Γ,PV(a, p)

Γ ` a[lθ]p →H a[rθ]p

We have to show that Γ′ ` a[lθ]p →H a[rθ]p assuming Γ →H Γ′. Let G = x1 :

A1, . . . xn : An.

To this end, we have to check that θ is a well-typed substitution from G to

Γ′,PV(a, p). By assumption, we know that for every i, Γ,PV(a, p) ` xiθ : Aiθ.

By induction hypothesis we get Γ′,PV(a, p) ` xiθ : Aiθ, since Γ →H Γ′ implies

(Γ,PV(a, p)) →H (Γ′,PV(a, p)). But this means that θ : G → Γ′,PV(a, p) and

consequently, by (rew) Γ′ ` a[lθ]p →H a[rθ]p.

(4) The proof for this case consists of multiple application of case (3) By the

definition of
∗→, Γ ` c→∗c′ means there is some n such that Γ ` ci(→β ∪ →H )ci+1

for i = 1, . . . n, c0 = c and cn = c′.
Let Γ →H Γ′. If Γ ` ci →β ci+1 then obviously Γ′ ` ci →β ci+1 as beta reduction

does not depend on the environment. Otherwise Γ ` ci →H ci+1 and by induction

hypothesis Γ′ ` ci →H ci+1. Consequently Γ′ ` c→∗c′. q

4.2.2 Subject reduction of beta

The only difficult point in the proof of the subject reduction for →β is to show that

for any two convertible product types there is a sequence of conversions passing

only through products.

Without confluence, the proof of this fact seems difficult, but fortunately it has

already been done in Barbanera et al. (1997). Even though that paper concerns only

algebraic rewriting, the proof itself depends only on the following properties of term

rewriting systems:

1. left-hand and right-hand sides of a rewrite rule must have the same type,

2. rewriting operates on the object level (both sides of the rule are objects),

3. subject reduction for rewriting is satisfied.

Since all these properties are true in our calculus, we can reuse this proof. We

state below the property needed for products.

Lemma 4.2.5

Suppose that Γ ` (x :c).d
∗↔ (x :c′).d′ holds. Then there exists a sequence of Γ-terms

(x :c1).d1, . . . (x :cm).dm such that:
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1. (x :c).d = (x :c1).d1,

2. (x :cm).dm = (x :c′).d′,
3. for every i = 1 . . . m − 1 we have either Γ ` (x : ci).di→∗(x : ci+1).di+1 or

Γ ` (x :ci+1).di+1→∗(x :ci).di.

The intuitive explication of this lemma is that neither →Γ
H , nor →β can create or

remove a Π symbol. For →Γ
H we use essentially the fact that all rewrites take place

at object level. The complete proof is rather long and complicated, and it exploits

the commutation properties of rewriting with beta.

Lemma 4.2.6

If Γ ` a : b, a→β a
′ and Γ→β Γ′ then Γ′ ` a′ : b.

Proof

The proof is done by induction on the derivation of Γ ` a : b. The only difficulty

occurs in case (app), when we need to show that (x :c).d
∗↔Γ(x :c′).d′ implies c

∗↔Γc′

and d
∗↔Γ,x:c

d′. But this follows from the previous lemma. q

Theorem 1 (Subject reduction)

If Γ ` a : b and Γ ` a→ a′ then Γ ` a′ : b.

Proof

This follows from Lemmas 4.2.4 and 4.2.6. q

5 Strong normalization

To prove the strong normalization of →Γ, we use the well known method of

“reducibility candidates”. Its untyped version was used in several ways to prove the

strong normalization of the pure Calculus of Constructions, but rewriting forces

us to use sets of well-typed terms for candidates, as introduced in Coquand &

Gallier (1990). The presentation of candidates departs slightly from the original one,

following instead Blanqui et al. (1999).

The proof follows the standard scheme. We first define candidates, as a subset of

strongly normalizing terms closed under some properties. Then we define interpre-

tation of types and we show that every interpretation is a candidate. Compared to

Coquand & Gallier (1990), we have to enrich the definition of candidates with the

case covering rewriting (actually it is covered by the case for neutral terms) and give

the definition of interpretation for inductive types (section 5.2.1).

According to the standard scheme, one then shows the main lemma saying that

every term belongs to the interpretation of its type, and concludes that all terms

are strongly normalizing. In our case, there are three new kinds of terms for which

we have to show the main lemma. Type constructor and constructor headed terms

belong to the corresponding interpretations by the definition of the interpretation for

inductive types. The case of function symbol headed terms is much more delicate,

as these terms may rewrite and, contrary to beta-reduction, there is not enough

information stored in the interpretation to solve this case easily. This problem is

treated in section 5.4.
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It turns out that the only way to show that the function symbol headed term

f(~t) belongs to the interpretation of its type is to show the same property for all its

reducts. This is done in the Fun Lemma in section 5.4.3, by inspecting all HORPO

cases and reasoning by induction on >F (the precedence) and (→Γ)stat (reductions

from ~t, with stat the status of f). This kind of lemma and induction was already

present in Jouannaud & Rubio (1999), but the fact that function symbols have

dependent types makes the proof much more involved here.

This section is organized as follows. We begin by the candidates (section 5.1)

and we continue with interpretations (section 5.2). Auxiliary lemmas concerning

properties of interpretations are given in section 5.3. Section 5.4 is devoted to the

reducibility of function symbol headed terms. Fun Lemma is a last part of this

subsection. Two other parts concern the notions needed for the Fun Lemma, that is

equality of interpretations (section 5.4.1) and constructor subterm lemmas (section

5.4.2). We finish by presenting the proof of the Main Lemma in section 5.5.

5.1 Family of candidates

Definition 5.1.1 (Neutral terms, strongly normalizing terms)

The set of neutral terms Neutr is the set of terms, which are not an abstraction or

constructor headed.

We say that the sequent ∆ `M is SN if there is no infinite sequence of →∆

reductions originating from M. We define:

SN ∆,A = {∆′ `M | ∆′ `M : A, ∆′ ⊇ ∆ and ∆′ `M is SN }
SN ∆ =

⋃
A

SN ∆,A

Definition 5.1.2 (Family of candidates)

A family C of sets C∆,A where A is a ∆-nonobject, is called a family of candidates

if sets C∆,A verify the conditions below. Each C ∈ C∆,A is called a candidate. At the

same time, we define C|∆′ , for every ∆′ ⊇ ∆, that is the restriction of the candidate C

to the environment ∆′:

1. C∆,2 = {SN ∆,2},
In this case, we define the restriction of SN ∆,2 to ∆′ ⊇ ∆ to be (SN ∆,2)|∆′ =

SN ∆′ ,2 ,

2. C∆,? = {SN ∆,?},
In this case, we define the restriction of SN ∆,? to ∆′ ⊇ ∆ to be (SN ∆,?)|∆′ =

SN ∆′ ,?,

3. If A is a type or a kind different from ?, then C∆,A is the set of all sets C , each

C being a nonempty subset of SN ∆,A such that the following properties hold:

(S1) If ∆′ ` a ∈ C and ∆′ ` a→ a′ then ∆′ ` a′ ∈ C .

(S2) For every neutral term a, such that ∆′ ` a : A and ∆′ ⊇ ∆, if for every

term a′ satisfying ∆′ ` a→ a′, ∆′ ` a′ ∈ C then ∆′ ` a ∈ C .

(S3) If ∆′ ` a ∈ C and ∆′ ⊆ ∆′′, then ∆′′ ` a ∈ C .
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In this case, we define the restriction of C ∈ C∆,A to ∆′ ⊇ ∆ to be C|∆′ = {∆′′ `
M ∈ C | ∆′′ ⊇ ∆′}.

4. When A is in Constr\Type (∆ ` A : (x :B).D) then C∆,A is a set of all functions

with the following properties:

(a) If B is a kind, then

(P1) h ∈ C∆,A is a function with domain

{(∆′ `M, C) | ∆′ `M : B, ∆′ ⊇ ∆, C ∈ C∆′ ,M}
such that h(∆′ `M, C) ∈ C∆′ ,AM .

(P2) h(∆′ `M1, C) = h(∆′ `M2, C) whenever ∆′ `M1
∗↔M2.

(P3) h(∆̃ `M,C)|∆′ = h(∆′ `M,C|∆′) whenever ∆ ⊆ ∆̃ ⊆ ∆′, ∆̃ ` M : B

and C ∈ C∆̃,M .

In this case, we define the restriction of h ∈ C∆,A to ∆′ ⊇ ∆ (h|∆′) to be

a function with domain {(∆′′ `M,C) | ∆′′ `M : B, ∆′′ ⊇ ∆′, C ∈ C∆′′ ,M}
such that h|∆′(∆′′ `M,C) = h(∆′′ `M,C).

(b) If B is a type, then

(P1) h ∈ C∆,A is a function with domain {∆′ `M | ∆′ `M : B and ∆′ ⊇ ∆}
such that h(∆′ `M) ∈ C∆′ ,AM .

(P2) h(∆′ `M1) = h(∆′ `M2) whenever ∆′ `M1
∗↔M2.

(P3) h(∆̃ `M)|∆′ = h(∆′ `M) whenever ∆ ⊆ ∆̃ ⊆ ∆′ and ∆̃ `M : B.

In this case, we define the restriction of h ∈ C∆,A to ∆′ ⊇ ∆ (h|∆′) to be

a function with domain {∆′′ `M | ∆′′ `M : B and ∆′′ ⊇ ∆′} such that

h|∆′(∆′′ `M) = h(∆′′ `M).

Remark 0

Cases 4(a) and 4(b) are very similar, 4(b) being a sort of instance of 4(a) with the

second argument (for h) being an empty set. As a consequence, in all proofs to come,

we will always consider case 4(a) only.

Remark 1

Note that the case A = s(~M), s ∈ T C is hidden in case 3 or 4. Note also that up to

now, there is no way to state whether c(~M), c ∈ CS , belongs to a candidate C . This

will be the subject of section 5.2.1.

Remark 2

From the definition of the family it follows immediately that C∆,A = C∆,A′ for

∆ ` A ∗↔ A′ and that (C|∆′)|∆′′ = C|∆′′ for every C ∈ C∆,A and ∆ ⊆ ∆′ ⊆ ∆′′.

Lemma 5.1.3 (Restricted candidate)

Let A be a ∆-nonobject, C ∈ C∆,A and ∆ ⊆ ∆′. Then C|∆′ ∈ C∆′ ,A.

Proof

• if A is 2 or ?, it is obvious,
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• if A is a type or a kind different from ? and C ∈ C∆,A then C|∆′ = {∆′′ `M ∈
C | ∆′′ ⊇ ∆′}. Of course, C|∆′ ∈ SN ∆′ ,A and C|∆′ 6= ∅. To see that C|∆′ ∈ C∆′ ,A,

we have just to check conditions (S1), (S2), (S3), which is straightforward.

• if ∆ ` A : (x : B).D, B is a kind and h ∈ C∆,A then h|∆′ is a function with

domain {(∆′′ `M,C) | ∆′′ `M : B, ∆′′ ⊇ ∆′, C ∈ C∆′′ ,M} such that h|∆′(∆′′ `
M,C) = h(∆′′ `M,C). To show that h|∆′ ∈ C∆′ ,A we have to check that

(P1) h|∆′(∆′′ `M, C) ∈ C∆′′ ,AM , which is true by the definition of h|∆′ and (P1)

for h,

(P2) h|∆′(∆′′ `M1, C) = h|∆′(∆′′ `M2, C) whenever ∆′′ ` M1
∗↔ M2, which

is true since h|∆′(∆′′ `M1, C) = h(∆′′ `M1, C), h|∆′(∆′′ `M2, C) = h(∆′′ `
M2, C) and h(∆′′ `M1, C) = h(∆′′ `M2, C) by (P2) for h,

(P3) h|∆′(∆̃ `M,C)|∆′′ = h|∆′(∆′′ `M,C|∆′′) whenever ∆′ ⊆ ∆̃ ⊆ ∆′′, ∆̃ `M : B

and C ∈ C∆̃,M , which is true since

h|∆′(∆̃ `M,C)|∆′′ = h(∆̃ `M,C)|∆′′ by def. of h|∆′
h(∆̃ `M,C)|∆′′ = h(∆′′ `M,C|∆′′) by (P3) for h

h(∆′′ `M,C|∆′′) = h|∆′(∆′′ `M,C|∆′′) by def. of h|∆′ q
To show that the definition of the family is correct we need to introduce a

measure m. By induction on m we will construct a canonical candidate can∆,A ∈ C∆,A,

which will roughly be SN ∆,A, if A is a 2, a kind or a type, and a function, returning

can∆,AM for a given M, otherwise.

Definition 5.1.4

Let T be a type and K a kind. We define m(T ) and m(K) inductively as follows:

m(2) = 0

m(T ) = 0

m(K) =

{
1 if K = ?

max(m(B), m(D)) + 1 if K = (x :B).D

It is easy to verify that, if ∆ ` K ∗↔ K ′ then m(K) = m(K ′). One can also check that

m(K[M/y]) = m(K).

Lemma 5.1.5

For every ∆ and ∆-nonobject A, the set C∆,A exists and is nonempty.

Proof

We define a canonical member can∆,A of C∆,A by induction on m(K), where ∆ ` A : K .

At the same time we verify that (can∆,A)|∆′ = can∆′ ,A for every ∆′ ⊇ ∆ and that

can∆,A = can∆,A′ for ∆ ` A ∗↔ A′.
If A is a 2, a kind, or a type, then can∆,A equals SN ∆,A and is nonempty

because ∆ ` ? : 2 and ∆, x : A ` x : A for A 6= 2. It is easy to check that the

corresponding properties ((S1) . . . (S3) from the definition of the family) are verified.

Obviously, (can∆,A)|∆′ = SN ∆,A|∆′ = SN ∆′ ,A = can∆′ ,A. It is also easy to check that

can∆,A = can∆,A′ for ∆ ` A ∗↔ A′.
If ∆ ` A : (x :B).D then can∆,A is a function. By induction hypothesis, for every

M, such that ∆′ ` M : B for some ∆′ ⊇ ∆, can∆′ ,AM is defined. If B is a kind, we
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set can∆,A(∆′ `M,C) = can∆′ ,AM for ∆′ ` M : B and C ∈ C∆′ ,M and, if B is a type,

can∆,A(∆′ `M) = can∆′ ,AM . Assume that B is a kind.

(P1) is true by definition.

For (P2), we have to check that can∆,A(∆′ ` M1, C) = can∆,A(∆′ ` M2, C), for

C ∈ C∆′ ,M1
and ∆′ ` M1

∗↔ M2. First, note that by the definition of the family

C∆′ ,M1
= C∆′ ,M2

, which implies C ∈ C∆′ ,M2
and justifies the correctness of can∆,A(∆′ `

M2, C). By the definition of can∆,A it remains to show that can∆′ ,AM1
= can∆′ ,AM2

,

which is true by induction hypothesis (as ∆′ ` AM1
∗↔ AM2).

To see that (P3) holds, we have to show that can∆,A(∆̃ `M,C)|∆′ = can∆,A(∆′ `
M,C|∆′) whenever ∆ ⊆ ∆̃ ⊆ ∆′, ∆̃ ` M : B and C ∈ C∆̃,M . By the definition of

can∆,A, can∆,A(∆̃ `M,C)|∆′ equals (can∆̃,AM)|∆′ and by induction hypothesis it is equal

to can∆′ ,AM = can∆,A(∆′ `M,C|∆′).
To check that (can∆,A)|∆′ = can∆′ ,A, it is sufficient to unfold the definition of can∆,A

and can∆′ ,A and to notice that (can∆,AM)|∆′ = can∆′ ,AM by induction hypothesis.

We are left to show that can∆,A = can∆,A′ for ∆ ` A ∗↔ A′. But for every ∆′ `M : B,

C ∈ C∆′ ,M

can∆,A(∆′ `M,C) = can∆′ ,AM = can∆′ ,A′M = can∆,A′(∆
′ `M,C)

because can∆′ ,AM = can∆′ ,A′M by the induction hypothesis applied to ∆′ ` AM ∗↔
A′M. q

Lemma 5.1.6

Let C be a candidate. The sequent ∆ `@(λx :a.b, c) belongs to C if ∆ `b[c/x] ∈ C
and a, c are SN .

Proof

By induction on (λx :a.b, c) ordered by (→,→)lex (note that b ∈ SN , as b[c/x] ∈ C).

Since @(λx : a.b, c) is neutral, it is sufficient (by (S2) from the definition of

candidates) to show that every reduct of ∆ `@(λx : a.b, c) belongs to C . We have

the following reducts:

• ∆ `@(λx :a′.b, c), where ∆ ` a→ a′. Since b[c/x] ∈ C , by induction hypothesis

∆ `@(λx :a′.b, c) ∈ C ,

• ∆ `@(λx : a.b′, c), where ∆, x : a ` b → b′. Obviously, ∆ ` b[c/x] → b′[c/x]

and by (S1) from the definition of candidates ∆ ` b′[c/x] ∈ C . We conclude

by induction hypothesis that ∆ `@(λx :a.b′, c) ∈ C ,

• ∆ `@(λx : a.b, c′), where ∆ ` c → c′. By Lemma 4.2.2, ∆ ` b[c/x]→∗b[c′/x]

and consequently ∆ ` b[c′/x] ∈ C . We conclude once again by induction

hypothesis.

• ∆ `b[c/x], which belongs to C by assumption. q

Lemma 5.1.7

Let ∆ be an environment, A a ∆-nonobject and C a candidate from C∆,A. For every

variable x and strongly normalizing ∆-terms ~N if ∆ ` x~N : A then ∆ `x~N ∈ C .

Proof

By induction on x~N ordered by →.
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Since x~N is neutral, it is sufficient to show that every reduct of ∆ ` x~N belongs

to C . All immediate reducts of x~N are of the form x~M, where ∆ ` Ni → Mi for

some i and Nj = Mj for j 6= i. By subject reduction we have ∆ ` x~M : A. And by

induction hypothesis we get ∆ ` x~M ∈ C . q

5.2 Interpretation of types

Definition 5.2.1 (Candidate assignment)

Given two valid environments Γ, ∆, and a well-typed substitution ρ : Γ → ∆, a

candidate assignment compatible with ρ is a function ξ from Var2 ∩ dom(Γ) to the

set of candidates, such that, for every variable x ∈ Var2 ∩ dom(Γ), xξ ∈ C∆,xρ.

Given ∆′ ⊇ ∆, we will write ξ|∆′ for a candidate assignment that associates (xξ)|∆′
to every x ∈ Var2 ∩ dom(Γ).

Now we can define the interpretation JΓ ` AKρ,ξ,∆ where Γ, ∆ are environments,

A is a Γ-nonobject, ρ : Γ → ∆ is a well-typed substitution and ξ is a candidate

assignment compatible with ρ. The definition is by induction on the structure of A.

Definition 5.2.2

In the clauses below we use the following conventions: K ∈ Kind , T ∈ Type, A,B ∈
Constr, D ∈ Kind ∪ Type, M ∈ Constr ∪ Obj, N ∈ Obj and y ∈ Var2 .

JΓ ` 2Kρ,ξ,∆ = SN ∆,2JΓ ` ?Kρ,ξ,∆ = SN ∆,?JΓ ` yKρ,ξ,∆ = yξJΓ ` ABKρ,ξ,∆ = JΓ ` AKρ,ξ,∆(∆ `Bρ, JΓ ` BKρ,ξ,∆)JΓ ` ANKρ,ξ,∆ = JΓ ` AKρ,ξ,∆(∆ `Nρ)JΓ ` (x :K).DKρ,ξ,∆ = {∆′ `M | ∆′ `M : ((x :K).D)ρ, ∆′ ⊇ ∆, and

∀∆′′ ⊇ ∆′, ∀∆′′ `A ∈ JΓ ` KKρ,ξ|∆′′ ,∆′′ , ∀C ∈ C∆′′ ,A,

∆′′ `MA ∈ JΓ, x : K ` DKρ∪[A/x],ξ|∆′′ ∪[C/x],∆′′ }JΓ ` (x :T ).DKρ,ξ,∆ = {∆′ `M | ∆′ `M : ((x :T ).D)ρ, ∆′ ⊇ ∆, and

∀∆′′ ⊇ ∆′, ∀∆′′ `N ∈ JΓ ` T Kρ,ξ|∆′′ ,∆′′ ,
∆′′ `MN ∈ JΓ, x : T ` DKρ∪[N/x],ξ|∆′′ ,∆′′ }JΓ ` λx :K.BKρ,ξ,∆ = λ(∆′ `A)λC.JΓ, x : K ` BKρ∪[A/x],ξ|∆′ ∪[C/x],∆′ ,

a function with domain

{(∆′ `A,C) | ∆′ ` A : Kρ, ∆′ ⊇ ∆, C ∈ C∆′ ,A}JΓ ` λx :T .BKρ,ξ,∆ = λ(∆′ `N).JΓ, x : T ` BKρ∪[N/x],ξ|∆′ ,∆′ ,
a function with domain

{∆′ `N | ∆′ ` N : Tρ, ∆′ ⊇ ∆}
A careful reader should notice that there is one case missing in the definition

above: the interpretation for s(~M) where s ∈ T C, and in consequence, for any

Γ-nonobject containing s. At the same time we did not restrict ρ to assign only
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terms not containing s. Fortunately, there is no contradiction here, since in order

to compute JΓ ` AKρ,ξ,∆ we need to know only the interpretations for the subterms

of A . Note also, that there is no problem with ξ, even if xρ contains s, because ξ

uses arbitrary candidates from the family of candidates, and not the interpretation

of xρ. The interpretation for s(~M) where s ∈ T C will be defined in section 5.2.1.

Regarding restricted candidates (ξ|∆′) that appear in the definition of interpre-

tation of products and abstractions, it is obvious that when we replace ∆ by ∆′,
such that ∆′ ⊇ ∆, the interpretation JΓ ` AKρ,ξ,∆ becomes JΓ ` AKρ,ξ|∆′ ,∆′ , since,

by the definition of interpretations, candidate assignment must assign candidates

from C∆′ ,xρ to every big variable x. Therefore writing JΓ ` AKρ,ξ,∆′ is in principle

not correct. Despite this, we will often use this simpler writing, since ∆′ carries the

information that a restriction is necessary for ξ.

To show that the interpretations defined above are not empty and are candidates

we need a technical lemma.

Lemma 5.2.3 (Equivalence of substitutions)

Let Γ, ∆ be environments, ρ, ρ′ well-typed substitutions from Γ to ∆, such that

∆ ` xρ ∗↔ xρ′ for all x ∈ dom(Γ), and ξ a candidate assignment compatible with

ρ and ρ′. If A is a Γ-nonobject that does not contain symbols from T C thenJΓ ` AKρ,ξ,∆ = JΓ ` AKρ′ ,ξ,∆.

Proof

By induction on the structure of A q

Lemma 5.2.4 (Existence of interpretation)

Let Γ, ∆ be environments, A a Γ-nonobject that does not contain symbols from T C,
ρ : Γ→ ∆ a well-typed substitution and ξ a candidate assignment compatible with

ρ. Then JΓ ` AKρ,ξ,∆ ∈ C∆,Aρ.

Proof

We will prove the statement of the lemma in parallel withJΓ ` AKρ,ξ,∆|∆′ = JΓ ` AKρ,ξ|∆′ ,∆′
referred by (F). The proof is by induction on the structure of A.

1. If A is 2, ? or y ∈ Var2 then JΓ ` AKρ,ξ,∆ ∈ C∆,Aρ by the definition of SN ∆,2 ,

SN ∆,? and the fact that ξ is the candidate assignment compatible with ρ.

Of course, if A is a 2 or ? then SN ∆,A|∆′ = SN ∆′ ,A and if A is a variable

(Aξ)|∆′ = A(ξ|∆′).
2. If A = P Q we do the proof only for the case where Q ∈ Constr (the proof for

Q ∈ Obj is very similar) .

Since A is a Γ-term, we have Γ ` P : (x :B).D and Γ ` Q : B for some B and

D, by Stripping Lemma 4.1.3. By induction hypothesis JΓ ` P Kρ,ξ,∆ ∈ C∆,Pρ

and JΓ ` QKρ,ξ,∆ ∈ C∆,Qρ.

By the definition of the family of candidates JΓ ` P Kρ,ξ,∆ is a function with

the domain

{(∆′ `M, C) | ∆′ `M : Bρ, ∆′ ⊇ ∆, C ∈ C∆′ ,M}
and such that JΓ ` P Kρ,ξ,∆(∆′ `M, C) ∈ C∆′ ,PρM .
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Thus, JΓ ` P Kρ,ξ,∆(∆ ` Qρ, JΓ ` QKρ,ξ,∆) ∈ C∆,PρQρ and consequently JΓ `
P QKρ,ξ,∆ ∈ C∆,(P Q)ρ.

Finally, (JΓ ` P QKρ,ξ,∆)|∆′ = JΓ ` P QKρ,ξ|∆′ ,∆′ , because

(JΓ ` P QKρ,ξ,∆)|∆′ = (JΓ ` P Kρ,ξ,∆(∆ `Qρ, JΓ ` QKρ,ξ,∆))|∆′
= (JΓ ` P Kρ,ξ,∆)|∆′(∆′ `Qρ, (JΓ ` QKρ,ξ,∆)|∆′) by (P3)

= JΓ ` P Kρ,ξ|∆′ ,∆′(∆′ `Qρ, JΓ ` QKρ,ξ|∆′ ,∆′) by ind.hyp.

= JΓ ` P QKρ,ξ|∆′ ,∆′
3. If A = (x :K).D we do the proof only for the case where K is a kind. We have

to check that the set

{∆′ `M | ∆′ `M : ((x :K).D)ρ, ∆′ ⊇ ∆, and

∀∆′′ ⊇ ∆′, ∀∆′′ `A ∈ JΓ ` KKρ,ξ|∆′′ ,∆′′ , ∀C ∈ C∆′′ ,A,

∆′′ `MA ∈ JΓ, x : K ` DKρ∪[A/x],ξ|∆′′ ∪[C/x],∆′′ }
is a nonempty set of strongly normalizing terms and that it satisfies conditions

(S1), . . . (S3) of Definition 5.1.2.

First note that by induction hypothesis JΓ ` KKρ,ξ|∆′′ ,∆′′ and JΓ, x : K `
DKρ∪[A/x],ξ|∆′′ ∪[C/x],∆′′ are candidates and consequently A and MA are strongly

normalizing. This also implies that M is strongly normalizing.

To see that the set defined above is nonempty consider ∆′ = ∆, y : ((x :K).D)ρ.

Then ∆′ ` y : ((x :K).D)ρ and by Lemma 5.1.7 for every strongly normalizing

A such that ∆′′ ` A : Kρ and ∆′′ ⊇ ∆′ we have ∆′′ ` y A ∈ C ′ for any

C ′ ∈ C∆′′ ,D(ρ∪[A/x]). In particular ∆′′ ` y A ∈ JΓ, x : K ` DKρ∪[A/x],ξ|∆′′ ∪[C/x],∆′′ and

consequently ∆′ ` y ∈ JΓ ` (x :K).DKρ,ξ,∆.

For (S1), let us suppose that ∆′ ` a ∈ JΓ ` (x :K).DKρ,ξ,∆ and let us take a′
such that ∆′ ` a→ a′. We will show that ∆′ ` a′ ∈ JΓ ` (x :K).DKρ,ξ,∆.

By the definition of the interpretation of a product, it is sufficient that we

prove ∆′′ ` a′ A ∈ JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′ for any ∆′′, A and C such

that ∆′′ ⊇ ∆′, ∆′′ ` A ∈ JΓ ` KKρ,ξ|∆′′ ,∆′′ , C ∈ C∆′′ ,A. From the hypothe-

sis that ∆′ ` a ∈ JΓ ` (x : K).DKρ,ξ,∆ we have ∆′′ ` aA ∈ JΓ, x : K `
DKρ∪[A/x],ξ∪[C/x],∆′′ Moreover, by induction hypothesis, we know that JΓ, x : K `
DKρ∪[A/x],ξ∪[C/x],∆′′ ∈ C∆′′ ,D(ρ∪[A/x]). Thus, (S1) for JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′

implies that ∆′′ ` a′ A ∈ JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′ .

To see that JΓ ` (x : K).DKρ,ξ,∆ satisfies (S2) let us consider a neutral term

a such that ∆′ ` a : ((x : K).D)ρ for some ∆′ ⊇ ∆ and let us suppose

that every reduct of a belongs to JΓ ` (x : K).DKρ,ξ,∆. We have to show

that ∆′ ` a ∈ JΓ ` (x : K).DKρ,ξ,∆, which is equivalent, by the definition of

interpretation for a product, to ∆′′ ` aA ∈ JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′ for

any ∆′′, A and C such that ∆′′ ⊇ ∆′, ∆′′ `A ∈ JΓ ` KKρ,ξ|∆′′ ,∆′′ , C ∈ C∆′′ ,A.

Since aA is neutral and JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′ ∈ C∆′′ ,D(ρ∪[A/x]) (by

induction hypothesis), it is sufficient to check that every reduct of (aA) belongs

to JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′ to get the desired conclusion. Let us prove it

by induction on the reduction starting from A (A is SN , because ∆′′ `A ∈JΓ ` KKρ,ξ|∆′′ ,∆′′). Since a is neutral, every reduct of aA is of the form
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• a′ A, where a′ is a reduct of a. Then ∆′′ ` a′ A ∈ JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′

is an easy consequence of the assumption ∆′ ` a′ ∈ JΓ ` (x :K).DKρ,ξ,∆.

• aA′, where ∆′′ ` A → A′. Then ∆′′ ` aA′ ∈ JΓ, x : K ` DKρ∪[A′/x],ξ∪[C/x],∆′′

follows from the induction hypothesis for A′ and by Lemma 5.2.3 we get

∆′′ ` aA′ ∈ JΓ, x : K ` DKρ∪[A/x],ξ∪[C/x],∆′′ .

Condition (S3) trivially holds.

We are left to show that (JΓ ` (x :K).DKρ,ξ,∆)|∆′ = JΓ ` (x :K).DKρ,ξ|∆′ ,∆′ for

every ∆′ ⊇ ∆. By the definition of interpretations:

(JΓ ` (x :K).DKρ,ξ,∆)|∆′ =

{∆′′ `M | ∆′′ `M : ((x :K).D)ρ, ∆′′ ⊇ ∆′ ⊇ ∆, and

∀∆′′′ ⊇ ∆′′, ∀∆′′′ `A ∈ JΓ ` KKρ,ξ|∆′′′ ,∆′′′ , ∀C ∈ C∆′′′ ,A,

∆′′′ `MA ∈ JΓ, x : K ` DKρ∪[A/x],ξ|∆′′′ ∪[C/x],∆′′′ }JΓ ` (x :K).DKρ,ξ|∆′ ,∆′ =

{∆′′ `M | ∆′′ `M : ((x :K).D)ρ, ∆′′ ⊇ ∆′, and

∀∆′′′ ⊇ ∆′′, ∀∆′′′ `A ∈ JΓ ` KKρ,(ξ|∆′ )|∆′′′ ,∆′′′ , ∀C ∈ C∆′′′ ,A,

∆′′′ `MA ∈ JΓ, x : K ` DKρ∪[A/x],(ξ|∆′ )|∆′′′ ∪[C/x],∆′′′ }
Since (ξ|∆′)|∆′′′ = ξ|∆′′′ (see Remark 2 after the definition of candidates), the

two interpretations given above are equal.

4. If A = λx :K.B we do the proof only for the case where K is a kind. By the

definition

JΓ ` λx :K.BKρ,ξ,∆ = λ(∆′ `A)λC.JΓ, x : K ` BKρ∪[A/x],ξ|∆′ ∪[C/x],∆′ ,

a function with domain

{(∆′ `A,C) | ∆′ ` A : Kρ, ∆′ ⊇ ∆, C ∈ C∆′ ,A}
and we have to check that JΓ ` λx :K.BKρ,ξ,∆ satisfies the condition described

in case 4(a) of the definition of the family of candidates (because by Stripping

Lemma 4.1.3, Γ ` λx :K.B : (x :K).D for some D).

It is clear that JΓ ` λx : K.BKρ,ξ,∆ has an adequate domain and codomain,

as JΓ, x : K ` BKρ∪[A/x],ξ|∆′ ∪[C/x],∆′ ∈ C∆′ ,B(ρ∪[A/x]) by induction hypothesis and

C∆′ ,B(ρ∪[A/x]) = C∆′ ,(λx:K.B)ρA by the definition of the family of candidates.

For (P2) we have to show that JΓ, x : K ` BKρ∪[A/x],ξ|∆′ ∪[C/x],∆′ = JΓ, x : K `
BKρ[A′/x],ξ|∆′ ∪[C/x],∆′ whenever ∆′ ` A ∗↔ A′. But this follows from the previous

lemma (Lemma 5.2.3).

For (P3) it is sufficient to notice that

(JΓ ` λx :K.BKρ,ξ,∆(∆̃ `M,C))|∆′ = (JΓ, x : K ` BKρ[M/x],ξ|∆̃∪[C/x],∆̃)|∆′
= JΓ, x : K ` BKρ[M/x],ξ|∆′ ∪[C|∆′/x],∆′

= JΓ ` λx :K.BKρ,ξ,∆(∆′ `M,C|∆′)
where the second equality holds by induction hypothesis for the (F) property.

We are left to show the (F) property. By the definition of interpretation
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and restriction:

(JΓ ` λx :K.BKρ,ξ,∆)|∆′ = λ(∆′′ `A)λC.JΓ, x : K ` BKρ∪[A/x],ξ|∆′′ ∪[C/x],∆′′ ,

a function with domain

{(∆′′ `A,C) | ∆′′ ` A : Kρ, ∆ ⊆ ∆′ ⊆ ∆′′, C ∈ C∆′′ ,A}JΓ ` λx :K.BKρ,ξ|∆′ ,∆′ = λ(∆′′ `A)λC.JΓ, x : K ` BKρ∪[A/x],(ξ|∆′ )|∆′′ ∪[C/x],∆′′ ,

a function with domain

{(∆′′ `A,C) | ∆′′ ` A : Kρ, ∆′ ⊆ ∆′′, C ∈ C∆′′ ,A}
Since (ξ|∆′)|∆′′ = ξ|∆′′ (this follows easily from the definition of candidates),

both functions are equal and we are done. q

In the sequel, we will often write JΓ ` AKρ,ξ,∆ for a candidate assignment ξ that

is defined only on FV(A) ∩ Var2 , even though formally ξ should be given on all

variables from Γ ∩ Var2 . The following lemma justifies this writing, saying that ξ

may be extended arbitrarily (for example by canonical candidates).

Lemma 5.2.5

Let Γ, ∆ be environments, A a Γ-nonobject and ρ a well-typed substitution from

Γ to ∆. Moreover, let us suppose that x ∈ dom(Γ) ∩ Var2 , x 6∈ FV(A). Then for

every ξ1, ξ2, candidate assignments compatible with ρ, that differ only on that x,JΓ ` AKρ,ξ1 ,∆ = JΓ ` AKρ,ξ2 ,∆.

5.2.1 Interpretation of inductive types

To define the interpretation of s(~a), s ∈ T C, we will first define the interpretation of

s, as a least fixpoint of a monotone operator on a complete lattice. Intuitively, the

interpretation of an n-ary type constructor s is a function, which given n arguments,

returns the subset U of strongly normalizing terms, such that M ∈ U iff the fact

that M rewrites to c(~N), c being a constructor of s, implies that every Ni belongs to

the interpretation of its type. Hence, the lattice to be used is the lattice of functions

from vectors of terms to the subsets of strongly normalizing terms and it is not

difficult to guess that the monotonicity of the operator to construct will follow from

the positivity condition imposed on constructors.

Inductive definitions (inductive types and their constructors) were introduced to

the signature in some order. The same order will be used to define the interpretations

of inductive types. For this reason, during the definition of the interpretation of

s ∈ T C we suppose that the interpretations of all terms that contain inductive types

introduced to Σ beforehand, are given.

Note that, even though formally s ∈ T Cr alone is not a valid pseudoterm (it needs

r arguments), we will still use the notation JΓ ` sKρ,ξ,∆ to denote the interpretation

of s. All the definitions below assume that we want to define JΓ ` sKρ,ξ,∆ for s that

is a part of the inductive definition Ind[Γp](s : A := c1 : C1, . . . cm : Cm) ∈ Σ. In this

case the type of s equals (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).? and the type of

the constructor ci equals (p1 : P1) . . . (pr : Pr).(z
i
1 : di1) . . . (ziki : diki).s(~p)w

i
1 . . . w

i
n. Recall

that, according to our conventions, the first r arguments of s and ci are parameters.

https://doi.org/10.1017/S0956796802004641 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004641


Termination of rewriting in the Calculus of Constructions 377

Let us start with the domain of functions, that are elements of the lattice L→.

It is a set of vectors of pairs, each pair consisting of a sequent and (possibly) a

reducibility candidate.

Dom = {(∆ `a1, U1), . . . (∆ `ar, Ur), (∇1 ` t1,W1), . . . (∇n ` tn,Wn)

∆ = ∇0 ⊆ . . . ⊆ ∇1 . . . ⊆ ∇n
∀ i = 1, . . . r ∆ ` ai : Pi[a1/p1, . . . , ai−1/pi−1],

Ui = ∅ if ai ∈ Obj and Ui ∈ C∆,ai otherwise

∀ j = 1, . . . n ∇j ` tj : bj[~a/~p][t1/x1, . . . , tj−1/xj−1]

Wj = ∅ if tj ∈ Obj and Wj ∈ C∇j ,tj otherwise}
For r + n = 0 let us define Dom as the singleton {·}.

By Bot(e), e ∈ Dom we denote the set needed to construct the bottom of the

lattice. It is a set of sequents that do not reduce to constructor headed form. Note

that these sequents are defined in the environment ∇n (∇0 = ∆).

Bot((∆ `a1, U1), . . . (∆ `ar, Ur), (∇1 ` t1,W1), . . . (∇n ` tn,Wn)) =

{∆′ `M ∈ SN ∇n,s(~a)~t | ∆′ `M do not reduce to a constructor headed term}
Definition 5.2.6 (Lattice to compute JΓ ` sKρ,ξ,∆)

L→ = {ϕ : Dom 7→ P(SN ) | ∀e = 〈−−−−−−→(∆ `a,U),
−−−−−−→
(∇ ` t,W )〉 ∈ Dom

Bot(e) ⊆ ϕ(e) ⊆ SN ∇n,s(~a)~t}
where P(SN ) stands for the powerset of SN .

Lemma 5.2.7

The set L→ is a complete lattice.

Proof

The minimal element of L→ is a function which assigns Bot(e) to every e ∈ Dom.

The lowest upper bound of ϕi, i ∈ I , is a function which assigns
⋃
i∈I ϕi(e) to every

e ∈ Dom. A function ϕ ∈ L→ is bigger than a function ϕ′ if and only if for every

e ∈ Dom we have ϕ′(e) ⊆ ϕ(e). q

Now, it is time to define the operator F , the least fixpoint of which will be assigned

to JΓ ` sKρ,ξ,∆. The target interpretation of JΓ ` sKρ,ξ,∆ will be a function, which,

given an element from Dom, returns a set containing terms such that if they reduce

to ci(~a′, ~N), then every a′j and Nk belongs to the interpretation of its type, which

may itself depend on JΓ ` sKρ,ξ,∆.

The operator F makes one step of this recursive definition. It takes ϕ ∈ L→ –

an “old” interpretation of s – and returns a new one, calculated using ϕ. More

precisely, it returns a function that for every e ∈ Dom gives the set of terms such

that if they reduce to ci(~a′, ~N), then every a′j and Nk belongs to the interpretation of

its type, calculated with the assumption that s has the interpretation ϕ. The latter

calculation is performed by the operator Inter(ϕ), which takes an environment, a
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type, a substitution, a candidate assignment and another environment (just likeJ. ` .K.,.,.).
Recall, that s : (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).? and ci : (p1 : P1) . . . (pr :

Pr).(z
i
1 : di1) . . . (ziki : diki).s(~p)w

i
1 . . . w

i
n for every ci that is a constructor of s.

Definition 5.2.8 (Monotone operator to compute JΓ ` sKρ,ξ,∆)

The monotone operator F to compute JΓ ` sKρ,ξ,∆ is defined as follows:

F(ϕ) = λ〈−−−−−−→(∆ `a,U),
−−−−−−→
(∇ ` t,W )〉.{∆′ `M ∈ SN ∇n,s(~a)~t |

if ∆′ `M→∗ci(~a′, ~N) ci being a constructor of s, then

∆′ ` a′j ∈ Inter(ϕ)(p1 : P1, . . . pj−1 : Pj−1 ` Pj)[~a/~p],[~U/~p],∆′ and

∆′ ` Nj ∈ Inter(ϕ)(
−−→
p : P , zi1 : di1, . . . z

i
j−1 : dij−1 ` dij)[~a/~p]∪[~N/~zi],[~U/~p],∆′ }

and Inter(ϕ)(Γ̂ ` A)ρ̂,ξ̂,∆̂ is defined by induction on the structure of A in the following

way:

1. if s 6∈ A, then Inter(ϕ)(Γ̂ ` A)ρ̂,ξ̂,∆̂ = JΓ̂ ` AKρ̂,ξ̂,∆̂,

2. if A = s(p)v1, . . . vn then Inter(ϕ)(Γ̂ ` A)ρ̂,ξ̂,∆̂ = ϕ((∆̂ ` p1ρ̂, p1ξ̂), . . . (∆̂ `
prρ̂, prξ̂), (∆̂ ` v1ρ̂, V1), . . . (∆̂ ` vnρ̂, Vn)), where Vi = JΓ̂ ` viKρ̂,ξ̂,∆̂ if vi 6∈ Obj

and Vi = ∅ otherwise.

3. if A = (y :T ).B and s 6∈ T then

(a) if T is a kind then

Inter(ϕ)(Γ̂ ` (y :T ).B)ρ̂,ξ̂,∆̂ = {∆̂′ `M | ∆̂′ `M : ((y :T ).B)ρ̂,

∆̂′ ⊇ ∆̂, and ∀∆̂′′ ⊇ ∆̂′ ∀∆̂′′ `N ∈ JΓ̂ ` T Kρ̂,ξ̂|∆̂′′ ,∆̂′′ ∀C ∈ C∆̂′′ ,N ,

∆̂′′ `MN ∈ Inter(ϕ)((Γ̂, y : T ) ` B)ρ̂∪[N/x],ξ̂|∆̂′′ ∪[C/x],∆̂′′ }
(b) if T is a type then

Inter(ϕ)(Γ̂ ` (y :T ).B)ρ̂,ξ̂,∆̂ = {∆̂′ `M | ∆̂′ `M : ((y :T ).B)ρ̂,

∆̂′ ⊇ ∆̂, and ∀∆̂′′ ⊇ ∆̂′ ∀∆̂′′ `N ∈ JΓ̂ ` T Kρ̂,ξ̂|∆̂′′ ,∆̂′′ ,
∆̂′′ `MN ∈ Inter(ϕ)((Γ̂, y : T ) ` B)ρ̂∪[N/x],ξ̂|∆̂′′ ,∆̂′′ }

Although Inter is not completely defined, the part given above suffices to compute

F . Indeed, by the definition of inductive type, the types of parameters (P1, . . . Pr) do

not contain s, and in the other input types of ci, s occurs strictly positively.

Note that in the definition of F , ∆′ ` a′j has to belong to the interpretation

computed in the presence of the candidate assignment which assigns to variables ~p

candidates ~U and not J... ` a′jK (which would not give a consistent definition). For

this reason J... ` NjK cannot appear in a candidate assignment part of Inter. This is

achieved by restricting the form of dij (recall that by definition of the well-formed

signature the type of constructor satisfies star dependency condition, which means

in our notations that no dij depends on zim ∈ Var2).

Lemma 5.2.9

The operator F defined above is monotone on L→.
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Proof

The monotonicity of F follows from the monotonicity of Inter(ϕ)(Γp, Γ̂ ` A)ρ̂,ξ̂,∆̂,

where Γp are parameters of the inductive type s, A is a term that has only strictly

positive occurrences of s, ρ̂ : (Γp, Γ̂)→ ∆̂ and ξ̂ is a candidate assignment compatible

with ρ̂. We proceed by induction on the structure of A.

If s 6∈ A then Inter(ϕ)(Γp, Γ̂ ` A)ρ̂,ξ̂,∆̂ = JΓp, Γ̂ ` AKρ̂,ξ̂,∆̂ and the monotonicity is

obvious. Otherwise, suppose that A has the form (y1 : T1) . . . (yk : Tk).s(~p)v1, . . . vn
where s does not occur in any vi, Ti and ~p = dom(Γp).

If A = s(~p)v1, . . . vn then Inter(ϕ)(Γp, Γ̂ ` A)ρ̂,ξ̂,∆̂ = ϕ(
−−−−−−−→
(∆̂ `pρ̂, pξ̂),

−−−−−−−→
(∆̂ `vρ̂, V )),

where Vi = JΓp, Γ̂ ` viKρ̂,ξ̂,∆̂ if vi 6∈Obj and Vi = ∅ otherwise. The whole expression is

monotone by the definition of the order relation on L→.

If A = (y :T ).A′ and T is a kind, then s 6∈ T and s occurs strictly positively in A′.
We have

Inter(ϕ)(Γp, Γ̂ ` A)ρ̂,ξ̂,∆̂ = {∆̂′ `M | ∆̂′ `M : ((y :T ).A′)ρ̂,

∆̂′ ⊇ ∆̂, and ∀∆̂′′ ⊇ ∆̂′ ∀∆̂′′ `N ∈ JΓp, Γ̂ ` T Kρ̂,ξ̂|∆̂′′ ,∆̂′′ ∀C ∈ C∆̂′′ ,N ,

∆̂′′ `MN ∈ Inter(ϕ)((Γp, Γ̂, y : T ) ` A′)ρ̂∪[N/x],ξ̂|∆̂′′ ∪[C/x],∆̂′′ }
and we know by induction hypothesis that Inter(ϕ)(Γp, Γ̂, y : T ` A′)ρ̂∪[N/x],ξ̂|∆̂′′ ∪[C/x],∆̂′′

is monotone. Hence Inter(ϕ)(Γp, Γ̂ ` A)ρ̂,ξ̂,∆̂ is also monotone.

The same reasoning applies if A = (y :T ).A′ and T is a type. q

Definition 5.2.10 (Interpretation of an inductive type)

Let Γ, ∆ be environments, s an inductive type, ρ : Γ → ∆ a well-typed substitu-

tion, ξ a candidate assignment compatible with ρ and F an operator defined in

definition 5.2.8. Then:

JΓ ` sKρ,ξ,∆ = µF

where µF is the least fixpoint of F .

Since the types of the constructors of s do not depend on an environment, we get

the following corollary:

Corollary 5.2.11

The interpretation JΓ ` sKρ,ξ,∆ does not depend on Γ, ρ and ξ.

Now, that we have defined the interpretation of an inductive type s we can

compute interpretations for every term of CC+H built from symbols introduced to

Σ up to s (including s). We start by adding the following case to the definition of

interpretation (5.2.2).

JΓ ` s(~a)Kρ,ξ,∆ = JΓ ` sKρ,ξ,∆(∆ `a1ρ,U1) . . . (∆ `arρ,Ur)

where Ui =

{ JΓ ` aiKρ,ξ,∆ if ai is a Γ-nonobject

∅ otherwise

We are left to show that JΓ ` s(~a)Kρ,ξ,∆ ∈ C∆,s(~a)ρ.

https://doi.org/10.1017/S0956796802004641 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004641


380 D. Walukiewicz-Chrz !aszcz

Lemma 5.2.12

Let s have type (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).? and let µF be the

least fixpoint of F used to compute the interpretation of s. Then, for every (∆ `
a1, U1), . . . (∆ ` ar, Ur), such that ∀ i = 1, . . . r, ∆ ` ai : Pi[a1/p1, . . . , ai−1/pi−1] and

Ui = ∅ if ai ∈ Obj and Ui ∈ C∆,ai otherwise, we have µF(∆ `a1, U1), . . . (∆ `ar, Ur) ∈
C∆,s(~a) and (µF

−−−−−−→
(∆ `a,U))|∆′ = µF

−−−−−−→
(∆′ `a,U)) for ∆′ ⊇ ∆.

Proof

We will show a more general property namely, that for every (∇1 ` t1,W1), . . . (∇n `
tn,Wn) if

• ∆ = ∇0 ⊆ ∇1 ⊆, . . .∇n and

• for every j = 1, . . . n, ∇j ` tj : bj[~a/~p][t1/x1, . . . , tj−1/xj−1] and

• for every j = 1, . . . n, Wj = ∅ if tj ∈ Obj and Wj ∈ C∇j ,tj otherwise,

then for every i = 0, . . . n we have

• µF−−−−−−→(∆ `a,U)(∇1 ` t1,W1), . . . (∇i ` ti,Wi) ∈ C∇i ,s(~a)t1 ,...ti , and

• (µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇i ` ti,Wi))|∆′ = µF

−−−−−−→
(∆ `a,U)(∇1 ` t1,W1),

. . . (∇i−1 ` ti−1,Wi−1)(∆′ ` ti,Wi|∆′) for ∆′ ⊇ ∇i.
The proof is done by induction on i decreasing from n down to 0.

If all arguments are applied to µF then we have to check that the conditions

(S1)..(S3) from Definition 5.1.2 of the family of candidates are verified. Let us

denote by e the vector
−−−−−−→
(∆ `a,U)

−−−−−−→
(∇ ` t,W ) ∈ Dom. Note that by the definition of

F , µFe consist only of strongly normalizing terms and that it is nonempty because

unreducible terms like ∇n, x : s(~a)~t `x belong to it.

To check (S1), suppose that ∆′ ` M ∈ µFe, with ∆′ ⊇ ∇n, and ∆′ ` M → M ′. We

will see that ∆′ `M ′ ∈ µFe
If M ′ does not rewrite to the constructor headed term, then ∆′ `M ′ ∈ µFe.
Otherwise, ∆′ ` M ′→∗ci(~a′, ~N), ci being a constructor of s and s being of

type
−−−−→
(p : P )

−−−→
(z : d).s(~p)~w, and we have to check that ∆′ ` a′j ∈ Inter(ϕ)(

−−→
p : P `

Pj)[~a/~p],[~U/~p],∆′ and ∆′ ` Nj ∈ Inter(ϕ)((
−−→
p : P ,

−−→
z : d) ` dj)[~a/~p][~N/~z],[~U/~p],∆′ Since, ∆′ `

M ′→∗ci(~a′, ~N) implies ∆′ ` M→∗ci(~a′, ~N), the required conditions follow directly

from the definition of ∆′ `M ∈ µFe.
To check (S2), let us suppose that every reduct M ′ of a neutral term ∆′ `M belongs

to µFe. To show that ∆′ ` M ∈ µFe we have to look at every constructor headed

term ci(~a′, ~N) to which M may rewrite and check some conditions for immediate

subterms of ci(~a′, ~N) (see above). Since M is neutral it must have a reduct M ′, such

that ∆′ `M →M ′→∗ci(~a′, ~N). Consequently, the validity of the required conditions

follows from the validity of the same conditions for M ′.
Condition (S3) obviously holds.

It is also easily seen that (µF
−−−−−−→
(∆ `a,U)

−−−−−−→
(∇ ` t,W ))|∆′ = µF

−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . .

(∇n−1 ` tn−1,Wn−1)(∆′ ` tn,Wn|∆′).
Suppose now, that we have proved the claim for k, and let us verify it for k − 1.

We have to show that µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1) verifies the
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condition 4(a) or 4(b) from the definition of the family. We will do the proof for the

case where bk is a kind, so we are interested in the condition 4(a).

First, note that µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1) is a function with

a proper domain ({(∆′ `M,C) | ∆′ ` M : bk[~a/~p][~t/~x], ∆′ ⊇ ∇k−1 and C ∈ C∆′ ,M})
and a proper codomain, as µF

−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1)(∆′ `

M,C) ∈ C∆′ ,s(~a)t1 ,...tk−1M by induction hypothesis. To check (P2) it is sufficient to show

that µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1)(∆′ `M1, C) = µF

−−−−−−→
(∆ `a,U)(∇1 `

t1,W1), . . . (∇k−1 ` tk−1,Wk−1)(∆′ `M2, C) for ∆′ ` M1
∗↔ M2. This follows directly

from the definition of F using the fact that SN ∆,T1
= SN ∆,T2

for Γ ` T1
∗↔ T2.

For (P3) we have to show that

(µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1)(∆̃ `M1, C))|∆′

= µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1)(∆′ `M1, C|∆′)

for ∇k−1 ⊆ ∆̃ ⊆ ∆′, which is true by induction hypothesis.

It remains to check that (µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1))|∆′ equals

µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∆′ ` tk−1,Wk−1|∆′). But these are two function that

wait for an argument of the form (∆′′ ` t,W ) with ∆′′ ⊇ ∆′ and then behave like

(µF
−−−−−−→
(∆ `a,U)(∇1 ` t1,W1), . . . (∇k−1 ` tk−1,Wk−1))(∆′′ ` t,W ), so they are equal. q

We should now prove again Lemmas 5.2.3 and 5.2.4 for all Γ-nonobjects that may

now contain symbols from T C up to s, s included.

After having repeated the above procedure for all inductive types from Σ we get

the final interpretation. Let us summarize its most important properties concerning

inductive types.

Lemma 5.2.13 (Inductive Type Lemma)

Let Γ, ∆ be environments, ρ a well-typed substitution from Γ to ∆, and ξ a candidate

assignment compatible with ρ. Let s : (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).? be

an inductive type and c : (p1 : P1) . . . (pr : Pr).(z1 : d1) . . . (zk : dk).s(~p)w1 . . . wn its

constructor. Under the above assumptions the following facts hold:

Decomposition If ~a, ~a′, ~N, ~u satisfy ∆ ` c(~a′, ~N) ∈ JΓ ` s(~a)~uKρ,ξ,∆ then:

• ∆ ` a′i ∈ JΓ ` Pi[~a/~p]Kρ,ξ,∆ for every i = 1, . . . r and

• ∆ ` Ni ∈ JΓ,−−−−−−→z : d[~a/~p] ` di[~a/~p]Kρ∪[~N/~z],ξ,∆ for every i = 1, . . . k.

Composition If ~a, ~a′, ~N, ~u satisfy:

• ∆ ` a′i ∈ JΓ ` Pi[~a/~p]Kρ,ξ,∆ for every i = 1, . . . r and

• ∆ ` Ni ∈ JΓ,−−−−−−→z : d[~a/~p] ` di[~a/~p]Kρ∪[~N/~z],ξ,∆ for every i = 1, . . . k and

• ~u are Γ-terms and ∆ ` c(~a′, ~N) : (s(~a)~u)ρ

then ∆ ` c(~a′, ~N) ∈ JΓ ` s(~a)~uKρ,ξ,∆.

The following lemma is a version of Lemma 5.2.3, formulated for all terms of

CC +H . We will refer to it in the next sections.
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Lemma 5.2.14 (Equivalence of substitutions)
Let Γ, ∆ be environments, ρ, ρ′ well-typed substitutions from Γ to ∆, such that

∆ ` xρ ∗↔ xρ′ for all x ∈ dom(Γ), and ξ a candidate assignment compatible with ρ

and ρ′. If A is a Γ-nonobject then JΓ ` AKρ,ξ,∆ = JΓ ` AKρ′ ,ξ,∆.

5.3 Auxiliary lemmas

This subsection presents some technical lemmas that will be used in the sections

that follow.

Lemma 5.3.1 (Extension of Γ)
Let (Γ1,Γ2) and ∆ be environments, ρ : (Γ1,Γ2)→ ∆ a well-typed substitution and

ξ a candidate assignment compatible with ρ. If A is a (Γ1,Γ2)-nonobject, then:

1. JΓ1,Γ2 ` AKρ,ξ,∆ = JΓ1, x : σ,Γ2 ` AKρ+ ,ξ,∆ where x 6∈ FV (A), σ is a type and

ρ+ = ρ ∪ [M/x] for some M satisfying ∆ `M : σρ
2. JΓ1,Γ2 ` AKρ,ξ,∆ = JΓ1, x : K,Γ2 ` AKρ+ ,ξ+ ,∆ where x 6∈ FV (A), K is a kind and

ρ+ = ρ ∪ [M/x], ξ+ = ξ ∪ [C/x] for some M satisfying that ∆ `M : Kρ and

some C ∈ C∆,M

Proof
By induction on the structure of A. q

Lemma 5.3.2 (Substitution Property for Interpretations)
Let (Γ1, x : T ,Γ2) and ∆ be environments, A a (Γ1, x : T ,Γ2)-nonobject and M a

term satisfying Γ1 ` M : T . Moreover let ρ : (Γ1,Γ2[M/x]) → ∆ be a well-typed

substitution and ξ a candidate assignment compatible with ρ.

1. If T = K is a kind thenJΓ1,Γ2[M/x] ` A[M/x]Kρ,ξ,∆ = JΓ1, x : K,Γ2 ` AKρ∪[Mρ/x],ξ∪[JΓ1`MKρ,ξ,∆/x],∆

2. If T = σ is a type thenJΓ1,Γ2[M/x] ` A[M/x]Kρ,ξ,∆ = JΓ1, x : σ,Γ2 ` AKρ∪[Mρ/x],ξ,∆

Proof
Induction on the structure of A. q

Lemma 5.3.3 (Equivalence of environments)

Let Γ, Γ′ be environments such that dom(Γ) = dom(Γ′) and Γ ` Γ(x)
∗↔ Γ′(x) for

all x ∈ dom(Γ). Let ∆ be an environment, ρ a well-typed substitution such that

ρ : Γ→ ∆ and ξ a candidate assignment compatible with ρ. If A is a Γ-nonobject

then JΓ ` AKρ,ξ,∆ = JΓ′ ` AKρ,ξ,∆.

Proof
Induction on the structure of A. q

Lemma 5.3.4 (Equivalence of types)
Let Γ, ∆ be environments, ρ : Γ → ∆ a well-typed substitution and ξ a candidate

assignment compatible with ρ. For every Γ-nonobjects A and A′, if Γ ` A ∗↔ A′ thenJΓ ` AKρ,ξ,∆ = JΓ ` A′Kρ,ξ,∆.

Proof
Induction on the structure of A. q
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5.4 Reducibility of function symbol headed terms

Using the candidate method to prove strong normalization, the objective is to show

that every term belongs to the interpretation of its type (see Lemma 5.5.2 for the

exact formulation). When passing from the pure Calculus of Constructions to the

Calculus of Constructions with rewriting most proofs remain unchanged; what is

really new is the case of function symbol headed term.

As it was already mentioned, it turns out that the only way to show that the

function symbol headed term f(~t) belongs to the interpretation of its type is to check

all its reducts. This is done in Fun Lemma 5.4.6 by inspecting all HORPO cases and

reasoning by induction on the precedence and on reductions originating from~t, but

the proof is technically difficult.

To explain the problem suppose that f(~t) rewrites to g(~u) in HORPO, with f :

(
−−→
x : b).c and g : (

−−→
y : d).e. We have to show that g(~u) belongs to the interpretation of

the type of f(~t). In fact, the interpretation of the type of f(~t) is just J−−−→(x : b) ` cK[~t/~x],ζ,∆

where ζ assigns candidates to those ~x that belong to Var2 and ∆ is an environment

in which f(~t) is well-typed.

Considering g(~u), all one can get from the induction hypothesis are statements of

the form g(~u) ∈ J−−−→(y : d) ` eK[~u/~y],ξ,∆ for some ξ. Here, two problems arise: how to

find ξ and how to prove that J−−−→(x : b) ` cK[~t/~x],ζ,∆ = J−−−→(y : d) ` eK[~u/~y],ξ,∆. Both problems

are solved thanks to the star dependency condition and the form of the HORPO

judgments. The substitution ξ is just ζ, as all big ~y have to be parameters and the

parameters of the right-hand side are included in the parameters of the left-hand

side. The equality of interpretations is true by the Small Substitution Lemma 5.4.1

given in a paragraph below.

In two other parts of this section we give the Constructor Lemma and prove the

Fun Lemma and Computable Closure Lemma.

5.4.1 Small substitution lemma

To understand the notion of small substitution we have to go back to the star

dependency condition in section 2.4.1. A type (
−−→
p : P )(

−−→
x : b).c satisfies star dependency

condition if all free and big variables from ~b and c belong to ~p, which may be seen

as a generalization of requirements that all ~x are small. A substitution which is

defined only on those ~x (and is an identity on ~p) will be informally called small.

Recall that the notation ρ1ρ2 denotes sequential composition of substitutions. The

lemma below states that any two types, that are convertible after an application of

small substitutions, have equal interpretations.

Lemma 5.4.1 (Small Substitution Lemma)

Let Gp, G1, G2, G be environments, µ1, µ2 be well-typed substitutions and T1, T2

terms in beta normal form, such that

1. FV(T1) ∩ Var2 ⊆ Gp, FV(T2) ∩ Var2 ⊆ Gp,
2. µ1 : (Gp, G1)→ (Gp, G), µ2 : (Gp, G2)→ (Gp, G) such that µ1 |Gp= µ2 |Gp= idGp ,

3. Gp, G1 ` T1 : ?/2, Gp, G2 ` T2 : ?/2,
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If Gp, G ` T1µ1
∗↔ T2µ2 then for every environment ∆, well-typed substitution

θ : (Gp, G)→ ∆ and a candidate assignment ξ compatible with θ, we have JGp, G1 `
T1Kµ1θ,ξ,∆ = JGp, G2 ` T2Kµ2θ,ξ,∆. Moreover, if T1, T2 are terms of the Calculus of

Constructions (Gp, G1 `CC T1 : ?/2, Gp, G2 `CC T2 : ?/2) the same holds without

the assumption that T1, T2 are in beta normal form.

Proof

The proof is done by induction on the structure of T1. Because of possible λ’s and

Π’s in T1 we have to show a more general property, namely that for every n and

vectors ~A,~B,~∆, ~N, ~C of length n, such that ~A,~B, ~N are terms, ~∆ are environments

and ~C are candidates verifying for all i = 1, . . . n

• Gp, G,−−−−−→(y : Aµ1) ` Aiµ1
∗↔ Biµ2 and

• ∆0 = ∆, ∆i ⊇ ∆i−1,

• ∆i ` Ni ∈ JGp, G1,
−−−→
(y : A) ` AiKµ1θ∪[~N/~y],ξ∪[~C/~y],∆i−1 ,

• Ci ∈ C∆i ,Ni
if Ni is not an object and Ci = ∅ otherwise,

if Gp, G,
−−−−−→
(y : Aµ1) ` T1µ1

∗↔ T2µ2 then JGp, G1,
−−−→
(y : A) ` T1Kµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

= JGp, G2,
−−−−→
(y : B) ` T2Kµ2θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

.

The proof is by induction on the structure of T1.

1. T1 = X, X ∈ {?,2} ∪ Var2 . Since Gp, G,
−−−−−→
(y : Aµ1) ` T1µ1

∗↔ T2µ2 and µ1, µ2

are small, T2 = X and our claim is proved.

2. T1 = P1 Q1. Note that P1 is neither an abstraction (T1 is beta normal form)

nor a variable which may become an abstraction (in this case P1 ∈ Var2 and

P1µ = P1). Therefore T2 must be equal to P2 Q2 with Gp, G,
−−−−−→
(y : Aµ1) ` P1µ1

∗↔
P2µ2, Gp, G,

−−−−−→
(y : Aµ1), x : P1µ1 ` Q1µ1

∗↔ Q2µ2.

By induction hypothesis we have

JGp, G1,
−−−→
(y : A) ` P1Kµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

=

JGp, G2,
−−−−→
(y : B) ` P2Kµ2θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

and if Q1, Q2 are nonobjects we have also

JGp, G1,
−−−→
(y : A) ` Q1Kµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

=

JGp, G2,
−−−−→
(y : B) ` Q2Kµ2θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

By the definition of interpretation of an application, this gives us the desired

conclusion.

3. T1 = (x : P1).Q1. Then T2 = (x : P2).Q2 and Gp, G,
−−−−−→
(y : Aµ1) ` P1µ1

∗↔ P2µ2,

Gp, G,
−−−−−→
(y : Aµ1), x : P1µ1 ` Q1µ1

∗↔ Q2µ2.

By induction hypothesis we have

JGp, G1,
−−−→
(y : A) ` P1Kµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

=

JGp, G2,
−−−−→
(y : B) ` P2Kµ2θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n
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JGp, G1,
−−−→
(y : A), x : P1 ` Q1Kµ1θ∪[~N/~y]∪[N ′/x],(ξ∪[~C/~y]∪[C ′/x])|∆n+1

,∆n+1
=

JGp, G2,
−−−−→
(y : B), x : P2 ` Q2Kµ2θ∪[~N/~y]∪[N ′/x],(ξ∪[~C/~y]∪[C ′/x])|∆n+1

,∆n+1

for any ∆n+1 ` N ′ ∈ JGp, G1,
−−−→
(y : A) ` P1Kµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

, ∆n+1 ⊇ ∆n,

C ′ ∈ C∆n+1 ,N ′ . By the definition of interpretation of a product type, this gives

the desired conclusion.

4. T1 = λx : P1.Q1. Then T2 = λx : P2.Q2 and Gp, G,
−−−−−→
(y : Aµ1) ` P1µ1

∗↔ P2µ2,

Gp, G,
−−−−−→
(y : Aµ1), x : P1µ1 ` Q1µ1

∗↔ Q2µ2.

The proof for this case is very similar to the proof given above.

5. T1 = s(~M) and s ∈ T C. Then T2 = s(~N) and for every i we have

Gp, G,
−−−−−→
(y : Aµ1) ` ~Miµ1

∗↔ ~Niµ2.

By induction hypothesis, JGp, G1,
−−−→
(y : A) ` MiKµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

= JGp, G2,−−−−→
(y : B) ` NiKµ2θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

for every Mi that is not an object.

To complete the proof it suffices to check whether JGp, G1,−−−→
(y : A) ` sKµ1θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

= JGp, G2,
−−−−→
(y : B) ` sKµ2θ∪[~N/~y],(ξ∪[~C/~y])|∆n ,∆n

. But

this follows from the Corollary 5.2.11.

If T1, T2 are terms of the Calculus of Constructions (Gp, G1 `CC T1 : ?/2,

Gp, G2 `CC T2 : ?/2) we can beta normalize them before applying the reasoning

presented above. q

In fact a stronger version of Small Substitution Lemma holds; T1, T2 may

depend on some big variables that are not parameters, but will be substituted by

parameters. This lemma is needed only in some proofs concerning application case

(I.6) of HORPO.

Lemma 5.4.2

Let Gp, G1, G2, G be environments, µ1, µ2 be well-typed substitutions and T1, T2

terms in beta normal form, such that for i = 1, 2

1. µi : (Gp, Gi)→ (Gp, G), such that µi |Gp= idGp and if x ∈ (FV(Ti) ∩ Var2) then

µi(x) ∈ Gp
2. Gp, Gi ` Ti : ?/2,

If Gp, G ` T1µ1
∗↔ T2µ2 then for every environment ∆, well-typed substitutions

θ : (Gp, G)→ ∆ and a candidate assignment ξ compatible with θ, we have JGp, G1 `
T1Kµ1θ,ξ1 ,∆ = JGp, G2 ` T2Kµ2θ,ξ2 ,∆, where xξi = xξ for x ∈ Gp and xξi = pξ for

x ∈ Var2 \ Gp and such that xµi = p. Moreover, if T1, T2 are terms of the Calculus

of Constructions then the lemma holds, even if T1, T2 are not in beta normal form.

Proof

The proof of this new lemma is almost identical to the original one. q

5.4.2 Constructor subterm lemma

The following property is an easy consequence of Inductive Lemma 5.2.13. We

decided to write it down, because it is formulated in terms of notations used in

Small Substitution Lemma 5.4.1 and Fun Lemma 5.4.6.
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Lemma 5.4.3 (Constructor Lemma)

Let c : (q1 : Q1) . . . (qr : Qr).(z1 : d1) . . . (zk : dk).s(~q)w1 . . . wn be a constructor of

s : (q1 : Q1) . . . (qr : Qr).(x1 : b1) . . . (xn : bn).?.

Moreover suppose that Gp, G1, G are environments, µ1 is a well-typed substitution

and s(~a)~u, c(~a′, ~N) terms such that:

1. FV(s(~a)~u) ∩ Var2 ⊆ Gp,
2. µ1 : (Gp, G1)→ (Gp, G), such that µ1 |Gp= idGp ,

3. Gp, G1 `CC s(~a)~u : ?,

4. Gp, G `CC c(~a′, ~N) : (s(~a)~u)µ1.

For every environment ∆, well-typed substitution θ : Gp, G → ∆ and candidate

assignment ζ compatible with θ, if

∆ ` c(~a′θ, ~Nθ) ∈ JGp, G1 ` s(~a)~uKµ1θ,ζ,∆

then for every t ∈ {~a′, ~N}, there are Gt, Tt and µt such that:

1. FV(Tt) ∩ Var2 ⊆ Gp,
2. µt : (Gp, Gt)→ (Gp, G), such that µt |Gp= idGp ,

3. Gp, Gt `CC Tt : ?/2,

4. Gp, G `CC t : Ttµt and

5. ∆ ` tθ ∈ JGp, Gt ` TtKµtθ,ζ,∆.

Proof

It is sufficient to apply the Inductive Lemma 5.2.13 to the hypothesis to get

∆ ` a′iθ ∈ JGp, G1 ` Qi[~a/~q]Kµ1θ,ζ,∆

∆ ` Niθ ∈ JGp, G1,
−−−−−−→
z : d[~a/~q] ` di[~a/~q]K(µ1∪[~N/~z])θ,ζ,∆

Since FV(s(~a)~u) ∩ Var2 ⊆ Gp and the type of the constructor c satisfies star

dependency condition, we have FV(Qi[~a/~q])∩Var2 ⊆ Gp and FV(di[~a/~q])∩Var2 ⊆
Gp.

Trivially, we have Gp, G1 `CC Qi[~a/~q] : ?/2, Gp, G1,
−−−−−−→
z : d[~a/~q] `CC di[~a/~q] : ?/2

and Gp, G `CC a′i : Qi[~a/~q]µ1, Gp, G `CC Ni : di[~a/~q](µ1 ∪ [~N/~z]). q

Corollary 5.4.4 (Constructor Subterm Lemma)

Under the hypotheses of the previous lemma, for every environment ∆, well-typed

substitution θ : Gp, G→ ∆ and candidate assignment ζ compatible with θ, if

∆ ` c(~a′θ, ~Nθ) ∈ JGp, G1 ` s(~a)~uKµ1θ,ζ,∆

then for every constructor subterm t of c(~a′, ~N) there are Gt, Tt and µt such that:

1. FV(Tt) ∩ Var2 ⊆ Gp,
2. µt : (Gp, Gt)→ (Gp, G), such that µt |Gp= idGp ,

3. Gp, Gt `CC Tt : ?/2,

4. Gp, G `CC t : Ttµt and

5. ∆ ` tθ ∈ JGp, Gt ` TtKµtθ,ζ,∆.
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Proof

First, we will show that Tt is an inductive type if t is a constructor-headed term. From

Gp, G `CC t : Ttµt it follows that Ttµt is an inductive type. But FV(Tt)∩Var2 ⊆ Gp
and µt |Gp= idGp and we conclude that Tt is an inductive type itself.

Repeating the Subterm Lemma as many times as needed we get the con-

clusion. q

5.4.3 Fun and computable closure Lemmas

This subsection is devoted to one of the most important proofs in the paper, namely

to the proof of the Fun Lemma. We will show that the reducibility of function

symbol headed terms follows from the reducibility of their arguments. In this proof

we will use all the machinery introduced before.

The proof of the Fun lemma will be done by inspecting all possible HORPO cases.

Since HORPO depends on the computable closure, it is not surprising that there will

be a similar lemma concerning tuples from the computable closure. Moreover, since

computable closure uses HORPO, this lemma will refer to the induction hypothesis

of the Fun Lemma. Hence, we decided to organize the section as follows: first we

give the statement of the Fun Lemma, then we state and prove the lemma about the

computable closure, and finally, we prove the Fun Lemma.

The following trivial lemma is needed to justify the induction used in the lemmas

below.

Lemma 5.4.5

Let us denote by →∆ ∪�CS the union of →∆ and constructor subterm relations.

If Γ ` t �CS u and θ : Γ → ∆ then ∆ ` tθ(→∆ ∪�CS )uθ. Moreover if ∆ ` t is a

term such that →∆ terminates starting from t, then →∆ ∪�CS also terminates on t.

Lemma 5.4.6 (Fun Lemma)

Let f be a function symbol of type (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).c such

that ∆ ` f(~α,~σ) : c[~α/~p,~σ/~x] holds. For every ζ, a candidate assignment compatible

with [~α/~p], if ~α, ~σ satisfy:

• ∆ ` αj ∈ J−−→p : P ` PjK[~α/~p],ζ,∆, for all j = 1, . . . r,

• ∆ ` σj ∈ J−−→p : P ,
−−→
x : b ` bjK[~α/~p]∪[~σ/~x],ζ,∆, for all j = 1, . . . n,

then ∆ ` f(~α,~σ) ∈ J−−→p : P ,
−−→
x : b ` cK[~α/~p]∪[~σ/~x],ζ,∆.

The proof of the Fun Lemma will be given at the end of the section.

Lemma 5.4.7 (Computable Closure Lemma)

Let f be a function symbol of the type (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).c,

such that Gp, G ` f(~p,~u) : c[~u/~x] holds for some environments Gp =
−−→
p : P and G

and for some terms ~u.

For every environment ∆, well-typed substitution θ : Gp, G → ∆ and candidate

assignment ζ compatible with θ, if

∆ ` pjθ ∈ J−−→p : P ` PjKθ,ζ,∆ for all j = 1, . . . r, and

∆ ` ujθ ∈ J−−→p : P ,
−−→
x : b ` bjK[~u/~x]θ,ζ,∆ for all j = 1, . . . n
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and if Lemma 5.4.6 holds for all ∆ ` g(~β,~ν), smaller than f(~pθ,~uθ) in (>F , (→∆

∪�CS )stat)lex, where stat is the status of f, then for every t ∈ CCl (Gp, G ` f(~p,~u))

there exist Gt, Tt, µt satisfying:

1. FV(Tt) ∩ Var2 ⊆ Gp,
2. µt : Gp, Gt → (Gp, G) such that µt |Gp= idGp ,

3. Gp, Gt `CC Tt : ?/2,

4. Gp, G `CC t : Ttµt and

5. ∆ ` tθ ∈ JGp, Gt ` TtKµtθ,ζ,∆.

Proof

We actually prove a slightly more general statement.

We will show that for every (t, Gt;BV ` Tt, µt) ∈ CCl (Gp, G ` f(~p,~u)), with

BV = (z1 : A1) . . . (zm : Am), and for every ~N, ~C and ∆ = ∆0 ⊆ ∆1 . . . ⊆ ∆m satisfying:

∀i ∆i ` Ni ∈ JGp, Gt, BV ` AiKµtθ∪[~N/~z],ζ∪[~C/~z],∆i

∀i Ci ∈ C∆i ,Ni
if Ni is not an object and Ci = ∅ otherwise

the following properties hold :

1. FV(Tt) ∩ Var2 ⊆ Gp ∪ BV ,

2. µt : Gp, Gt → (Gp, G) such that µt |Gp= idGp ,

3. Gp, Gt, BV `CC Tt : ?/2,

4. Gp, G, BVµt `CC t : Ttµt,

5. ∆m ` t(θ ∪ [~N/~z]) ∈ JGp, Gt, BV ` TtKµtθ∪[~N/~z],ζ∪[~C/~z],∆m
.

We obtain the conclusion of the lemma by taking an empty set BV .

Properties 1 to 4 hold by the definition of a (Gp, G)-tuple and Lemma 3.3.3.

Property 5 is now proved by induction on the derivation of (t, Gt;BVt ` Tt, µt) ∈
CCl (Gp, G `f(~p,~u)).

Initial set By the hypothesis we have

∆ ` pjθ ∈ J−−→p : P ` PjKθ,ζ,∆ for all j = 1, . . . r, and

∆ ` ujθ ∈ J−−→p : P ,
−−→
x : b ` bjK[~u/~x]θ,ζ,∆ for all j = 1, . . . n

Introduction of variables

Gp, Gm, BV `CC y : A, y ∈ dom(BV )

(y, Gm;BV ` A, µ)

We have to show that ∆m ` y(θ∪ [~N/~z]) ∈ JGp, Gm, BV ` AKµθ∪[~N/~z],ζ∪[~C/~z],∆m
. Since

y ∈ dom(BV ), y = zi and y(θ ∪ [~N/~z]) = Ni. We complete the proof using the

assumption for Ni.

Abstraction

(t, Gm;BV , y : A ` T , µ) (Aµ, Gm;BV ` p2, µ)

Gp, Gm, BV , y : A `CC T : p1 Gp, Gm, BV `CC A : p2

(λy :Aµ.t, Gm;BV ` (y :A).T , µ)
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To show ∆m ` (λy :Aµ.t)(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` (y :A).T Kµθ∪[~N/~z],ζ∪[~C/~z],∆m
it

suffices to check whether ∆m+1 ` @((λy :Aµ.t)(θ ∪ [~N/~z]),M) ∈ JGp, Gm, BV , y :

A ` T Kµθ∪[~N/~z]∪[M/y],ζ∪[~C/~z]∪[C ′/y],∆m+1
for any ∆m+1 ⊇ ∆m, any ∆m+1 ` M ∈JGp, Gm, BV ` AKµθ∪[~N/~z],ζ∪[~C/~z],∆m

and any C ′ ∈ C∆m+1 ,M .

By induction hypothesis we know that ∆m+1 ` t(θ∪ [~N/~z]∪ [M/y]) ∈ JGp, Gm, BV ,
y : A ` T Kµθ∪[~N/~z]∪[M/y],ζ∪[~C/~z]∪[C ′/y],∆m+1

. But @((λy :Aµ.t)(θ ∪ [~N/~z]),M)→β t(θ ∪
[~N/~z]∪ [M/y]), which gives our claim by Lemma 5.1.6 (together with the fact that

Aµ ∈ SN that follows from induction hypothesis applied to (A, Gm;BV ` p2, µ)).

Application to a variable

(t, Gm;BV ` (x :A).B, µ) (y, Gm;BV ` A, µ)

(@(t, y), Gm;BV ` B[y/x], µ)

By induction hypothesis we know that

∆m ` t(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` (x :A).BKµθ∪[~N/~z],ζ∪[~C/~z],∆m

∆m ` y(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` AKµθ∪[~N/~z],ζ∪[~C/~z],∆m

and y = zi ∈ dom(BV ). By applying the definition of interpretation of a product

type we get

∆m `@(t(θ ∪ [~N/~z]), y(θ ∪ [~N/~z]))

∈ JGp, Gm, BV , x : A ` BKµθ∪[~N/~z]∪[Ni/x],ζ∪[~C/~z]∪[Ci/x],∆m

Since y : A and x : A are two variables that are equal after applying substitution

on terms and candidates (Ni, Ci are the values), we can substitute y for x and

conclude that ∆m `@(t, y)(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` B[y/x]Kµθ∪[~N/~z],ζ∪[~C/~z],∆m
.

Application to a parameter

(t, Gm;BV ` (x :P ).B, µ)

(@(t, p), Gm;BV ` B[p/x], µ)

where p : P ∈ Gp. The proof is very similar to the proof of the previous case and

relies on the fact that p : P (like y : A in the previous case) is already in the

environment Gp, Gm, BV .

Application to a small argument

(t1, Gm;BV ` (x :A).B, µ) (t2, Gm;BV ` A, µ)

(@(t1, t2), Gm, x : A;BV ` B, µ ∪ [t2/x])

if x ∈ Var? and t2 and A are clean. By induction hypothesis we know that

∆m ` t1(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` (x :A).BKµθ∪[~N/~z],ζ∪[~C/~z],∆m

∆m ` t2(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` AKµθ∪[~N/~z],ζ∪[~C/~z],∆m
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By applying the definition of interpretation of a product type we get

∆m `@(t1(θ ∪ [~N/~z]), t2(θ ∪ [~N/~z]))

∈ JGp, Gm, BV , x : A ` BKµθ∪[~N/~z]∪[t2(θ∪[~N/~z])/x],ζ∪[~C/~z],∆m

Since A is clean, Gp, Gm, BV , x : A = Gp, Gm, x : A,BV . Moreover µθ ∪ [~N/~z] ∪
[t2(θ ∪ [~N/~z])/x] = (µ ∪ [t2/x])θ ∪ [~N/~z]. Then

JGp, Gm, BV , x : A ` BKµθ∪[~N/~z]∪[t2(θ∪[~N/~z])/x],ζ∪[~C/~z],∆m
=JGp, Gm, x : A,BV ` BK(µ∪[t2/x])θ∪[~N/~z],ζ∪[~C/~z],∆m

and the proof is complete.

Application to a nondependent argument

(t1, Gm;BV ` (x :A).B, µ) (t2, Gm;BV ` A, µ)

(@(t1, t2), Gm;BV ` B, µ)

if x 6∈ FV(B). By induction hypothesis we know that

∆m ` t1(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` (x :A).BKµθ∪[~N/~z],ζ∪[~C/~z],∆m

∆m ` t2(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` AKµθ∪[~N/~z],ζ∪[~C/~z],∆m

By applying the definition of interpretation of a product type we get

∆m `@(t1(θ ∪ [~N/~z]), t2(θ ∪ [~N/~z]))

∈ JGp, Gm, BV , x : A ` BKµθ∪[~N/~z]∪[t2(θ∪[~N/~z])/x],ζ∪[~C/~z]∪[C ′/x],∆m

If x 6∈ FV(B) we can eliminate it from the environment Gp, Gm, BV , x : A and

the substitutions µθ ∪ [~N/~z] ∪ [t2(θ ∪ [~N/~z])/x] and ζ ∪ [~C/~z] ∪ [C ′/x], without

changing the interpretation (by Lemma 5.3.1), and get the desired conclusion.

Precedence

∀i (ti, Gm,
−−−−−−→
y : d[~p′/~q];BV ` di[~p′/~q], µ ∪ [~t/~y])

(g(~p′,~t), Gm,
−−−−−−→
y : d[~p′/~q];BV ` e[~p′/~q], µ ∪ [~t/~y])

if f >F g, g : (q1 : Q1) . . . (qr′ : Qr′ ).(y1 : d1) . . . (ym : dm).e, ~p′ ⊆ dom(Gp) and for

every i either ti is clean or yi 6∈ FV(d1, . . . dm, e).

By induction hypothesis we know that for every i, ∆m ` ti(θ ∪ [~N/~z]) ∈ JGp, Gm,−−−−−−→
y : d[~p′/~q], BV ` di[~p′/~q]K(µ∪[~t/~y])θ∪[~N/~z],ζ∪[~C/~z],∆m

and since Gm, BV , µ, [~N/~z] and

[~C/~z] are not important in the interpretation of di, we have

∆m ` tiθ ∈ JGp,−−−−−−→y : d[~p′/~q] ` di[~p′/~q]K[~t/~y]θ,ζ,∆m

By the assumptions of the lemma we know that for all i:

∆m ` piθ ∈ JGp ` PiKθ,ζ,∆m

Since ~p′ ⊆ ~p, there is a function on indices η such that p′i = pηi and
−−→
p : P `
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Qi[~p′/~q]
∗↔ Pηi . From this

JGp ` PηiKθ,ζ,∆m
= J−−→p : P ` Qi[~p′/~q]Kθ,ζ,∆m

= J−−→q : Q ` QiKθ′ ,ζ ′ ,∆mJGp,−−−−−−→y : d[~p′/~q] ` di[~p′/~q]K[~t/~y]θ,ζ,∆m
= J−−→q : Q,

−−→
y : d ` diK[~t/~y]θ′ ,ζ ′ ,∆m

where qjθ
′ = p′jθ, qjζ

′ = p′jζ.
Now, it is sufficient to use the assumption about terms that are smaller than

f(~pθ,~uθ) in (>F , (→∆ ∪�CS )stat) to get,

∆m ` g(~p′,~t)θ ∈ J−−→q : Q,
−−→
y : d ` eK[~t/~y]θ′ ,ζ ′ ,∆m

= JGp,−−−−−−→y : d[~p′/~q] ` e[~p′/~q]K[~t/~y]θ,ζ,∆m

which is equivalent to the desired conclusion:

∆m ` g(~p′,~t)(θ ∪ [~N/~z]) ∈ JGp, Gm,−−−−−−→y : d[~p′/~q], BV ` e[~p′/~q]K(µ∪[~t/~y])θ∪[~N/~z],ζ∪[~C/~z],∆m

Recursive call

∀i (ti, Gm,
−−→
x : b; ∅ ` bi, µ ∪ [~t/~x])

(f(~p,~t), Gm,
−−→
x : b; ∅ ` c, µ ∪ [~t/~x])

if Gp, G ` (~p,~u) �CSstat (~p,~t), where stat is a status of f :
−−−−→
(p : P )

−−−→
(x : b).c and �CSstat is

a stat extension of the constructor extension of �.

This case can be handled in much the same way as the previous one, the only

difference being in the decreasing argument. To use the hypothesis of our lemma

we need to know that ∆ ` ~pθ,~uθ(→∆ ∪�CS )stat~pθ,~tθ. Fortunately it can be

concluded from Gp, G ` (~p,~u) �CSstat (~p,~t) and the fact that (�CS θ) ⊆ (→∆ ∪�CS )

(see Lemma 5.4.5).

Constructor–decomposition

(c(~a′, ~N ′), Gm;BV ` s(~a)~u, µ)

(a′i, Gm;BV ` Qi[~a/~q], µ)

(c(~a′, ~N ′), Gm;BV ` s(~a)~u, µ)

(N ′i , Gm,
−−−−−−→
z : d[~a/~q];BV ` di[~a/~q], µ ∪ [~N ′/~z])

if c : (q1 : Q1) . . . (qr′ : Qr′ ).(z1 : d1) . . . (zk : dk).s(~q)w1 . . . wn is a constructor of

s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).?, if ~a are clean and if for every i

either N ′i is clean or zi 6∈ FV(di+1, . . . dk).

In this case, the desired conclusions are simple consequences of Constructor

Lemma 5.4.3 applied to

∆m ` c(~a′, ~N ′)(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` s(~a)~uKµθ∪[~N/~z],ζ∪[~C/~z],∆m

which is true by induction hypothesis.

Constructor

∀i (a′i, Gm;BV ` Qi[~a/~q], µ) ∀i (N ′i , Gm,
−−−−−−→
z : d[~a/~q];BV ` di[~a/~q], µ ∪ [~N ′/~z])

Gp, Gm, BV `CC s(~a)~u : ? Gp, G, BVµ `CC c(~a′, ~N ′) : (s(~a)~u)µ

(c(~a′, ~N ′), Gm;BV ` s(~a)~u, µ)
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if c : (q1 : Q1) . . . (qr′ : Qr′ ).(z1 : d1) . . . (zk : dk).s(~q)w1 . . . wn is a constructor of

s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).? and if FV(~a,~u) ∩ Var2 ⊆ Gp ∪ BV .

The desired conclusion is a simple consequence of Inductive Lemma 5.2.13 applied

to Gp, G, BVµ `CC c(~a′, ~N ′) : (s(~a)~u)µ and

∆m ` a′i(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` Qi[~a/~q]Kµθ∪[~N/~z],ζ∪[~C/~z],∆m

∆m ` N ′i (θ ∪ [~N/~z]) ∈ JGp, Gm,−−−−−−→z : d[~a/~q], BV ` di[~a/~q]K(µ∪[~N ′/~z])θ∪[~N/~z],ζ∪[~C/~z],∆m

that are true for all i by induction hypothesis.

Type constructor

∀i (ai, Gm;BV ` Ai, µ) ∀i (ui, Gm;BV ` Ui, µ) Gp, G, BVµ `CC s(~a)~u : ?

(s(~a)~u, Gm;BV ` ?, µ)

if s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).? ∈ T C.
We must show that ∆m ` s(~a)~u(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` ?Kµθ∪[~N/~z],ζ∪[~C/~z],∆m

.

Since interpretation of ? is just SN ∆,? it suffices that~a(θ∪ [~N/~z]) and~u(θ∪ [~N/~z])

are strongly normalizing. By the induction hypothesis we have

∆m ` ai(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` AiKµθ∪[~N/~z],ζ∪[~C/~z],∆m

∆m ` ui(θ ∪ [~N/~z]) ∈ JGp, Gm, BV ` UiKµθ∪[~N/~z],ζ∪[~C/~z],∆m

for some ~A, ~U. We complete the proof using the fact that every interpretation is

a candidate, which is a subset of strongly normalizing terms.

Product type

(A, Gm;BV ` p1, µ) (B, Gm;BV , x : C ` p2, µ)

Gp, G, BVµ, x : A `CC B : p2 Gp, G, BVµ `CC A ∗↔ Cµ

((x :A).B, Gm;BV ` p2, µ)

if p1, p2 ∈ {?,2}.
The proof is very similar to the proof of the previous case.

Reduction

(t, Gm;BV ` T , µ)

(t′, Gm;BV ` T , µ)
if t→β t

′.

The proof is immediate as the property of being an element of an interpretation

is closed under reduction.

Weak1

(t, Gm;BV ` T , µ) Gp, Gm `CC A : ?/2 Gp, G `CC M : Aµ

(t, Gm, x : A;BV ` T , µ ∪ [M/x])

if x 6∈ dom(Gm, BV ). Note that neither BV nor T depend on x. Consequently,

JGp, Gm, x : A,BV ` T K(µ∪[M/x])θ∪[~N/~z],ζ∪[C ′/x]∪[~C/~z],∆m
=JGp, Gm, BV ` T Kµθ∪[~N/~z],ζ∪[~C/~z],∆m
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(by Lemma 5.3.1) and

∆m ` t(θ ∪ [~N/~z]) ∈ JGp, Gm, x : A,BV ` T K(µ∪[M/x])θ∪[~N/~z],ζ∪[C ′/x]∪[~C/~z],∆m
.

Weak2

(t, Gm;BV ` T , µ) Gp, Gm, BV `CC A : ?/2

(t, Gm;BV , x : A ` T , µ)

if x 6∈ dom(Gm, BV ) and FV(A) ∩ Var2 ⊆ Gp, BV . The reasoning used in the

previous case applies. q

The following easy lemma will be often used in the proof of Fun Lemma.

Lemma 5.4.8 (Recursive Comparison in HORPO)

Suppose that Gp, Gl , G are environments, µl is a well-typed substitution and l, Tl
are terms satisfying:

1. FV(Tl) ∩ Var2 ⊆ Gp,
2. µl : (Gp, Gl)→ (Gp, G) such that µl |Gp= idGp ,

3. Gp, Gl `CC Tl : ?/2,

4. Gp, G `CC l : Tlµl and

For every environment ∆, well-typed substitution θ : Gp, G → ∆ and candidate

assignment ζ compatible with θ, if ∆ ` lθ ∈ JGp, Gl ` TlKµlθ,ζ,∆ and Gp, G ` l �CS t
then there exist Gt, Tt and µt such that:

1. FV(Tt) ∩ Var2 ⊆ Gp,
2. µt : (Gp, Gt)→ (Gp, G) such that µt |Gp= idGp ,

3. Gp, Gt `CC Tt : ?/2,

4. Gp, G `CC t : Ttµt and

5. ∆ ` tθ ∈ JGp, Gt ` TtKµtθ,ζ,∆.

Proof

By the definition of �CS , Gp, G ` l �CS t means that there is a term s such that

l �CS s and Gp, G ` s � t : A or s = t. By Constructor Subterm Lemma 5.4.4, for

this s there are Gs, Ts and µs satisfying properties 1 to 5 above (with Gl , Tl and

µl replaced by Gs, Ts and µs). Now, if Gp, G ` s � t : A then by the condition

(S1) from the definition of candidates ∆ ` tθ ∈ JGp, Gs ` TsKµsθ,ζ,∆. Moreover,

Gp, G `CC t : Tsµs because HORPO compares only terms of equal types. Other

properties follow immediately. q

Proof of Fun Lemma 5.4.6

Let us recall the statement of the lemma:

Let f be a function symbol of type (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).c such

that ∆ ` f(~α,~σ) : c[~α/~p,~σ/~x] holds. For every candidate assignment compatible

with [~α/~p], ζ, if

• ∆ ` αj ∈ J−−→p : P ` PjK[~α/~p],ζ,∆, for all j = 1, . . . r,

• ∆ ` σj ∈ J−−→p : P ,
−−→
x : b ` bjK[~α/~p]∪[~σ/~x],ζ,∆, for all j = 1, . . . n,

then ∆ ` f(~α,~σ) ∈ J−−→p : P ,
−−→
x : b ` cK[~α/~p]∪[~σ/~x],ζ,∆.
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The proof is done by nested induction. The first one is on (f, (~α,~σ)) ordered by

(>F , (→∆ ∪�CS )stat)lex, where stat is either mul or lex depending on the status of

f. Given ∆ ` f(~α,~σ) we will check whether all its reducts, i.e. all terms t such that

∆ ` f(~α,~σ) → t, belong to J−−→p : P ,
−−→
x : b ` cK[~α/~p]∪[~σ/~x],ζ,∆. The second induction is on

the size of the reduct. Let q be the rewriting position and Γ ` l � r : T the HORPO

judgment used to rewrite f(~α,~σ) to t.

According to the position q and the HORPO case used to prove Γ ` l � r : T ,

we distinguish the following possibilities:

1. q 6= Λ. Let us denote f(~α,~σ) by f(~d). In this case ∆ ` f(~d) → f(~t) and there

is some i such that ∆ ` di → ti and tj = dj for j 6= i. Let us denote by Di the

type (Pi or bi−r) of di. By condition (S1) from the definition of candidates we

have ∆ ` ti ∈ J−−→p : P ,
−−→
x : b ` DiK[~α/~p]∪[~σ/~x],ζ,∆. Let us denote by γi the substitution

[~α/~p]∪ [~σ/~x] with ti assigned to the ith variable. Since [~α/~p]∪ [~σ/~x] and γi are

convertible, Lemma 5.2.14 shows that ∆ ` ti ∈ J−−→p : P ,
−−→
x : b ` DiKγi,ζ,∆. By the

first induction hypothesis ∆ ` f(~t) ∈ J−−→p : P ,
−−→
x : b ` cKγi,ζ,∆ and we conclude by

Lemma 5.2.14 that ∆ ` f(~t) ∈ J−−→p : P ,
−−→
x : b ` cK[~α/~p]∪[~σ/~x],ζ,∆.

2. q = Λ. If Γ ` l � r : T is the judgment used for rewriting, then

Γ = (p1 : P1) . . . (pr : Pr), G

l = f(~l) = f(~p,~u)

lθ = f(~pθ,~uθ) = f(~α,~σ), t = rθ

where θ is a well-typed substitution from (
−−→
p : P ,G) to ∆. Let us denote by µ1

the substitution [~u/~x]. Note that [~α/~p]∪ [~σ/~x] = µ1θ. Let us also denote by Gp

the environment
−−→
p : P . We have to check all HORPO cases which could have

been used for proving Γ ` l � r : T :

(a) Case I.1: Then either t ∈ CClf(~p,~u) or Γ ` li �CS r for some i. In any case

there exist Gt, Tt and µt such that Gt, G ` t : Ttµt and ∆ ` tθ ∈ JGp, Gt `
TtKµtθ,ζ,∆ (by Lemma 5.4.7 if t ∈ CClf(~p,~u) and by Lemma 5.4.8 otherwise).

Since Gp, G ` Ttµt
∗↔ cµ1 and Tt and c are terms of the Calculus of

Constructions, Small Substitution Lemma 5.4.1 shows that J−−→p : P ,
−−→
x : b `

cKµ1θ,ζ,∆ = JGp, Gt ` TtKµtθ,ζ,∆. Hence ∆ ` t ∈ J−−→p : P ,
−−→
x : b ` cKµ1θ,ζ,∆.

(b) Case I.2: Then f >F g, g : (q1 : Q1) . . . (qr′ : Qr′ ).(y1 : d1) . . . (ym : dm).e ∈ Σ,

Γ = (p1 : P1) . . . (pr : Pr), G and

l = f(~l) = f(~p,~u), r = g(~p′, ~w)

lθ = f(~pθ,~uθ) = f(~α,~σ), t = rθ = g(~p′θ,~wθ)

We first show that every argument of g (i.e. p′iθ, wiθ) belongs to the

interpretation of its type. By the definition of HORPO we know that ~p′ ⊆~p.
This inclusion can be viewed as function on indices η such that p′i = pηi

and (p1 : P1) . . . (pr : Pr) ` Qi[~p′/~q]
∗↔ Pηi . After applying substitution θ to

~p and ~p′, we conclude that ∆ `p′iθ belongs to J−−→p : P ` PηiK[~α/~p],ζ,∆ = J−−→p : P `
Qi[~p′/~q]K[~α/~p],ζ,∆ = J−−→q : Q ` QiK[~α′/~q],ζ ′ ,∆, where α′i = αηi and qiζ

′ = pηiζ.
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We are done with ~p′θ. For ~wθ, there are three cases to consider, depending

how the original rule was accepted. For every wi we have either Γ `
f(~p,~u) � wi : T , or Γ ` uj �CS wi : bj[~u/~x] or wi ∈ CClf(~p,~u).

If Γ ` f(~p,~u) � wi : T then ∆ ` wi ∈ J−−→p : P ,
−−→
x : b ` cKµ1θ,ζ,∆ by the second

induction hypothesis, as |wiθ| is smaller than |t|. In this case let Gw =
−−→
x : b,

Tw = c and µw = µ1.

Otherwise, either by Lemma 5.4.7 or by Lemma 5.4.8 we get ∆ ` wiθ ∈JGp, Gw ` TwKµwθ,ζ,∆ for some Gw , Tw , µw such that FV(Tw) ∩ Var2 ⊆ Gp,

µw : (Gp, Gw)→ (Gp, G), µw |Gp= idGp and Gp, G ` wi : Twµw .

Since Gp, G ` Twµw ∗↔ di[~p′/~q][~w/~y] and Tw and di[~p′/~q] are terms of the

Calculus of Constructions, Small Substitution Lemma shows that JGp, Gw `
TwKµwθ,ζ,∆ = J−−→p : P ,

−−−−−−→
y : d[~p′/~q] ` di[~p′/~q]K[~w/~y]θ,ζ,∆. Moreover, by simple re-

naming J−−→p : P ,
−−−−−−→
y : d[~p′/~q] ` di[~p′/~q]K[~w/~y]θ,ζ,∆ = J−−→q : Q,

−−→
y : d ` diK[~w/~y]θ′ ,ζ ′ ,∆,

where qiθ
′ = pηiθ (ζ ′ has been defined few lines above).

Now, we can apply the first induction hypothesis (f >F g) and get ∆ `
g(~p′θ,~wθ) ∈ J−−→q : Q,

−−→
y : d ` eK[~w/~y]θ′ ,ζ ′ ,∆ = J−−→p : P ,

−−−−−→
y : [~p′/~q] ` e[~p′/~q]K[~w/~y]θ,ζ,∆.

We complete the proof of this case by noting, that J−−→p : P ,
−−−−−→
y : [~p′/~q] `

e[~p′/~q]K[~w/~y]θ,ζ,∆ = J−−→p : P ,
−−→
x : b ` cKµ1θ,ζ,∆ (again by Small Substitution

Lemma 5.4.1 using the fact that e[~p′/~q] and c are terms of the Calcu-

lus of Constructions).

(c) Case I.3: Then r = f(~p,~w), f ∈Mul and t = rθ. The proof for the previous

case still works here. The only change is in the induction argument, which

now relies on (→∆ ∪�CS )mul .

(d) Case I.4: Then r = f(~p,~w), f ∈ Lex and t = rθ. As above, the proof for

case 2(b) can be repeated here. This time the induction argument uses

(→∆ ∪�CS )lex.

(e) Case I.5: Then r = c′(~v,~r), where c′ is a constructor of an inductive type s,

t = rθ, and for every d ∈ (~v,~r):

Γ ` l � d : T or Γ ` lj �CS d for some lj or d ∈ CClf(~l)

Since Gp, G ` c′(~v,~r) : cµ1 and µ1 is small (FV(c) ∩ Var2 ⊆ Gp and

µ1|Gp = idGp), c = s(~a)~u for some~a,~u. By Inductive Lemma 5.2.13, to prove

that ∆ ` c′(~v,~r)θ ∈ J−−→p : P ,
−−→
x : b ` s(~a)~uKµ1θ,ζ,∆ it is sufficient to show

∆ ` viθ ∈ J−−→p : P ,
−−→
x : b ` Qi[~a/~q]Kµ1θ,ζ,∆

∆ ` riθ ∈ J−−→p : P ,
−−→
x : b,

−−−−−−→
z : d[~a/~q] ` di[~a/~q]K(µ1∪[~r/~z])θ,ζ,∆

provided that c′ : (q1 : Q1) . . . (qr′ : Qr′ ).(z1 : d1) . . . (zk : dk).s(~q)w1 . . . wn and

s : (q1 : Q1) . . . (qr′ : Qr′ ).(x1 : b1) . . . (xn : bn).?.

By the second induction hypothesis and Lemmas 5.4.7 and 5.4.8 we get

that every ∆ ` dθ, where d ∈ {~v,~r}, belongs to some JGp, Gd ` TdKµdθ,ζ,∆
where FV(Td) ∩ Var2 ⊆ Gp, µd : (Gp, Gd) → (Gp, G), µd |Gp= idGp and

Gp, G ` d : Tdµd.
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Since Gp, G ` Qi[~a/~p]µ1
∗↔ Tdµd for d = vi, Gp, G ` di[~a/~p](µ1 ∪ [~r/~z])

∗↔
Tdµd for d = ri and all Qi[~a/~p], di[~a/~p], Td are terms of the Calculus

of Constructions, we get the desired assertions by the Small Substitution

Lemma.

(f) Case I.6: Then

r = r̂1 r̂2, @(r0, r1, . . . rm) is a left flattening of r

t = r̂1θ r̂2θ = t̂1 t̂2, @(t0, t1, . . . tm) = @(r0θ, r1θ, . . . rmθ)

By the definition of HORPO, we know that for every ri, i > 1, either

Γ ` f(~p,~u) � ri : T , or Γ ` uj �CS ri : bj[~u/~x] or ri ∈ CClf(~p,~u).

In all cases, ∆ ` riθ ∈ JGp, Gri ` TriKθ(µri ),ζ,∆
for some Gri , Tri , µri such

that FV(Tri ) ∩ Var2 ⊆ Gp µri : (Gp, Gri ) → (Gp, G), µri |Gp= idGp and

Gp, G ` ri : Triµri (the reasoning is exactly the same as in case (b)).

Let us now examine r0. By the definition of HORPO either Γ ` f(~p,~u) �
r0 : T or pj = r0 or Γ ` uj �CS r0. In any case, this implies, that

∆ ` r0θ ∈ J−−→p : P ,
−−→
x : b ` Tr0Kµ1θ,ζ,∆ (Tr0 equal to some P , b or c).

It’s clear that the type of r0 is functional, and in consequence, that Tr0
is convertible with a product (y1 : A1) . . . (ym : Am).B. Please recall that ~y

are subject to several restrictions as @(r0, r1, . . . rm) satisfy the application

condition 3.2.1. These restrictions ensure that for every z ∈ (FV(~A, B) ∩
Var2), we have either z ∈~p or z = yi such that ri ∈~p.
Let us denote by µ2 the substitution [~u/~x] ∪ [~r/~y] and by ζ2 the candidate

assignment defined by xζ2 = xζ for x ∈ Gp and xζ2 = pζ for x = yi such

that ri = p. Note, that µ2θ = [~α/~p] ∪ [~σ/~x] ∪ [~t/~y].

By the strong version of Small Substitution Lemma 5.4.2, the interpretationJGp, Gri ` TriKµri θ,ζ,∆
is equal to J−−→p : P ,

−−→
x : b,

−−→
y : A ` AiKµ2θ,ζ2 ,∆

as Ai, Tr are terms of the Calculus of Constructions,
−−→
p : P ,G ` Triµri ∗↔

Aiµ2 and zµ2 ∈~p for every z ∈ FV(~A) ∩ Var2 .

By the definition of the interpretation of a product type we get

∆ `@(t0, t1, . . . tm) ∈ J−−→p : P ,
−−→
x : b,

−−→
y : A ` BKµ2θ,ζ2 ,∆

and again by Lemma 5.4.2 we conclude that

∆ `@(t0, t1, . . . tm) ∈ J−−→p : P ,
−−→
x : b ` cKµ1θ,ζ,∆

Since @(t0, t1, . . . tm) = @(t̂1, t̂2), this completes the proof of this case and

of this lemma. q

5.5 Main theorem

This subsection presents the main lemma of the paper stating that every term

belongs to the interpretation of its type; as a corollary we get the theorem that every

term is SN .
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Definition 5.5.1 (Validity of substitutions)

Given a well-typed substitution ρ : Γ→ ∆ and a candidate assignment ξ compatible

with ρ we say that ρ is valid with respect to ξ, if for every x ∈ dom(Γ) we have

∆ ` xρ ∈ JΓ ` Γ(x)Kρ,ξ,∆. We write Jρ, ξK : Γ → ∆ whenever ρ : Γ → ∆, ξ is

compatible with ρ and ρ is valid with respect to ξ.

Lemma 5.5.2 (Main Lemma)

Let Γ be environment and M, A terms such that Γ ` M : A. Then for every

environment ∆ and Jρ, ξK : Γ→ ∆ we have ∆ `Mρ ∈ JΓ ` AKρ,ξ,∆.

Proof

Induction on the derivation of Γ `M : A.

(ax)

` ? : 2

This case is obvious, because ?ρ = ? and JΓ ` 2Kρ,ξ,∆ = SN2,∆.

(var)

Γ ` a : p

Γ, x : a ` x : a
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

We have ∆ ` xρ ∈ JΓ, x : a ` aKρ,ξ,∆ by the definition of Jρ, ξK : (Γ, x : a)→ ∆.

(weak)

Γ ` a : b Γ ` c : p

Γ, x : c ` a : b
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

and we have to show that for Jρ, ξK : (Γ, x : c) → ∆, ∆ ` aρ ∈ JΓ, x : c ` bKρ,ξ,∆
holds.

By induction hypothesis, for every ∆′ and every ρ′, ξ′ such that Jρ′, ξ′K : Γ→ ∆′
we have ∆′ ` aρ′ ∈ JΓ ` bKρ′ ,ξ′ ,∆′ . If we show that Jρ, ξK : Γ → ∆ then we get

∆ `aρ ∈ JΓ ` bKρ,ξ,∆ and, by Lemma 5.3.1, ∆ `aρ ∈ JΓ, x : c ` bKρ,ξ,∆.

Let us verify that Jρ, ξK : Γ → ∆. We have to prove that for every y ∈ dom(Γ),

∆ ` yρ ∈ JΓ ` Γ(y)Kρ,ξ,∆. We know, from Jρ, ξK : (Γ, x : c) → ∆, that for every

y ∈ dom(Γ), ∆ ` yρ ∈ JΓ, x : c ` (Γ, x : c)(y)Kρ,ξ,∆. As Γ(y) = (Γ, x : c)(y) andJΓ ` (Γ, x : c)(y)Kρ,ξ,∆ = JΓ, x : c ` (Γ, x : c)(y)Kρ,ξ,∆ by Lemma 5.3.1, the proof of

this case is finished.

(const)

∀i Γ ` ai : bi[a1/x1, . . . , ai−1/xi−1]

Γ ` e(a1, . . . , an) : c[a1/x1, . . . , an/xn]
(e : (x1 : b1) . . . (xn : bn).c ∈ Σn)

This case has three subcases, for s ∈ T C, c ∈ CS , f ∈ F .

Inductive type Let us start by specializing the typing rule to an inductive type s of

type (p1 : P1) . . . (pr : Pr).e, with e = (x1 : b1) . . . (xn : bn).?.

∀i Γ ` ai : Pi[~a/~p]

Γ ` s(a1, . . . ar) : e[~a/~p]

We have to prove that ∆ ` s(~aρ) ∈ JΓ ` e[~a/~p]Kρ,ξ,∆, assuming that ∆ ` aiρ ∈ JΓ `
Pi[~a/~p]Kρ,ξ,∆ holds for all ai.
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We will show a more general property namely, that for every (∆1 `d1, C1), . . . (∆n `
dn, Cn), if ∆ = ∆0 ⊆ ∆1 . . . ⊆ ∆n and for every j = 1, . . . n, ∆j ` dj ∈ JΓ,−−→x : b `
bj[~a/~p]Kρ∪[~d/~x],ξ∪[~C/~x]|∆j ,∆j and Cj = ∅ if dj ∈ Obj and Cj ∈ C∆j ,dj otherwise, then for

every i = 1, . . . n we have ∆i ` s(~aρ)d1, . . . di ∈ JΓ,−−→x : b ` (xi+1 : bi+1[~a/~p]) . . . (xn :

bn[~a/~p]).?Kρ∪[~d/~x],ξ∪[~C/~x]|∆i ,∆i .

The proof is done by induction on i decreasing from n down to 0.

For i = n, the claim is obviously true, as the interpretation of ? is equal to

SN ∆n,? and we know by definition of interpretation that ~aρ and ~d are strongly

normalizing.

Now, let us prove the claim for i − 1, supposing that it holds for i > 0.

Let us denote by T the type (xi+1 : bi+1[~a/~p]) . . . (xn : bn[~a/~p]).? and suppose

that bi is a kind (for bi a type the proof is similar). We have to show that

∆i−1 ` s(~aρ)d1, . . . di−1 ∈ JΓ,−−→x : b ` (xi : bi[~a/~p]).T Kρ∪[~d/~x],ξ∪[~C/~x],∆i−1 . By the defini-

tion of interpretation, JΓ,−−→x : b ` (xi : bi[~a/~p]).T Kρ∪[~d/~x],ξ∪[~C/~x],∆i−1 equals to the set

{∆′ `M | ∆′ ` M : ((xi : bi[~a/~p]).T )ρ ∪ [~d/~x], ∆′ ⊆ ∆i−1, and ∀∆′′ ⊆ ∆′, ∀∆′′ `
A ∈ JΓ,−−→x : b ` bi[~a/~p]Kρ∪[~d/~x],(ξ∪[~C/~x])|∆′′ ,∆′′ , ∀D ∈ C∆′′ ,A, ∆′′ `MA ∈ JΓ,−−→x : b `
T K

ρ∪[~d/~x]∪[A/x],(ξ∪[~C/~x]∪[D/x])|∆′′ ,∆′′ } A direct application of the induction hypothesis

shows that s(~aρ)d1, . . . di−1 belongs to the set described above.

Constructor As in the previous subcase, let us start by specializing the typing rule for

c of type (p1 : P1) . . . (pr : Pr).(z1 : d1) . . . (zk : dk).s(~p)w1 . . . wn, c being a constructor

of an inductive type s : (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).?.

∀i Γ ` ai : Pi[~a/~p] ∀j Γ ` tj : dj[~a/~p,~t/~z]

Γ ` c(~a,~t) : s(~a)w1[~a/~p,~t/~z], . . . wn[~a/~p,~t/~z]

We have to show that ∆ ` c(~aρ, ~tρ) ∈ JΓ ` s(~a)−−−−−−−→w[~a/~p,~t/~z]Kρ,ξ,∆, assuming that

∆ ` aiρ ∈ JΓ ` Pi[~a/~p]Kρ,ξ,∆ for all ai and ∆ ` tjρ ∈ JΓ ` dj[~a/~p,~t/~z]Kρ,ξ,∆ for all tj .

Since JΓ ` dj[~a/~p,~t/~z]Kρ,ξ,∆ = JΓ,−−−−−−→z : d[~a/~p] ` dj[~a/~p]Kρ∪[~tρ/~z],ξ,∆, by Lemma 5.3.2,

we complete the proof by applying the composition case of Lemma 5.2.13.

Function The rule for function symbols is exactly the same as for constructors. If

f : (p1 : P1) . . . (pr : Pr).(x1 : b1) . . . (xn : bn).c then it is as follows:

∀i Γ ` ai : Pi[~a/~p] ∀j Γ ` tj : bj[~a/~p,~t/~x]

Γ ` f(~a,~t) : c[~a/~p,~t/~x]

But the proof that ∆ ` f(~aρ, ~tρ) ∈ JΓ ` c[~a/~p,~t/~x]Kρ,ξ,∆ is completely different

from the previous one, because a function symbol headed term may rewrite.

By induction hypothesis we know that ∆ ` aiρ ∈ JΓ ` Pi[~a/~p]Kρ,ξ,∆ for all ai
and ∆ ` tiρ ∈ JΓ ` bi[~a/~p,~t/~x]Kρ,ξ,∆ for all ti. By Lemma 5.3.2, we know also

that JΓ ` Pi[~a/~p]Kρ,ξ,∆ = J−−→p : P ` PiK[~aρ/~p],[
−−−−−−→JΓ`aKρ,ξ,∆/~p],∆ and JΓ ` bi[~a/~p,~t/~x]Kρ,ξ,∆ =J−−→p : P ,

−−→
x : b ` biK[~aρ/~p,~tρ/~x],[

−−−−−−→JΓ`aKρ,ξ,∆/~p],∆.

We can now apply the Fun Lemma (with α = aρ, σ = tρ and ζ = [
−−−−−−−→JΓ ` aKρ,ξ,∆/~p])
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to obtain ∆ ` f(~aρ, ~tρ) ∈ J−−→p : P ,
−−→
x : b ` cK

[~aρ/~p,~tρ/~x],[
−−−−−−→JΓ`aKρ,ξ,∆/~p],∆. We conclude by

Lemma 5.3.2 that ∆ ` f(~aρ, ~tρ) ∈ JΓ ` c[~a/~p,~t/~x]Kρ,ξ,∆.

(abs)

Γ, x : a ` b : c Γ ` (x :a).c : p

Γ ` λx :a.b : (x :a).c
(x 6∈ dom(Γ), p ∈ {?,2})

We will do the proof only for the case when a is a kind.

We have to check that ∆ ` λx : aρ.bρ ∈ JΓ ` (x : a).cKρ,ξ,∆. By the definition

of interpretations, it is equivalent to verifying that ∀∆′′ ⊆ ∆, ∀∆′′ ` N ∈ JΓ `
aKρ,ξ|∆′′ ,∆′′ , ∀C ∈ C∆′′ ,N , ∆′′ ` (λx :aρ.bρ)N ∈ JΓ, x : a ` cKρ∪[N/x],ξ|∆′′ ∪[C/x],∆′′ .

By induction hypothesis we know that for every ρ′, ξ′ such that Jρ′, ξ′K : (Γ, x :

a)→ ∆′′ we have ∆′′ `bρ′ ∈ JΓ, x : a ` cKρ′ ,ξ′ ,∆′′ . Let us take:

ρ′ = ρ ∪ [N/x], ξ′ = ξ|∆′′ ∪ [C/x]

If these ρ′ and ξ′ are compatible, then we have ∆′′ ` b(ρ ∪ [N/x]) ∈ JΓ, x : a `
cKρ∪[N/x],ξ|∆′′ ∪[C/x],∆′′ . Hence, ∆′′ ` (λx : aρ.bρ)N ∈ JΓ, x : a ` cKρ∪[N/x],ξ|∆′′ ∪[C/x],∆′′ by

Lemma 5.1.6 (N ∈ SN by assumption and aρ ∈ SN by induction hypothesis).

We are left to check whether Jρ′, ξ′K : (Γ, x : a)→ ∆′′, i.e. ∆′′ `yρ′ ∈ J(Γ, x : a) `
(Γ, x : a)(y)Kρ′ ,ξ′ ,∆′′ for all y ∈ dom(Γ, x : a). If y = x then ∆′′ `N ∈ JΓ, x : a ` aKρ′ ,ξ′ ,∆′′
is a consequence of applying Lemma 5.3.1 to ∆′′ `N ∈ JΓ ` aKρ,ξ|∆′′ ,∆′′ . If y 6= x thenJρ, ξK : Γ → ∆ implies ∆ ` yρ ∈ JΓ ` Γ(y)Kρ,ξ,∆. To deduce ∆′′ ` y(ρ ∪ [N/x]) ∈JΓ, x : a ` (Γ, x : a)(y)Kρ∪[N/x],ξ|∆′′ ∪[C/x],∆′′ it is sufficient to note that:

• ∆′′ ` yρ ∈ JΓ ` Γ(y)Kρ,ξ|∆′′ ,∆′′ because, by the definition of restriction, we haveJΓ ` Γ(y)Kρ,ξ|∆′′ ,∆′′ = (JΓ ` Γ(y)Kρ,ξ,∆)|∆′′ ,
• JΓ ` Γ(y)Kρ,ξ|∆′′ ,∆′′ = JΓ, x : a ` (Γ, x : a)(y)Kρ∪[N/x],ξ|∆′′ ∪[C/x],∆′′ , from Lemma

5.3.1 and because x 6∈ Γ(y).

(prod)

Γ ` a : p Γ, x : a ` b : q

Γ ` (x :a).b : q
(x 6∈ dom(Γ), p, q ∈ {?,2})

We have to check that ∆ ` (x :aρ).bρ ∈ JΓ ` qKρ,ξ,∆. Note that JΓ ` qKρ,ξ,∆ = SN ∆,q ,

as q = ? or q = 2. Trivially ∆ ` (x :aρ).bρ : q. We have also ∆ ` (x :aρ).bρ ∈ SN ∆,

because, by induction hypothesis, ∆ `aρ ∈ SN ∆,p, and ∆, x : aρ `bρ ∈ SN (∆,x:aρ),q .

(app)

Γ ` a : (x :b).c Γ ` d : b

Γ ` a d : c[d/x]

We will do the proof only for the case when b is a kind.

By induction hypothesis, we know that ∆ ` aρ ∈ JΓ ` (x : b).cK∆,ξ,ρ and ∆ `
dρ ∈ JΓ ` bK∆,ξ,ρ. By the definition of the interpretation of a product type, we get

∆ ` aρ dρ ∈ JΓ, x : b ` cKρ∪[dρ/x],ξ∪[JΓ`dKρ,ξ,∆/x],∆ and by applying Lemma 5.3.2 we

conclude that ∆ `aρ dρ ∈ JΓ ` c[d/x]Kρ,ξ,∆.
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(conv)

Γ ` a : b Γ ` b′ : p

Γ ` a : b′
(p ∈ {?,2} and Γ ` b ∗↔ b′)

The conclusion follows from the induction hypothesis (∆ ` aρ ∈ JΓ ` bKρ,ξ,∆) and

Lemma 5.3.4 by which JΓ ` bKρ,ξ,∆ = JΓ ` b′Kρ,ξ,∆. q

Theorem 2

Every term of CC+H is strongly normalizing.

Proof

The term 2 is obviously strongly normalizing. For every other term M there are Γ

and A such that Γ `M : A and we will use Lemma 5.5.2 to show that it is strongly

normalizing.

Let’s take an identity substitution ρid : Γ → Γ and a canonical candidate

assignment ξcan:

xρid = x for all x ∈ dom(Γ)

xξcan = canΓ,x for all x ∈ dom(Γ) ∩ Var2
where canonical candidates are defined in Lemma 5.1.5

These ρid and ξcan trivially satisfy Jρid, ξcanK : Γ → Γ. Hence, by Lemma 5.5.2,

Γ `M ∈ JΓ ` AKρid,ξcan,Γ. It completes the proof, as every interpretation is a candidate

and every candidate is a subset of the set of strongly normalizing terms. q

6 CC + R – Calculus of Constructions with rewriting generated by user-defined

rules

In the previous sections we have proved that the Calculus of Constructions with

rewriting defined by HORPO is terminating. But in practice, we do not want to

consider all HORPO. We have instead some user-defined rules and we want to be

sure that the Calculus of Constructions with the conversion enriched by the rewrite

relation induced by these rules is terminating. For a given term rewriting system R,

let us call such a system CC+R. In this section we will show, that for the rules

orientable by HORPO, CC+R is terminating.

Of course, we suppose that the rewrite rules come together with the signature

containing all constants with their arities and types and that this signature is

well-formed according to Definition 2.4.3 (the latter condition can be checked

automatically).

The form of the rules must correspond to the form expected by HORPO. The

general and quite standard condition is that the left-hand and right-hand sides (l, r)

have the same type in the environment consisting of the free variables of l and r.

Additionally, the left-hand side must start with a function symbol and its parameter

arguments must be distinct variables.

Definition 6.0.3 (Rule and term rewriting system)

A rule is a quadruple (G, l, r, T ) where:

1. G `CC l : T and G `CC r : T ,
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2. l = f(~p,~a) and G = (p1 : P1) . . . (pr : Pr), G
′, provided f ∈ F (r,n) and f : (p1 :

P1) . . . (pr : Pr)(x1 : b1) . . . (xn : bn).c ∈ Σ.

The rules are written as G ` l → r : T . A term rewriting system is simply a set of

rules.

Definition 6.0.4 (CC+R)

Given a term rewriting system R, the system CC+R is defined just like CC+H, with

two exceptions. In case (rew) we use rules of R instead of HORPO judgments, and

consequently in case (conv) we replace →H by →R .

(rew)
G ` l → r : T ∈ R a|p = lθ θ : G→ Γ,PV(a, p)

Γ ` a[lθ]p →R a[rθ]p

(conv)

Γ ` a : b Γ ` b′ : p

Γ ` b(→β ∪ →R)∗b′ or Γ ` b′(→β ∪ →R)∗b
Γ ` a : b′

(p ∈ {?,2})
Just like in the case of CC+H, we write Γ ` a→R∪β b for any of Γ ` a→R b and

a→β b. We denote by
∗→Γ
R∪β the reflexive, transitive closure of →Γ

R∪β , and by
∗↔Γ
R∪β

the conversion relation of CC+R.

Lemma 6.0.5

Given a term rewriting system R, if there is a precedence and status such that every

rule Γ ` l → r : T ∈ R verifies Γ ` l � r : T then the following statements hold:

1. every term of CC+R is a term of CC+H,

2. the reduction relation is richer in CC+H than in CC+R (→Γ
R∪β ⊆ →Γ),

3. the conversion relation is richer in CC+H than in CC+R (
∗↔Γ
R∪β ⊆ ∗↔Γ),

4. the strong normalization of CC+H implies the strong normalization of CC+R.

7 On the star dependency condition

This section provides an explanation for imposing star dependency (see Defini-

tion 2.4.1) on function and constructor symbols, and parametricity (see Defini-

tion 3.1.1) on HORPO judgments.

7.1 Star dependency, parametricity and HORPO

In our paper, the general condition imposed on the left-hand side of HORPO

judgments and rewrite rules comes in two parts: star dependency and parametricity

conditions. Both these conditions follow from the proof of the Fun Lemma. In this

proof we need to know that, if the left-hand side of the rewrite rule starts with

a function symbol f, then all meaningful type arguments of f must be different

variables (where the ith argument is meaningful for f :
−−−→
(x : b).c if xi appears

somewhere in c or bj for j > i). The role of the star dependency condition is to

find those meaningful arguments (they are included in parameters) and the role of

parametricity condition is to ensure that they are distinct variables (all parameter

arguments must be distinct variables).
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Let us see with an example that these conditions are important; let

J : (A : ?)(B : ?)A→ B → A have a rule

J(X, X, a, b)→ b

The arguments on parameter positions are not distinct variables, therefore star

dependency is not satisfied. But let us try to use this rule in the Fun Lemma.

In the proof of the Fun Lemma, by the hypothesis about arguments of J we would

know that a belongs to the interpretation of A (∆ ` a ∈ JΓ ` AKρ,ξ,∆), b belongs to

the interpretation of B (∆ ` b ∈ JΓ ` BKρ,ξ,∆) and ρ satisfies Aρ = Bρ = X. The goal

would be to prove that J(X, X, a, b) belongs to the interpretation of A and we

would try to do it by showing that b – the only reduct of J(X, X, a, b) – belongs

to this interpretation. But this could not be done, since the information that ∆ `
b ∈ JΓ ` BKρ,ξ,∆ = Bξ in general would not imply that ∆ ` b ∈ JΓ ` AKρ,ξ,∆ = Aξ,

because the candidate Aξ may be different from Bξ even if Aρ = Bρ.

We would therefore not succeed to do the proof of the Fun Lemma, because the

fact that the right-hand side is of adequate type (b is of type X) would not be

enough here.

Looking at the type of J , (A : ?)(B : ?)A → B → A, we see that the second

argument, B, is the type of the fourth one, and the first argument, A, is the type of

the result.

In our rule J(X, X, a, b) → b, both A and B are substituted by X, and this

is why we can return the fourth argument, b, as a result. We can say that b is of

adequate type only “accidentally”. And it turns out that this coincidence leads to

nontermination, as shown below.

Let U = (β :?).β → β and let us define the term c of type U:

c = λβ :?.λx :β.J(β, U → U, x, t)

where t = λz :U.(z (U → U) (λx :U.x) z).

Consider now the term c (U → U) (λx :U.x) c of type U.

c (U → U) (λx :U.x) c→∗β
J(U → U, U → U, λx :U.x, t) c→

t c→β c (U → U) (λx :U.x) c→ . . .

So, we have found a nonterminating reduction sequence.

The example of the function symbol J and its rule derives from the one presented

by Girard (1971); it was shown to the author by Christine Paulin.

The conclusion is that even very simple rules that do not have distinct variables

as meaningful type arguments may lead to nontermination.

Now, let us briefly discuss the difference between linearity and the requirement

that arguments on parameter positions are distinct variables. First, let

f : (n : nat)(List n)→ (m : nat)(List m)→ List n have a rule

f(n, l1, n, l2)→ l2
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This rule is nonlinear, but f has no parameters. It is a valid rewrite rule and it is

accepted by HORPO. Let now

f : (A : ?)A→ A→ A have a rule

f(A, a, f(A, b, c))→ a

From the type of f it follows that the first argument must be a parameter. In

this rule we have two occurrences of A on parameter positions, but they appear in

different function calls. Consequently, it is a valid rule accepted by HORPO. Finally,

let

f : (A : ?)(a : A)(n : nat)→ A have a rule

f(nat, a, n)→ n

The rule is linear, but is not accepted, because f must have at least one parameter

and, consequently, the first argument of f should be a variable (in fact if we try to

do the proof of the Fun Lemma with this rule, we will encounter the same problems

as for the rule J(X, X, a, b)→ b).

Therefore, star dependency condition is not equivalent to linearity of parameter

variables.

7.2 Star dependency and inductive types

The star dependency condition on constructors is needed to define the interpretation

of inductive types.

In our framework, the interpretation of inductive types has to be defined in such a

way that the reducibility of the constructor headed term c(~u) implies the reducibility

of every u. To see this, consider the elimination rule for natural numbers:

natdep(P , z, f, s(n))→@(f, n, natdep(P , z, f, n))

During the proof that natdep(P , z, f, s(n)) belongs to the interpretation of its type, I ,

one assumes that P , z, f and s(n) belong to the interpretations of their types, and

tries to show that every reduct of natdep(P , z, f, s(n)) belongs to I .

The fact that @(f, n, natdep(P , z, f, n)) ∈ I can be obtained only by analyzing its

direct subterms and combining interpretations to which they belong. In particular

in our example, we are led to the problem how to deduce that n belongs to the

interpretation of its type from the hypothesis that so does s(n). In other words,

we want to know that “reaching under a constructor” is a safe operation from the

reducibility point of view.

In the definition of the interpretation of the inductive type s, if a constructor

headed term c(~a′, ~N) belongs to this interpretation, then every a′j and Nj must belong

to a certain, explicitly written interpretation. More precisely, if s : (p1 : P1) . . . (pr :

Pr).(x1 : b1) . . . (xn : bn).? and c : (p1 : P1) . . . (pr : Pr).(z1 : d1), . . . (zk : dk).s(~p)w1 . . . wn,

then a′j must belong to the interpretation of Pj , and Nj to the interpretation

of dj . Since Pj and dj may have big free variables, defining their interpretations

requires an adequate candidate assignment. Candidates assigned to big parameters
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are just candidates corresponding to parameters of s and they are given. But how

to get candidates for big non-parameter variables, that would not contradict the

well-foundedness of the definition of interpretation? In particular, assigning the

interpretation of Ni to zi ∈ Var2 is no good, because the interpretation of Ni may

not be defined yet.

Summarizing, we know how to define the interpretation of an inductive type if

every input type of its constructor depends only on those big variables that are

parameters. And this is exactly what the star dependency condition states.

In the literature, there are other proofs of strong normalization for calculi which

contain the Calculus of Constructions and inductive types with their elimination

rules (traditionally, small elimination is an object-level rewriting rule and large (or

strong) elimination is a type-level rule). In the two examples that we know (Werner,

1994; Stefanova, 1999), there is no additional restriction (apart from positivity) on

types of constructors in order to define the interpretation of inductive types. But

neither of the authors needed to safely reach under a constructor.

In (1994) Benjamin Werner defines the interpretation of inductive types so as to

have small elimination for free, and he can do so because eliminations are the only

rewriting rules in his system.

The definition of interpretation of inductive types, presented by Milena Stefanova

in (1999), resembles very much to ours, but instead of giving explicitly the candidate

assignment and interpretations to which belong immediate subterms of a constructor

headed term, the author assumes only that an adequate candidate assignment exists.

This is sufficient for small elimination (and in fact we could do it as well), but it is

not enough for reaching under a constructor, which seems necessary when we have

not only eliminations but also other rules as we do.

On the other hand, it turns out that in both papers (Werner, 1994; Stefanova,

1999) large elimination requires an additional condition on types of constructors. In

Werner (1994), constructors must be small, i.e. every argument of a constructor must

be either a parameter or an object, and in Stefanova (1999), the type of constructors

must satisfy the safeness condition, which allows a little bit more inductive types

than the small constructors condition.

Both conditions, that is small constructors and safeness, are strictly stronger than

the star dependency, which is not surprising, since large elimination is much more

powerful than reaching under a constructor (in our framework, even if we can reach

to some big term N, we cannot return this N as a result – the right-hand side of a

rewrite rule – because we consider only object-level rewriting).

To conclude, we think that reaching under a constructor in the context of the

object-level rewriting is something between small and large eliminations and star

dependency is the necessary condition which makes it possible.

8 Examples

Before we give some examples of dependently typed rules, let us mention the fact

that all positive examples given in Jouannaud & Rubio (1999) are also accepted by

our HORPO.
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In the examples below, for the sake of clarity we resigned from parentheses after

type constructors (we write List A and not List(A)). We also omit types in HORPO

judgments, whenever they are clear form the context.

Example 10 (Dependent elimination on natural numbers)

Let natdep : (P : nat → ?)(u : P 0)(v : (n : nat)(P n) → (P s(n)))(m : nat)(P m) ∈
F (1,3) have the multiset status and let us denote by Γ the environment:

P : nat→ ?, z : P 0, f : (n : nat)(P n)→ (P s(n)), n : nat

Consider the rules:

Γ ` natdep(P , z, f, 0)→ z : P 0

Γ ` natdep(P , z, f, s(n))→@(f, n, natdep(P , z, f, n)) : P s(n)

The first rule is easily oriented by case I.1 of HORPO, as z is an immediate

subterm of the left-hand side of the rule.

To verify the second rule, we first use case I.6 of HORPO and we are left to show

that Γ ` f �CS f, Γ ` s(n) �CS n and natdep(P , z, f, n) ∈ CClnatdep (P , z, f, s(n)). Case

I.6 is applicable because AppCon(Γ `@(f, n, natdep(P , z, f, n))) holds (as Γ ` f : (n :

nat)(P n)→ (P s(n)) and nat and (P n) are of type ?).

The first two inequalities are trivial. Let us detail the proof of natdep(P , z, f, n) ∈
CClnatdep (P , z, f, s(n)). By the definition of the initial set the tuples

(P , ∅; ∅ ` nat→ ?, [P/P ])

(z, ∅; ∅ ` P 0, [P/P ])

(f, u : P 0; ∅ ` (n : nat)(P n)→ (P s(n)), [P/P , z/u])

(s(n), u : P 0, v : (n : nat)(P n)→ (P s(n)); ∅ ` nat, [P/P , z/u, f/v])

are in CClnatdep (P , z, f, s(n)). By applying Constructor–decomposition to the last tuple,

we get another tuple in the computable closure, namely:

(n, u : P 0, v : (n : nat)(P n)→ (P s(n)); ∅ ` nat, [P/P , z/u, f/v])

Now we can apply Recursive call to obtain:

(natdep(P , z, f, n), u : P 0, v : (n : nat)(P n)→ (P s(n)), m : nat; ∅ ` P m, γ)

where γ = [P/P , z/u, f/v, n/m]. The use of this rule is justified, because Γ `
(P , z, f, s(n)) �CSmul (P , z, f, n) (as Γ ` s(n) �CS n). Since natdep(P , z, f, n) and P m

are clean we conclude that natdep(P , z, f, n) ∈ CClnatdep (P , z, f, s(n)).

Note that we could not compare natdep(P , z, f, s(n)) with natdep(P , z, f, n) by case

I.3 of HORPO, because these terms have different types (P s(n) and P n).

Example 11 (Dependent elimination on lists)

Let listdep : (A : ?)(P : (List A) → ?)(P nil(A)) → ((a : A)(l : List A)(P l) →
(P cons(A, , a, l))) → (l : List A)(P l) be a symbol with two parameters and the

multiset status.
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Let us denote by Γ the environment:

A : ?, P : List A→ ?, f1 : P nil(A),

f2 : (a : A)(l : List A)(P l)→ (P cons(A, a, l)), a : A, l : (List A)

and let us consider the rules:

Γ ` listdep(A, P , f1, f2, nil(A)) → f1 : P nil(A)

Γ ` listdep(A, P , f1, f2, cons(A, a, l))

→ @(f2, a, l, listdep(A, P , f1, f2, l)) : P cons(A, a, l)

The first rule is easily oriented, as f1 is an immediate subterm of the left-hand side

of the rule (case I.1 of HORPO).

To verify the second rule, we first use case I.6 of HORPO and we are left to

show that Γ ` f2 �CS f2, Γ ` cons(A, a, l) �CS l, Γ ` cons(A, a, l) �CS a and

listdep(A, P , f1, f2, l) ∈ CCl listdep (A, P , f1, f2, cons(A, a, l)). The application condition

holds, since Γ ` f2 : (a : A)(l : List A)(P , l)→ (P cons(A, a, l)) and A, List A and

(P l) are of type ?.

The first two inequalities are trivial. In the third one we really use the construc-

tor part of �CS , since cons(A, a, l) and a have different types. Note that it is

the only way to limit this a, as there are no immediate subterms of the left-hand

side listdep(A, P , f1, f2, cons(A, a, l)) of type A. To get the fourth assertion, we first

decompose the constructor cons, to get a, l ∈ CCl listdep (A, P , f1, f2, cons(A, a, l)),

and then apply listdep to its arguments (it is possible, as (P , f1, f2, l) is smaller

than (P , f1, f2, cons(A, a, l)) in �CSmul). Note that, like in the previous example, we

could not compare the whole left-hand side listdep(A, P , f1, f2, cons(A, a, l)) with

listdep(A, P , f1, f2, l) by case I.3 of HORPO.

Example 12 (fold left and fold right on lists with length)

Let us take the following inductive definition:

Ind[A : ?](LList : nat→ ? := Lnil : LList 0,

Lcons : (n : nat)A→ LList n→ LList s(n))

and suppose that fold left , fold right : (A : ?)(B : ?)(A → B → B) → (n :

nat)(LList A n)→ B → B ∈ F (2,4) have lexicographic status.

Let us denote by Γ the environment

A : ?, B : ?, f : A → B → B, a : A, n : nat, l : LList A n, x : B

and let us consider the rules:

Γ ` fold left(A,B, f, 0, Lnil(A, 0), x) → x : B

Γ ` fold left(A,B, f, s(n), Lcons(A, s(n), a, l), x)

→ fold left(A,B, f, n, l,@(f, a, x)) : B

Γ ` fold right(A,B, f, 0, Lnil(A, 0), x) → x : B

Γ ` fold right(A,B, f, s(n), Lcons(A, s(n), a, l), x)

→ @(f, a, fold right(A,B, f, n, l, x)) : B

The first rules of fold left , fold right are trivially accepted by case I.1 of HORPO.
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To orient the second rule of fold left we use the case lex (I.4) of HORPO and we

are led to show Γ ` s(n) �CS n, Γ ` Lcons(A, s(n), a, l) �CS l, which are obvious

and Γ ` fold left(A,B, f, s(n), Lcons(A, s(n), a, l), x) �@(f, a, x) : B that can be done

by case I.6. The second rule of fold right may be handled in a similar way as the

second rule of elimination on lists.

Example 13 (Membership in a list)

Given an element a and a list l, the result of the mem function will be the proof

that a is in l or the proof that every element of l is different from a. To formalize

this we need to introduce inductive types representing disjunction, equality, false,

membership and verification of a predicate by all elements of the list. The type ∼A
stands for A→ False.

Ind[A : ?, B : ?](Or : ? := left : A→ Or, right : B → Or)

Ind[A : ?, x : A](Eq : A→ ? := refl eq : Eq x)

Ind[ ](False : ? := )

Ind[A : ?, a : A](In : (List A)→ ? :=

in hd : (l : (List A))(In cons(A, a, l)),

in tl : (l : (List A))(b : A)(In l)→ (In cons(A, b, l))

Ind[A : ?, P : A→ ?](AllS : (List A)→ ? :=

allS nil : (AllS nil(A)),

allS cons : (a : A)(l : (List A))(P a)→ (AllS l)→ (AllS cons(A, a, l)))

Let eq ind, mem and if have the following types:
eqind : (A : ?)(a : A)(P : A→ ?)(b : A)(Eq A a b)→ (P a)→ (P b) ∈ F (3,3),

mem : (A : ?)(a : A)→ ((c, d : A)(Or (Eq A c d) (∼ Eq A c d)))→
(l : (List A))(Or (In A a l) (AllS A (λx :A. ∼ Eq A a x) l)) ∈ F (1,3),

if : (A : ?)(a, b : A)(l : List A)→ (Or (Eq A a b)(∼ Eq A a b))→
(Or (In A a l) (AllS A (λx :A. ∼ Eq A a x) l))→ (Or (In A a

cons(A, b, l)) (AllS A (λx :A. ∼ Eq A a x) cons(A, b, l))) ∈ F (1,5)

And let us consider the rules (all given in the environment Γ):

Γ ≡ A : ?, x : A, P : A→ ?, h : (Eq A x x), eqDec : (c, d : A)(Or (Eq A c d)

(∼ Eq A c d))), b : A, l : List A, dl : Ψ, dr : ∼ Ψ, i : (Or Φ3, Υ3), el : Φ3, er : Υ3

1. Γ ` eqind(A, x, P , x, h, p)→ p : P x,

2. Γ ` mem(A, a, eqDec, nil(A))

→ right(Φ1, Υ1, allS nil(A, (λx :A. ∼ Eq A a x))) : Or Φ1 Υ1,

3. Γ ` mem(A, a, eqDec, cons(A, b, l))

→ if (A, a, b, l, @(eqDec, a, b), mem(A, a, eqDec, l)) : Or Φ2 Υ2

4. Γ ` if (A, a, b, l, left(Ψ, ∼ Ψ, dl), i)

→ left(Φ2, Υ2, eqind(A, a, (λx :A.In A a cons(A, x, l)), b, dl ,

in hd(A, a, l))) : Or Φ2 Υ2
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5. Γ ` if (A, a, b, l, right(Ψ, ∼ Ψ, dr), left(Φ3, Υ3, el))

→ left(Φ2, Υ2, in tl(A, a, l, b, el)) : Or Φ2 Υ2

6. Γ ` if (A, a, b, l, right(Ψ, ∼ Ψ, dr), right(Φ3, Υ3, er))

→ right(Φ2, Υ2, allS cons(A, (λx :A. ∼ Eq A a x), b, l, dr, er)) : Or Φ2 Υ2,

where

Ψ = Eq A a b

Φ1 = In A a nil(A)

Υ1 = AllS A (λx :A. ∼ Eq A a x) nil(A)

Φ2 = In A a cons(A, b, l)

Υ2 = AllS A (λx :A. ∼ Eq A a x) cons(A, b, l)

Φ3 = In A a l

Υ3 = AllS A (λx :A. ∼ Eq A a x) l

For HORPO we choose the precedence mem >F if >F eqind and we give to mem

the multiset status. Let us concentrate on the second, third and fourth rules.

After applying case I.5 of HORPO to the second rule we are left to show

that allS nil(A, (λx : A. ∼ Eq A a x)), Φ1 and Υ1 belong to the CClmem(A, a,

eqDec, nil(A)). Let us denote the terms (A, a, eqDec, nil(A)) by ~t. By the definition

of the initial set, terms A, a, eqDec and nil(A) belong to CClmem(~t). To get Φ1 ∈
CClmem(~t), it suffices to apply constructor type rule to A, a, nil(A). For Υ1 and

allS nil(A, (λx : A. ∼ Eq A a x)) the only difficulty is to check whether (λx :

A. ∼ Eq A a x) ∈ CClmem(~t). The proof of this fact goes like this: by the type

constructor composition rule we can get Eq A a x with a free variable x. To

obtain the negation, we should first introduce False to CClmem(~t) again by the type

constructor composition rule and then use the product rule. We finish by abstracting

the variable x. Once we have (λx : A. ∼ Eq A a x) ∈ CClmem(~t) it is sufficient to

apply type constructor rule to get Υ1 ∈ CClmem(~t) and constructor composition rule

to get allS nil(A, (λx :A. ∼ Eq A a x)) ∈ CClmem(~t).

In the third rule, since mem >F if , we are left to show that every immediate

subterm of if is comparable with some subterm of mem or belongs to its computable

closure. Terms A and a are just subterms of the left-hand side and b, l can be

compared with cons(A, b, l) by means of �CS . We will show that @(eqDec, a, b)

and mem(A, a, eqDec, l) belong to the computable closure of mem. Note that we

cannot use directly case mul (I.3) of HORPO to compare mem(A, a, eqDec, l) with

the whole left-hand side, as the types do not match. By the definition of the initial

set, terms A, a, eqDec, b and l belong to CClmem(A, a, eqDec, cons(A, b, l)). By the

application rule we get @(eqDec, a, b) in the computable closure and by the recursive

call rule mem(A, a, eqDec, l) ∈ CClmem(A, a, eqDec, cons(A, b, l)). The application of

the recursive call rule is correct as (A, a, eqDec, cons(A, b, l)) �CSmul (A, a, eqDec, l).

For the fourth rule we first apply case I.5 of HORPO and we are led to show

that Φ2, Υ2 and eqind applied to its arguments belong to the computable closure

of if . The proof for Φ2 is simple and the one for Υ2 resembles very much to

the proof given above that Υ1 ∈ CClmem(A, a, eqDec, nil(A)). For the eqind, it is
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obvious that CClif (A, a, b, l, left(Ψ,∼ Ψ, dl), i) contains A, a, b, l, dl as they are

either immediate or constructor subterms of the left-hand side. We will show that

(λx :A.In A a cons(A, x, l)) and in hd(A, a, l) also belong to the computable closure.

For the latter it is sufficient to use the constructor composition rule, for the former

we have to first use the constructor composition rule to build (cons A x l) with a free

variable x, then the type constructor composition rule to have (In A a cons(A, x, l))

and finally the abstraction rule over x. We complete the proof by applying the

precedence rule for eqind.

The acceptance proofs for other rules are similar to the proofs we have described.

The remainder of this section is devoted to examples which do not fit in our

current framework.

Example 14 (Constructors that do not satisfy star dependency condition)

Ind[ ](StrangeList : ? :=

nil : StrangeList

cons : (X : ?)X → StrangeList→ StrangeList

In this example the star dependency condition is violated, because X is a big

variable that appears in the type of another argument of cons, but it is not a

parameter. Consequently, the definition of well-formedness 2.4.3 is not satisfied and

this inductive definition is not accepted in our system.

In practice types violating the star dependency condition are rare; we have

searched Coq’s contribution files, but have not found any (nota bene, this example

is accepted by Coq).

Example 15 (Elimination on Brouwer’s ordinals)

Let ordind : (P : ?)P → (ord → P → P ) → ((nat → ord) → (nat → P ) → P ) →
ord→ P ∈ F (1,4) have a rule:

P : ?, f1 : P , f2 : ord→ P → P , f3 : ((nat→ ord)→ (nat→ P )→ P ),

F : nat→ ord `
ordind(P , f1, f2, f3, lim(F))→@(f3, F, λy :nat. ordind(P , f1, f2, f3,@(F, y)))

In the recursive call of ordind there is a term @(F, y) where y is a variable bound

above ordind. Our method is not sufficient here, but we hope to extend it very soon

using ordinals related to the fixpoint construction of the interpretation of inductive

types, like in (Werner, 1994).

9 Practical issues

The long term practical motivation of our work is the incorporation of rewriting

in interactive theorem provers such as Coq (Barras et al., 1999). To be suitable

for implementation in such a framework, the termination criterion must have two

important properties: decidability and modularity.

The first requirement is obvious. The second would allow the user to treat
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definitions by rewriting just like normal definitions (s)he is used to. It would be

possible to enter one rewriting system, work with it, and then enter a new one on

top of the first one. The modular termination criterion would then assure him(her)

that the entire system is strongly normalizing.

9.1 Decidability

Concerning the first practical requirement, HORPO without computable closure is

decidable in polynomial time (for a given precedence and status, and if we do not

count the conversion used in the type checking). Full HORPO, computable closure

included, is surely semi-decidable, but we cannot guarantee decidability. In fact, if

we want to find out whether a given Γ-term t belongs to CClf(~l) using the rules

given in Definition 3.3.2, we are faced with a potentially infinite nondeterminism.

If we try to proceed bottom up we first have to choose a term T and a substitution

µ with the only constraint that Γ ` t : Tµ. Even though some (most?) choices are

clearly wrong it is not obvious whether we can limit ourselves to a finite class.

Similar problems arise when trying to apply backward the rules which do not enjoy

the subterm property (like Application to a nondependent argument or Reduction).

On the other hand if we try the top down method, we have the same problem

of potentially unbounded nondeterminism in the rule Constructor. Moreover we do

not clearly know when to stop the research of a derivation, due to the rules like

Reduction or Constructor decomposition, which may decrease the size of a leading

term.

The trivial remedy to the problem of undecidability in an implementation is to

limit to a given constant the number of rule applications. A better solution, in our

opinion, would be to find out a decidable restriction of the computable closure,

permitting at the same time to simplify its definition. We believe that removing the

Reduction rule, and imposing small restrictions on a few others would permit such

a simplification together with a strategy leading to a polynomial algorithm. But this

problem obviously needs further work.

9.2 Modularity

As presented so far, the result of this paper applies to the case where the set of rules

is given from the beginning.

In fact, we can do more, because our method for proving termination is modular.

Modularity means that rules may be given step-by-step, a whole set at a time,

possibly using the rules given at a previous stage for typing the new ones. Consider

for example the rules for plus and append (inductive type list corresponds to integer

lists with length).

plus : nat→ nat→ nat

plus O n→ n

append : (n, m : nat) (list n)→ (list m)→ (list (plus n m))

append O m nil lm→ lm
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Unless we have the rule for plus in the conversion relation of the system, the types of

the left-hand and right-hand side of the rule for append are different. Consequently,

HORPO would reject this rule.

Our method of proving termination is modular because we can use it for proving

the strong normalization of every CCRn, defined by:

CCR0 = CC

CCRn = CCRn−1 + Rn

where Rn is a set of rewrite rules, potentially defined on symbols from the new

signature Σn, and type-checked with CCRn−1.

To this end, we can repeat the trick employed in the whole paper. Instead of

proving the strong normalization for the system with user-defined rules, we will

show the termination of the system based on the certain version of HORPO. Just

like Rn is build on top of Rn−1, we will construct a hierarchy of HORPOs H0, . . .

Hn, one on top of another, and we will show that if every Rn satisfies Hn then the

termination of CCRn follows from the termination of CC + Hn. More formally,

let H0, Σ0 and >0
F be empty and Hn be a HORPO that uses CC + Hn−1 for type

checking, whose precedence >n
F includes >n−1

F and which is defined on the signature

Σn ⊇ Σn−1. We will show that every CC +Hn is terminating by induction on n.

For n = 0, CC + H0 is terminating because the Calculus of Constructions is

terminating.

For n > 1, the following schema works:

1. verification of the new signature Σn in CC +Hn−1,

2. construction of Hn,

3. construction of the system CC +Hn,

4. proof of strong normalization of CC +Hn.

It is obvious how to do the three first steps. Note that all we need is the definition

of CC +Hn−1 and not its decidability.

For the proof of strong normalization of CC + Hn, we claim that it is the proof

for CC + H where we replace everywhere H by Hn and use CC + Hn−1 instead of

CC for typing. To see this, one has to realize how the proof of strong normalization

for CC +H relies on the fact that the signature and HORPO use CC for typing.

The only place where the Calculus of Constructions is explicitly mentioned in the

proof of CC + H is the Small Substitution Lemma 5.4.1. This lemma works only

for terms that are β-normalizing, in particular for terms of CC . Later on, we use

the Small Substitution Lemma in Fun Lemma 5.4.6, and we use it on terms that

either come from the signature or result from the Computable Closure (Definition

3.3.2) or the Constructor Subterm Lemma 5.4.4. Fortunately, if the signature and

HORPO use CC for typing, then the Computable Closure and the Constructor

Subterm Lemma return terms typable in CC .

It turns out that the relationship described above, between terms resulting from

the Computable Closure and the Constructor Subterm Lemma and the type system

used to check the signature and HORPO, is true for any CC +Hm.
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Consequently, in the proof of strong normalization of CC + Hn, the Small Sub-

stitution Lemma is used only on terms of CC + Hn−1 and it holds for these terms,

because CC +Hn−1 is terminating by induction hypothesis.

Now, let us suppose that for every m, the term rewriting system Rm is accepted by

Hm or, if we treat R’s and H ’s like relations, that

∀m Rm ⊆ Hm

By the definition of Hm we have also:

∀m Hm−1 ⊆ Hm

Consequently, R1 ∪ R2 ∪ . . . Rm ⊆ H1 ∪ . . . Hm = Hm and the strong normalization of

CC + R1 + . . . Rm = CCRm follows from the strong normalization of CC +Hm (the

argument is similar to the one used in Lemma 6.0.5).

Formally, the proof of modularity would therefore require to repeat all the

definitions and proofs done for CC +H , assuming that the signature and HORPO

use the system CCX with a certain relation �X included in HORPO and such that

(→X ∪ →β) is terminating.

10 Conclusions

We have defined an extension of the Calculus of Constructions by higher-order

rewrite rules of possibly dependent types and presented a criterion (HORPO) which

guarantees the strong normalization of the resulting calculus.

The restrictions we impose are twofold:

1. We consider rewriting at the object-level only, and consequently we use only

inductive types of star arity.

2. Types of function symbols and constructors of inductive types have to satisfy

the star dependency condition.

The first point is a choice: rewriting at the level of types is a difficult question

as shown in Werner (1994), Dowek et al. (1998) and Dowek & Werner (1999).

Very recently, Blanqui (2001) generalized the General Schema to the rewriting on

types. Adapting ideas from his paper to our framework would raise some important

technical difficulties, since a basic assumption made by Blanqui is confluence which

cannot be satisfied by HORPO.

It is not clear how important the second restriction is. At present, it is crucial for

the proof of normalization and we believe that it should be difficult to weaken it

significantly. Moreover, it seems that star dependency on constructor types is not a

severe restriction.

In our paper we have not addressed the problem of logical consistency, but we

believe that the strong normalization proof is a step towards it. In fact, in presence of

rewriting two consistency problems arise: whether there is an uninhabited type and

whether the term structure does not collapse. For both problems some conditions

on the types of constants will surely be needed, and for the latter one, probably

some confluence properties will be necessary too.
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Another interesting problem would be to check if the results presented in this

paper extend to the Calculus of Constructions with beta and eta reductions in the

conversion.
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Université Paris VII.

https://doi.org/10.1017/S0956796802004641 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004641

