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The properties of dynamic conditional correlation (DCC) models, introduced more
than a decade ago, are still not entirely known. This paper fills one of the gaps by
deriving weak diffusion limits of a modified version of the classical DCC model.
The limiting system of stochastic differential equations is characterized by a diffu-
sion matrix of reduced rank. The degeneracy is due to perfect collinearity between
the innovations of the volatility and correlation dynamics. For the special case of
constant conditional correlations, a nondegenerate diffusion limit can be obtained.
Alternative sets of conditions are considered for the rate of convergence of the
parameters, obtaining time-varying but deterministic variances and/or correlations.
A Monte Carlo experiment confirms that the often used quasi-approximate maxi-
mum likelihood (QAML) method to estimate the diffusion parameters is inconsis-
tent for any fixed frequency, but that it may provide reasonable approximations for
sufficiently large frequencies and sample sizes.

1. INTRODUCTION

Continuous and discrete time volatility models are often considered as two com-
petitive views to modeling financial time series. Thanks to the analytical tractabil-
ity ensured by Itô calculus, continuous time models have played a central role in
theoretical finance. The continuous time setting permits a deeper understanding
of the properties of the corresponding discrete time model and to assess proba-
bilistic and statistical properties of discrete time sequences such as stationarity,
existence of moments or distributional results which are otherwise intractable in
discrete time; see, Nelson (1990), Nelson and Foster (1994), and Nelson (1996).
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From an applied viewpoint, inference on continuous time parameters of
stochastic volatility models represents an important issue. The intractable like-
lihood functions and the unobservable volatility process require sophisticated
estimation procedures. Several estimation methods have been proposed, such as
the simulation based method of moments, Duffie and Singleton (1993), the quasi-
indirect inference of Broze, Scaillet, and Zakoian (1998) or Bayesian Markov
chain Monte Carlo methods, Jones (2003). Bollerslev, Engle, and Nelson (1994)
and Ghysels, Harvey, and Renault (1996) provide exhaustive surveys on stochastic
volatility models. Therefore, discrete time volatility models have been most often
preferred by the applied econometrician. Rather than estimating and forecasting
with a diffusion model observed at discrete points in time, it is in fact often easier
to use a discrete model directly.

The theory of convergence of discrete time Markov sequences towards contin-
uous time diffusion processes, see, e.g., Stroock and Varadhan (1979), Kushner
(1984) and Ethier and Kurtz (1986), provides the theoretical foundation to estab-
lish mutual complementarities, possible interchangeability and connections be-
tween the two approaches. Nelson (1990) provides conditions ensuring the weak
convergence of a discrete time Markov chain, defined by a system of stochastic
difference equations, towards a diffusion, defined by a system of stochastic differ-
ential equations. The proposed approach requires the convergence, as the interval
between observations shrinks to zero, of a number of conditional moments to
well defined limits at an appropriate rate. In the context of GARCH-type models,
Nelson (1990) illustrates the convergence through various GARCH specifications.
This approach has been used by Duan (1997) to derive the diffusion limit of the
Augmented GARCH model, by Fornari and Mele (1997) to study the continuous
time behavior of the class of nonlinear ARCH models proposed by Ding, Granger,
and Engle (1993), by Alexander and Lazar (2005) to derive the diffusion limit of
a weak GARCH process and in a related setting by Trifi (2006) to illustrate the
convergence results for the CEV-ARCH model of Fornari and Mele (2006) and
the CMSV model of Jeantheau (2004) and Hobson and Rogers (1998). In the
multivariate case, apart from Nelson (1996) in the context of asymptotic filtering
theory, to our knowledge, the relationship between discrete and continuous time
volatility and correlation models has not been addressed yet.

The potential advantage of the Nelson approximation approach lies essen-
tially in estimation and forecasting. Considering the discrete time model as
a diffusion approximation suggests inference on the parameters of the diffu-
sion model via the parameter estimates of a discrete time GARCH-type model.
Hence, a natural alternative to the direct estimation of the diffusion parame-
ters consists in inferring the diffusion parameters by means of a tractable like-
lihood function of an approximating discrete time multivariate GARCH process.
Following Fornari and Mele (2006), this approach is called estimation by quasi-
approximated maximum likelihood (QAML). Requiring a feasible computational
effort, this approach has been advocated, e.g., by Engle and Lee (1996), Lewis
(2000), Barone-Adesi, Rasmussen, and Ravanelli (2005) and Stentoft (2011)
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among others. Its computational advantage becomes important in the multivari-
ate case, where volatility models within the conditional correlation class can be
estimated in a straightforward two-step procedure, estimating first the conditional
variances, then conditional correlations. However, the main drawback of estima-
tion by QAML is the difficulty of proving its consistency even if the discrete time
approximation is closed under temporal aggregation, see Drost and Nijman (1993)
and Drost and Werker (1996). In the univariate GARCH case, Wang (2002) has
shown that the statistical experiments resulting from the estimation of the diffu-
sion model and its approximating discrete time model are not equivalent, which
would imply inconsistency of the QAML estimator also in the multivariate case.

In this paper, we focus on conditional correlation models with GARCH
dynamics for the variances of the marginal processes. We recover the diffusion
limit of a modified version of the classical Dynamic Conditional Correlation
(DCC) model of Engle (2002), called consistent DCC (cDCC), proposed by Aielli
(2006). Unlike DCC, the cDCC model has a martingale difference property of the
correlation dynamics and is therefore easier to treat from a theoretical viewpoint.
For this specification and the general case of time-varying conditional correla-
tions, we derive the existence of a degenerate weak diffusion limit under suitable
convergence conditions for the model parameters. The degeneracy in the general
case is due to the particular structure of the discrete time model in which the
noise propagation systems of the variances and the one of the correlation driving
process are perfectly correlated. This structure is preserved in the diffusion limit
which is characterized by a diffusion matrix of reduced rank. More precisely, the
diffusion of the variances and of the diagonal elements of the correlation driving
process are pairwise governed by the same Brownian motion.

As a special case, we consider the Constant Conditional Correlation model
(CCC) of Bollerslev (1990), which can be obtained from the cDCC under suit-
able parameter restrictions. The CCC-GARCH model is particularly interesting
because, unlike the cDCC-GARCH process, it admits a nondegenerate diffusion
and, in the bivariate specification, a closed form solution for the diffusion limit.

We then propose and discuss alternative sets of conditions regarding the speed
of convergence of parameters of the cDCC-GARCH model. In this way, other
types of degenerated diffusions can be obtained which are characterized by a
stochastic price process while variances and/or correlations remain time varying
but deterministic. In the same spirit of Corradi (2000), we then discuss what kind
of processes can be obtained as Euler approximations of the alternative diffusion
processes.

The paper is completed by a simulation study to investigate the performance of
the QAML estimator of the diffusion parameters in our model framework. For the
parameters characterizing the innovation in variances and in correlations, we find
a negative bias in all cases, irrespective of the sample size, which only decreases
as the time interval shrinks to zero. This confirms the results of Wang (2002) that
care needs to be taken in inferring diffusion parameters from a discrete type ap-
proximation when there is no statistical equivalence of the likelihood estimators.
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For the remaining model parameters, however, no substantial biases are found and
the mean square error converges to zero as the sample size increases for a given
time interval.

The paper is organized as follows. In Section 2 we study the continuous time
behavior of the cDCC and CCC models. We also present the degenerate diffusions
induced by a reparameterization of the convergence conditions. In Section 3 we
illustrate through a Monte Carlo simulation our convergence results. In Section 4
we conclude and discuss directions for further research. Appendix A presents the
general framework of the theorem of weak convergence of discrete time Markov
chains. All proofs are provided in Appendix B.

2. MAIN THEORETICAL RESULTS

Let Y (h)
kh be an N -dimensional vector of logarithmic prices indexed by kh,

k ∈ N, h > 0. The superscript (h) represents the time interval between two con-
secutive observations, i.e., for given h, prices are observed at times h,2h,3h, . . ..
We let the parameters depend on the sampling frequency. Furthermore, the vari-
ance of the innovations is made proportional to h. In this paper, we focus on the
covariance stationary case, hence usual suitable positivity and stationarity con-
straints on the parameters of the variances and correlation driving process apply,
see Bollerslev (1986), Engle (2002), Aielli (2006), and Aielli (2013).

Throughout the paper, we use the following notation: ||A|| is the L2 (Frobenius)
norm of a matrix A, vec() stacks the columns of a matrix into a vector, vech()
stacks the lower triangular portion of a square matrix into a vector, vechl() stacks
the strictly lower triangular portion of a square matrix into a vector (i.e., excluding
the diagonal elements), diag() stacks the diagonal of a square matrix into a vec-
tor. For any symmetric matrix A, the operation a = vech(A) can be inverted
and we write this as A = vech−1(a). Similarly, for the diag operator, we can
define the inverse operator diag−1 that inserts a vector into a diagonal matrix.
Furthermore, 1N is a (N × 1) vector of ones and IN is the (N × N ) identity
matrix. Let � denote the space of N × N matrices, and �′ ⊂ � the set of
symmetric positive semidefinite N × N matrices. We also make use of the fol-
lowing elementary matrices: DN denotes the (N 2 × N (N + 1)/2) duplication
matrix, which for any symmetric matrix A transforms vech(A) into vec(A),
D+

N its generalized inverse, see, e.g., Lütkepohl (1996) for details, I ∗ is de-
fined such that diag(A) = I ∗vech(A) with I ∗ = I +′ DN and I + = (1N ⊗ IN ) �
[1′

N ⊗ vec(IN )] transforms vec(A) into diag(A). Finally, I − is defined such that
vechl(A)vechl(A)′ = I −(vech(A)vech(A)′)I −′ = I − D+

N (A ⊗ A)D+′
N I −′.1

2.1. The cDCC-GARCH process

We consider a system of stochastic difference equations based on the discrete
time cDCC-GARCH process of Aielli (2006) for the log price vector of an
N -dimensional portfolio of assets Y (h)

kh , h > 0 and k ∈ N. Time is partitioned
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more and more finely as in Appendix A, letting the parameters and the covari-
ance matrix of innovations depend on the length h of time intervals. The model is
given by

Y (h)
kh = Y (h)

(k−1)h + S(h)
kh η

(h)
kh , (1)

V (h)
(k+1)h = ch + Ahh−1 S(h)2

kh (η
(h)
kh � η

(h)
kh )+ Bh V (h)

kh , (2)

Q(h)
(k+1)h = Q̄h +ϑhh−1 P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh +γh Q(h)
kh , (3)

P(h)
kh =

(
Q(h)

kh � IN

)1/2
, (4)

R(h)
kh = P(h)−1

kh Q(h)
kh P(h)−1

kh , (5)

where η
(h)
kh is an (N ×1) vector of standardized but potentially conditionally cor-

related innovations such that R(h)−1/2
kh η

(h)
kh ∼ i.i.d. N(0,hIN ). Further, S(h)

kh is an
(N × N ) diagonal matrix of conditional standard deviations with the (N ×1) vec-
tor of conditional variances denoted by V (h)

kh = diag
(
S(h)2

kh

)
. For the correlation

driving process Q(h)
kh we have, under the restrictions Q̄h ∈ �′,ϑh,γh ≥ 0, that

Q(h)
kh ∈ �′. We will stack the nonredundant elements of Q(h)

kh into the vector q(h)
kh =

vech
(
Q(h)

kh

)
. Note that, for a given h, the vector X (h)

kh := (
Y (h)

kh ,V (h)
(k+1)h,q(h)

(k+1)h

)′

is a discrete time Markov process with filtration Fkh := σ
(
X (h)

sh ,s < k
)
, so that

the theory of Appendix A applies.
Note also that the discrete time cDCC-GARCH model of Aielli (2006) can be

obtained by setting h = 1. The standard DCC model of Engle (2002) is very sim-
ilar but instead of (3) specifies Q(h)

(k+1)h = Q̄h +ϑhh−1 η
(h)
kh η

(h)′
kh + γh Q(h)

kh . The

advantage of the cDCC model is that the recursion for Q(h)
kh preserves the mar-

tingale difference property, i.e., h−1E
[(

P(h)
kh η

(h)
kh η

(h)′
kh P(h)

kh

) − Q(h)
kh

∣∣Fkh
] = 0, so

that, for a given h, the process
{
h−1/2 P(h)

kh η
(h)
kh ,q(h)

kh

}
is a multivariate semistrong

GARCH process in the sense of Drost and Nijman (1993) and Hafner (2008).
Without loss of generality, we reparameterize the drift in the recursion Q(h)

kh
as a combination of a frequency invariant component and frequency dependent
parameters. The drift Q̄h can be expressed as Q̄h = (1 −ϑh − γh)Q̄.2 As shown
by Aielli (2013), Q̄ is only identified up to scale so that we restrict the diag-
onal elements of Q̄ to one. The reparameterization will be particularly useful
when deriving the diffusion limit of the constant conditional correlation (CCC)
model of Bollerslev (1990). In fact, under the parameter restriction ϑh = γh = 0,
Q(h)

kh = Q̄h = Q̄, and therefore, R(h)
kh = Q̄ for all h. Thus, in the CCC model, Q̄

is the frequency-invariant unconditional correlation matrix of
(
Y (h)

(k+1)h − Y (h)
kh

)
.

We denote by q̄ = vech(Q̄) the nonredundant elements of Q̄.
Deriving the diffusion limit of the cDCC-GARCH process requires to assume

convergence rates of the discrete time parameters such that the first two
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conditional moments converge with increasing sampling frequency, as required
by Assumption A.1. For the discrete time cDCC-GARCH process X (h)

kh =(
Y (h)

kh ,V (h)
(k+1)h,q(h)

(k+1)h

)′ given in (1)–(3), our main result in Theorem 1 will
assume the following convergence rates:

ch = h c +o(h), (6)

IN − Ah − Bh = h �+o(h), (7)

Ah = √
h A +o(

√
h), (8)

Q̄h = Q̄φh +o(h), (9)

1−ϑh −γh = h φ +o(h), (10)

ϑh = √
h ϑ +o(

√
h), (11)

where c is an (N ×1) vector, A and � are diagonal N × N matrices with positive
diagonal elements, Q̄ is a positive definite N × N matrix, and φ,ϑ are positive
scalars.

As shown in the proof of 1, these convergence rates ensure that the first and the
second conditional moments per unit of time converge, as h → 0, to well-behaved
limits and that the first difference of the process

[
Y (h)′

kh , V (h)′
(k+1)h, q(h)′

(k+1)h

]′ satisfies
Assumption A.1.

Note that c > 0 (elementwise) ensures positivity of the variance process, A > 0
and ϑ > 0 ensure that the rescaled second conditional moment does not vanish
as h → 0, while � > 0 and φ > 0 ensure covariance stationarity of the return
process.3

Under our assumptions, we have the following result for the diffusion limit of
the cDCC-GARCH process X (h)

kh = (
Y (h)

kh ,V (h)
(k+1)h,q(h)

(k+1)h

)′.

THEOREM 1 (Diffusion limit of the cDCC-GARCH model). Assume that the
initial value X (h)

0h converges in distribution to a random vector X0 as h → 0.

Under (6) to (11), the discrete time cDCC-GARCH process X (h)
kh given in (1)–(3)

weakly converges to the diffusion process Xt = [
Y ′

t ,V ′
t ,q ′

t

]′
which is the solution

to the system of stochastic differential equations

dXt = b(Xt )dt +σ(Xt )dWt , (12)

where Wt is an N(N+5)/2-dimensional vector of mutually independent standard
Brownian motions, independent from X0. The drift, b(Xt ), is given by

b(Xt ) =
⎡
⎣ 0N

c −�Vt

φ(q̄ −qt )

⎤
⎦ , (13)
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while the scale, σ(Xt ), is a continuous mapping such that, for all Xt ∈ IRN (N+5)/2

and t ≥ 0, a(Xt ) = σ(Xt )σ (Xt )
′, where a(Xt ) is given by

a(Xt ) =
⎡
⎣ aY Y 0(N×N ) 0(N×N∗)

0(N×N ) aV V aV q

0(N∗×N ) a′
V q aqq

⎤
⎦ , (14)

with N∗ := N (N +1)/2 and

aY Y = St Rt St ,

aV V = 2AS2
t (Rt � Rt )S2

t A,

aV q = ϑ
[
I ∗Kt D+

N (Pt ⊗ Pt )D+′
N −1N q ′

t

]′
S2

t A,

aqq = ϑ2 [
D+

N (Pt ⊗ Pt )D+′
N Kt D+

N (Pt ⊗ Pt )D+′
N −qt q

′
t

]
,

where Kt = 2D+
N (Rt ⊗ Rt )D+′

N + vech(Rt )vech(Rt )
′, Qt = vech−1(qt ), Pt =

(IN � Qt )
1/2, Rt = P−1

t Qt P−1
t , and St = diag−1(V 1/2

t ). The matrix a(Xt ) is
singular and its rank is equal to N (N +3)/2 < dim(Xt ) = N (N +5)/2.

Note first that the drift term b(Xt ) is linear in Xt , which is due to the fact
that the cDCC-GARCH process satisfies a semistrong GARCH structure, mean-
ing that increments to the state variables have a conditional mean that is linear
in the state. In particular, as shown in the proof, we can use that in the cDCC
model E

[
	q(h)

(k+1)h |Fkh
] = (1−ϑh −γh)

(
q̄ −q(h)

kh

)
. This is, however, not the case

in the DCC model, where this expectation would be a function of the condi-
tional correlation matrix R(h)

kh , which is a nonlinear function of the state vari-

able q(h)
kh . This is the reason why it is tedious to obtain analytical results for

the diffusion limit of the DCC model, and in fact more generally why there
are few results on the properties of this model such as stationarity or moment
conditions.

Note further that one of the examples of Nelson (1990), p.15, of a univariate
GARCH(1,1) model setting c = 0 in his equation (2.20), can be recovered as a spe-
cial case of Theorem 1. His drift and diffusion terms (2.37) and (2.38) are the re-
duced versions of our (13) and (14) terms in the univariate case. Note however the
difference in terms of the parameter scaling: Nelson (1990) lets αh = α(h/2)1/2,
so that the scaling factor

√
2 should be included in his results to compare them

with ours.
The singularity of a(Xt ) is due to the particular structure of the model in which

the noise propagation of the variance processes and the one of the diagonal ele-
ments of the correlation driving processes are pairwise perfectly correlated. This
is because, although (possibly) different in terms of level and dynamics, (2) and
(3) are driven by the same innovations. For example, in the special case where
(IN − Ah − Bh)−1ch = diag(Q̄), Ah = ϑh IN , Bh = γh IN , the model reduces to a
scalar VEC model with N redundant equations.
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To investigate the implications of singularity of the diffusion matrix a(Xt ),
let us rearrange the order of the elements of the diffusion process Xt as[
Y ′

t ,V ′
t ,q(d)′

t ,q(l)′
t

]′, where q(d)
t = diag(Qt ) and q(l)

t = vechl(Qt ). The two par-

tial diffusion processes
[
Y ′

t ,V ′
t ,q(l)′

t
]′ and

[
Y ′

t ,q(d)′
t ,q(l)′

t
]′ share the same cor-

relation structure, while Corr(dVt,i , dQt,i i ) = 1, i = 1, . . . , N , implies that the
two partial diffusions are driven by the same vector of Brownian innovations.
Thus, the relevant part in terms of the noise propagation system of the diffusion
limit of the cDCC-GARCH process consists of a system of N (N +3)/2 stochas-
tic differential equations, either

[
Y ′

t ,V ′
t ,q(l)′

t
]

or
[
Y ′

t ,q(d)′
t ,q(l)′

t
]
, while the re-

maining N diffusion processes, q(d)
t or Vt , respectively, are characterized by a

specific deterministic part (drift) but a common, although appropriately rescaled,
stochastic component. To illustrate this point, let us consider the following par-
tition of the diffusion matrix in (14), whose elements have been appropriately
reordered,

a(Xt ) =

⎡
⎢⎢⎢⎣

aY Y 0(N×N ) 0(N×N ) 0(N×N+)

0(N×N ) aV V aV q(d) aV q(l)

0(N×N ) a′
V q(d) aq(d)q(d) aq(d)q(l)

0(N+×N ) a′
V q(l) a′

q(d)q(l) aq(l)q(l)

⎤
⎥⎥⎥⎦ , (15)

where N+ := N (N −1)/2 and

aV q(d) = 2ϑ AS2
t (Rt � Rr )P2

t = ϑaV V

(
S2

t A
)−1

P2
t ,

aq(d)q(d) = 2ϑ2 P2
t (Rt � Rr )P2

t = ϑ2 P2
t

(
AS2

t

)−1
aV V

(
S2

t A
)−1

P2
t ,

aV q(l) = ϑ AS2 [
I ∗Kt D+

N (Pt ⊗ Pt )D+′
N I −′ −1N q ′

t I −′] ,

aq(d)q(l) = ϑ2 P2
t

[
I ∗Kt D+

N (Pt ⊗ Pt )D+′
N I −′ −1N q ′

t I −′] = ϑP2
t

(
AS2

t

)−1
aV q(l) ,

aq(l)q(l) = ϑ2 I − [
D+

N (Pt ⊗ Pt )D+′
N Kt D+

N (Pt ⊗ Pt )D+′
N −qt q

′
t

]
I −′.

Let us also define Ct = ϑP2
t (AS2

t )−1. We can rewrite (15) as
⎡
⎢⎢⎣

aY Y 0(N×N ) 0(N×N ) 0(N×N+)

0(N×N ) aV V aV V C ′
t aV q(l)

0(N×N ) Ct aV V Ct aV V C ′
t Ct aV q(l)

0(N+×N ) a′
V q(l) a′

V q(l)C
′
t aq(l)q(l)

⎤
⎥⎥⎦ . (16)

Therefore, the partial diffusion processes
[
Y ′

t ,V ′
t ,q(l)′

t
]′ and

[
Y ′

t ,q(d)′
t ,q(l)′

t
]′ are

characterized by the diffusion matrices a1(·) and a2(·), respectively, given by

a1([Y
′
t ,V ′

t ,q(l)′
t ]′) =

⎡
⎣ aY Y 0(N×N ) 0(N×N+)

0(N×N ) aV V aV q(l)

0(N+×N ) a′
V q(l) aq(l)q(l)

⎤
⎦ , (17)
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a2([Y
′
t ,q(d)′

t ,q(l)′
t ]′) =

⎡
⎣ aY Y 0(N×N ) 0(N×N+)

0(N×N ) Ct aV V C ′
t Ct aV q(l)

0(N+×N ) a′
V q(l)C

′
t aq(l)q(l)

⎤
⎦ . (18)

The structure of (17) and (18) shows that the two partial processes
[
V ′

t ,q(l)′
t

]′
and

[
q(d)′

t ,q(l)′
t

]′, both uncorrelated with Yt , share the same correlation struc-

ture. Furthermore, from Theorem 1, it immediately follows that
[
V ′

t ,q(l)′
t

]′
and

[
q(d)′

t ,q(l)′
t

]′ are elementwise perfectly correlated. In fact, more generally,

Corr
(
dVt,i ,dq(d)

t, j

) = (Rt � Rt )i j , i, j = 1, . . . , N . The perfect correlation between
the variances and the diagonal elements of Q is intuitively obvious also from the
discrete time model in (1)–(5), as the driving innovations in (2) and the diagonal
elements of (3) are both given by η

(h)
kh � η

(h)
kh . Although either partial diffusion

process
[
Y ′

t ,V ′
t ,q(l)′

t
]′ or

[
Y ′

t ,q(d)′
t ,q(l)′

t
]′ is sufficient alone to fully characterize

the noise propagation system of the cDCC diffusion limit, they are both necessary
to obtain the distribution of Yt which depends on both Vt and qt = [

q(d)′
t ,q(l)′

t
]′

through the correlation process Rt .
The degeneracy of the diffusion matrix may have consequences for the estima-

tion method of the parameters of the diffusion process. For example, if maximum
likelihood is used as, e.g., in Li (2013) which requires a positive definite diffusion
matrix, estimation of the full system would be infeasible in our case.

2.2. A Special Case: The CCC-GARCH Process

As a special case, consider the Constant Conditional Correlation (CCC) model of
Bollerslev (1990). The cDCC process nests the CCC process under the following
parameter restrictions

ϑh = γh = 0 for all h > 0.

The innovation vector η
(h)
kh in the CCC-GARCH process is an (N × 1) vector of

standardized but potentially correlated innovations, such that η
(h)
kh ∼ N(0,h R),

where R represents the (frequency invariant) constant conditional correlation
matrix. This model, although rather restrictive in practice, is particularly interest-
ing because, unlike the cDCC-GARCH process, it allows for a nondegenerate dif-
fusion and, in the bivariate specification, a closed form solution for the diffusion
limit. As a corollary to Theorem 1, Assumption A.1 holds under the following
convergence rates for the parameters of the discrete time CCC-GARCH process

ch = h c +o(h), (19)

IN − Ah − Bh = h �+o(h), (20)

Ah = √
h A +o(

√
h), (21)

for some (N ×1) vector c and (N × N ) diagonal matrices A and � with positive
and finite elements.
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The following corollary to Theorem 1 states the result of a diffusion limit of
the CCC-GARCH process X (h)

kh = (
Y (h)

kh ,V (h)
(k+1)h

)′.

COROLLARY 1 (Diffusion limit of the CCC-GARCH model). Assume that
the initial value X (h)

0h converges in distribution to a random vector X0 as h → 0.
Under the convergence conditions in (19)–(21), the CCC-GARCH process weakly
converges to the nondegenerate diffusion process Xt = [Y ′

t , V ′
t ]′ which is

a solution to a system of stochastic differential equations of the form (12),
with drift

b(Xt ) =
[

0N

c −�Vt

]
(22)

and diffusion matrix

a(Xt ) =
[

St R St 0(N×N )

0(N×N ) 2AS2
t (R � R)S2

t A

]
(23)

and driven by a vector Wt of 2N mutually independent Brownian motions, inde-
pendent of the initial value X0 = [Y0, V0]′.

The diffusion limit of the CCC model is clearly nondegenerate because it is
driven by as many Brownian motions as the number of variables in the system
and whose covariance matrix is nonsingular.

It is clear that the diffusion limit of the cDCC-GARCH process (as well as that
of the CCC-GARCH process) is a continuous time stochastic volatility model
(i.e., stochastic variances and correlations). We discuss next the case when rates
of convergence other than the ones introduced in Theorem 1, but still satisfying
Assumption A.1, are used.

2.3. Alternative Convergence Conditions

In this section we reconsider the continuous time approximation of the cDCC-
GARCH process (1)–(3). The convergence rate h1/2, suggested in Theorem 1,
represents the slowest rate of convergence for the parameters Ah and ϑh satisfy-
ing Assumption A.1. More generally, the rate h1/2 represents the only rate ensur-
ing that the second conditional moments Var

(
V (h)

(k+1)h − V (h)
kh |Fkh

)
, Var

(
q(h)
(k+1)h −

q(h)
kh |Fkh

)
and Cov

[
(V (h)

(k+1)h − V (h)
kh ), (q(h)

(k+1)h −q(h)
kh )|Fkh

]
scaled by h−1, do not

vanish as h → 0. As shown in Theorem 1, the resulting diffusion limit is character-
ized by stochastic variances of the marginal processes and a stochastic correlation
driving process.

However, there are other admissible convergence rates for Ah and ϑh which
also satisfy Assumption A.1. Thus, depending on the continuous time approxi-
mation we consider, we can recover different types of diffusion for the process
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(1)–(3). Consider the following convergence rates for the parameters Ah and ϑh :

lim
h→0

h−
(

1
2 +δ1

)
Ah = Ã < ∞ (24)

and

lim
h→0

h−
(

1
2 +δ2

)
ϑh = ϑ̃ < ∞, (25)

for some (N × N ) diagonal matrix Ã > 0 (elementwise), ϑ̃ > 0, δ1 ≥ 0 and
δ2 ≥ 0. Note that under (24) and (25), Ah and ϑh are of order h1/2+δ1 and h1/2+δ2 ,
respectively. Clearly, the special case δ1 = δ2 = 0 is covered by Theorem 1.

As shown in the proof of Theorem 2, Assumption A.1 holds under (6), (7),
(9), (10), (24), and (25). The implications are straightforward. If either δ1 > 0 or
δ2 > 0, then the terms depending on η

(h)
kh on the right hand side of (2) and/or (3)

are of order o(h1/2). Consequently, the conditional second moments scaled by
h−1 converge to zero as h → 0. The resulting diffusion limits are degenerate and
are characterized by time varying but deterministic variances of the marginal pro-
cesses and/or a deterministic correlation driving process. We have the following
results.

THEOREM 2 (Alternative convergence conditions). Assume that the initial
value X (h)

0h converges in distribution to a random vector X0 as h → 0. Replacing
in the assumptions of Theorem 1 either (8) by (24), or (11) by (25), or both, the
discrete time cDCC-GARCH process (1)–(3) admits a degenerate diffusion limit.
The diffusion process Xt = [Y ′

t , V ′
t , q ′

t ]
′ is the solution to a system of stochas-

tic differential equations of the form (12), with drift given by (13) and diffusion
matrix given, respectively, by

i) (deterministic variances but stochastic correlation) under (6), (7), (10),
(11), and (24)

a(Xt ) =

⎡
⎢⎢⎣

St Rt St 0(N×N ) 0(N×N∗)
0(N×N ) 0(N×N ) 0(N×N∗)
0(N∗×N ) 0(N∗×N ) ϑ2[D+

N (Pt ⊗ Pt )D+′
N Kt

D+
N (Pt ⊗ Pt )D+′

N −qt q ′
t ]

⎤
⎥⎥⎦ . (26)

The diffusion process defined by (12), (13), and (26) is driven by
N (N +3)/2 independent standard Brownian motions;

ii) (stochastic variance but deterministic correlation) under (6), (7), (8), (10),
and (25)

a(Xt ) =
⎡
⎣ St Rt St 0(N×N ) 0(N×N∗)

0(N×N ) 2AS2
t (Rt � Rr )S2

t A 0(N×N∗)
0(N∗×N ) 0(N∗×N ) 0(N∗×N∗)

⎤
⎦ . (27)

The diffusion process defined by (12), (13), and (27) is driven by 2N inde-
pendent standard Brownian motions;
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iii) (deterministic variances and correlation) under (6), (7), (10), and both
(24), and (25)

a(Xt ) =
⎡
⎣ St Rt St 0(N×N ) 0(N×N∗)

0(N×N ) 0(N×N ) 0(N×N∗)
0(N∗×N ) 0(N∗×N ) 0(N∗×N∗)

⎤
⎦ . (28)

The diffusion process defined by (12), (13), and (28) is driven by N inde-
pendent standard Brownian motions.

It is possible to characterize the types of processes that can be obtained as
Euler approximation of the different diffusions in Theorem 2. These approxi-
mations are not unique. For example, in the univariate GARCH case, Corradi
(2000) has shown that an Euler approximation of a degenerate diffusion pro-
cess is GARCH, while that of a nondegenerate diffusion is stochastic volatility.
In the same spirit, and using stochastic calculus results of Steele (2001) p.123,
we can show that the following type of processes are Euler approximations of the
three diffusions defined in Theorem 2: i) a process with stochastic correlation and
GARCH variances, i i) a process with stochastic volatility and cDCC correlation,
and i i i) a cDCC-GARCH process as in (1)–(3), respectively.

Note further that the results in i) and iii) of Theorem 2 are generalizations
of Proposition 2.1 (i) of Corradi (2000) to the multivariate case. Her Proposi-
tion 2.1 (ii) corresponds to the Nelson result where the variance process is stochas-
tic. One generalization to the multivariate case was presented in Theorem 1, but
Theorem 2, ii) gives an alternative generalization using parameter convergence
conditions as in Nelson (1990) for the variances, and as in Corradi (2000) for the
correlations.

3. MONTE CARLO EVIDENCE ON ESTIMATION BY
APPROXIMATION

In this section we investigate the performance of the quasi-approximate maxi-
mum likelihood (QAML) procedure of Fornari and Mele (2006), discussed in the
introduction, in our model framework using a Monte Carlo simulation study. We
infer the diffusion parameters from the estimation of an approximating discrete
time cDCC model using the same three-step estimator as in Aielli (2013),
Definition 3.4.

Estimation by QAML essentially involves two types of biases: First, the finite
sample bias due to the availability of a sample of only a finite number of obser-
vations. The second, called approximation bias, arises from the approximation of
an exact, but unknown, discrete time representation of the underlying diffusion
process. The approximating model is not even an Euler discretization of the diffu-
sion model, but its sample paths converge weakly (in distribution) to the diffusion
process. Fornari and Mele (2006) consider bias correction methods based on the
indirect inference principle developed by Broze, Scaillet, and Zakoian (1998) and
compare them with the not bias-corrected QAML estimator.
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For the drift parameter of a Cox–Ingersoll–Ross type process, Phillips and
Yu (2009) have shown that the approximation bias for alternative approximation
schemes is typically negligible compared to the finite sample bias. This moti-
vates the use of QAML for GARCH-type processes, where the exact discrete time
model is unknown. Rather than comparing with alternative estimation strategies,
e.g, simulated MLE and indirect inference as in Kleppe, Yu, and Skaug (2014),
we focus on the properties of the simple QAML procedure and, in particular, the
relative importance of approximation and estimation biases.

For univariate GARCH models, Wang (2002) has shown the nonequivalence of
the statistical experiments resulting from the estimation of the discrete time model
and its weak diffusion limit. Nevertheless, many studies have used QAML; see,
e.g., Engle and Lee (1996), Broze, Scaillet, and Zakoian (1998), Lewis (2000),
Barone-Adesi, Rasmussen, and Ravanelli (2005) and Stentoft (2011), arguing that
the approximation bias tends to disappear as the frequency increases. For the re-
lated case of estimating temporally aggregated multivariate GARCH models, the
bias of QAML has been shown to be negligible, see Hafner and Rombouts (2007).
Therefore, it is of interest to see whether this finding extends to the estimation of
some or all parameters of the cDCC-GARCH diffusion limit.

We estimate the parameters of a sequence, indexed by h, of discrete time
cDCC-GARCH models with i.i.d. innovations. Then, for each h, we use the rela-
tionships given in Theorem 1 to obtain the diffusion parameters and we investigate
the behavior of the latter as h → 0. To keep the computational burden feasible,
we focus on the bivariate case, N = 2, but our results should generalize in an
obvious way to higher dimensions. Using the representations of Section 2.1, the
cDCC-GARCH diffusion limit can be written as

[
dY1t

dY2t

]
=

[√
V1t 0
0

√
V2t

]
ϒ(1)(ρt )

1
2 dW (1)

t , (29)
⎡
⎣ dV1t

dV2t

dQ12t

⎤
⎦ =

⎡
⎣ c1 −�11V1t

c2 −�22V2t

φ(Q̄12 − Q12t )

⎤
⎦dt

+√
2

⎡
⎢⎢⎣

A11V1t 0 0
0 A22V2t 0

0 0 ϑ Q12t

√
1+ρ2

t

2ρ2
t

⎤
⎥⎥⎦ϒ(2)(ρt )

1
2 dW (2)

t , (30)

⎡
⎣dQ11t

dQ22t

dQ12t

⎤
⎦ =

⎡
⎣φ(Q̄11 − Q11t )

φ(Q̄22 − Q22t )

φ(Q̄12 − Q12t )

⎤
⎦dt

+√
2ϑ

⎡
⎢⎢⎣

Q11t 0 0
0 Q22t 0

0 0 Q12t

√
1+ρ2

t

2ρ2
t

⎤
⎥⎥⎦ϒ(2)(ρt )

1
2 dW (2)

t , (31)
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where

ϒ(1)(ρt ) =
[

1 ρt

ρt 1

]
, ϒ(2)(ρt ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ2
t

√
2ρ2

t

1+ρ2
t

ρ2
t 1

√
2ρ2

t

1+ρ2
t√

2ρ2
t

1+ρ2
t

√
2ρ2

t

1+ρ2
t

1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

ρt = Q12t√
Q11t Q22t

.

We use an Euler discretization scheme of (29)–(31) and simulate 5000 sam-
ple paths using a discretization interval 	t = 1/8192 and length k ranging from
250 to 2000 periods. The data is generated using the following parameterization:
c = [0.1,0.15]′, A11 = 0.07, A22 = 0.10, �11 = 0.13, �22 = 0.10, ϑ = 0.08, and
φ = 0.04. The diagonal elements of Q̄ are fixed to one for identification as in
Aielli (2013), while the off-diagonal element, Q̄12, is set to 0.5. For sake of com-
parison with the drift parameter of the variance equations, we report results in
terms of the off-diagonal element of the drift matrix Q̄h , i.e., Q̄12,h . The square
roots of the correlation matrices of the diffusion, ϒ(1)(ρt ) and ϒ(2)(ρt ), are com-
puted by spectral decomposition.

For each sample path we estimate the model (1)–(5) with ch = ch, Ah = A
√

h,
Bh = IN − A

√
h −�h, Q̄h = Q̄φh, ϑh = ϑ

√
h, and γh = 1 −ϑ

√
h −φ h. The

model is estimated by Gaussian QAML using data sampled at nine frequencies
spanning from h = 1/4 to h = 1/512. The bias and variance of parameter esti-
mates are reported in Tables 1 and 2, respectively. To economize on space, only
the results for 1/h ∈ {8,32,128,512} are reported, the complete set of results is
available in the working paper version of this paper, Hafner, Laurent, and Violante
(2016).

Note first that the bias is negative for the innovation parameters and positive for
the drift and persistence parameters, which confirms the results of Aielli (2013)
for the analogous discrete time parameterization. As the sampling frequency in-
creases, the bias vanishes and the MSE decreases at an appropriate rate for all
parameters. For a given frequency, however, there are remarkable differences. For
the parameters in the drift terms, bias and MSE decrease as the sample size k
increases, suggesting that the finite sample bias dominates the approximation bias,
which confirms the results of Phillips and Yu (2009) for the Cox–Ingersoll–Ross
diffusion process. However, this is not the case for the parameters A and ϑ linked
to the innovation terms in Vt and Qt , respectively, for which the approximation
bias dominates the finite sample bias. Clearly, QAML is inconsistent when only
the sample size is increased but not the frequency, which confirms the results of
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TABLE 1. QAML biases of cDCC diffusion approximation at varying frequen-
cies 1/h and number of time periods k

1/h ĉ1,h Â11,h �̂11,h ĉ2,h Â22,h �̂22,h
ˆ̄Q12,h ϑ̂h φ̂h

k=250

8 1.02e-2 −1.00e-2 1.03e-2 9.45e-3 −1.08e-2 6.64e-3 1.97e-3 −5.65e-3 3.90e-3
32 1.42e-3 −3.05e-3 1.43e-3 1.41e-3 −3.09e-3 1.02e-3 3.30e-4 −1.55e-3 6.43e-4
128 2.22e-4 −7.71e-4 2.21e-4 2.62e-4 −8.39e-4 1.90e-4 6.98e-5 −3.77e-4 1.29e-4
512 4.40e-5 −1.61e-4 4.31e-5 5.55e-5 −2.22e-4 4.00e-5 1.55e-5 −8.24e-5 2.66e-5

k=500

8 5.95e-3 −1.02e-2 5.99e-3 4.95e-3 −1.11e-2 3.50e-3 8.94e-4 −5.61e-3 1.75e-3
32 7.09e-4 −3.02e-3 7.07e-4 7.83e-4 −3.19e-3 5.67e-4 1.76e-4 −1.45e-3 3.36e-4
128 1.15e-4 −7.55e-4 1.13e-4 1.49e-4 −8.80e-4 1.10e-4 3.90e-5 −3.54e-4 7.08e-5
512 2.24e-5 −1.59e-4 2.12e-5 3.00e-5 −2.51e-4 2.19e-5 9.21e-6 −7.87e-5 1.51e-5

k=1000

8 2.70e-3 −1.03e-2 2.68e-3 2.61e-3 −1.11e-2 1.81e-3 4.64e-4 −5.50e-3 8.92e-4
32 3.92e-4 −2.99e-3 3.82e-4 4.57e-4 −3.19e-3 3.28e-4 9.72e-5 −1.38e-3 1.85e-4
128 6.39e-5 −7.49e-4 6.01e-5 8.41e-5 −9.00e-4 6.19e-5 2.21e-5 −3.32e-4 3.92e-5
512 1.24e-5 −1.58e-4 1.11e-5 1.61e-5 −2.65e-4 1.19e-5 5.36e-6 −7.33e-5 8.67e-6

k=2000

8 1.56e-3 −1.03e-2 1.53e-3 1.61e-3 −1.13e-2 1.13e-3 2.79e-4 −5.41e-3 5.18e-4
32 2.45e-4 −2.99e-3 2.35e-4 3.26e-4 −3.26e-3 2.38e-4 5.98e-5 −1.39e-3 1.09e-4
128 4.62e-5 −7.45e-4 4.28e-5 6.34e-5 −9.22e-4 4.79e-5 1.33e-5 −3.42e-4 2.32e-5
512 8.83e-6 −1.55e-4 7.71e-6 1.22e-5 −2.76e-4 9.33e-6 3.19e-6 −7.46e-5 5.00e-6

Wang (2002) for the univariate case. With sufficiently high frequency and sample
size, however, the bias may be considered negligible in most practical situations.

Finally, to obtain an idea of the importance of the approximation bias relative
to the finite sample bias, we simulate a discrete time cDCC model with the param-
eters of the diffusion approximated to first order by Theorem 1, using h = 1/512
and sample sizes k = 250,500,1000,2000. The estimation by MLE of this model
only involves finite sample bias and variance, but no approximation bias, so that
the comparison with the diffusion approximation allows us to draw conclusions
about the approximation bias.4 The results are summarized in Table 3. We see
that for the persistence and drift parameters, the relative bias is about 80% for
the smallest sample size, meaning that about 20% of the overall bias is explained
by the approximation. For the parameters linked to the innovation terms, the rel-
ative bias is much smaller and close to zero, since the overall bias is dominated
by the approximation bias even for small sample sizes. All relative biases tend to
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TABLE 2. QAML variances of cDCC diffusion approximation at varying fre-
quencies 1/h and number of time periods k

1/h ĉ1,h Â11,h �̂11,h ĉ2,h Â22,h �̂22,h
ˆ̄Q12,h ϑ̂h φ̂h

k=250

8 4.41e-4 4.87e-5 4.48e-4 2.90e-4 5.55e-5 1.43e-4 1.49e-5 3.65e-5 5.66e-5
32 7.58e-6 4.33e-6 7.87e-6 5.42e-6 5.05e-6 2.82e-6 2.94e-7 3.61e-6 1.10e-6
128 1.64e-7 4.23e-7 1.72e-7 1.84e-7 5.53e-7 1.00e-7 1.28e-8 4.06e-7 4.84e-8
512 6.42e-9 4.78e-8 6.89e-9 8.72e-9 6.36e-8 4.87e-9 6.7e-10 4.78e-8 2.54e-9

k=500

8 2.09e-4 2.53e-5 2.14e-4 9.92e-5 2.64e-5 4.91e-5 3.13e-6 1.77e-5 1.16e-5
32 2.28e-6 2.06e-6 2.36e-6 2.06e-6 2.38e-6 1.06e-6 1.02e-7 1.81e-6 3.67e-7
128 6.06e-8 2.06e-7 6.42e-8 7.75e-8 2.61e-7 4.23e-8 4.75e-9 2.05e-7 1.72e-8
512 2.55e-9 2.42e-8 2.74e-9 3.75e-9 3.17e-8 2.12e-9 2.6e-10 2.38e-8 9.6e-10

k=1000

8 6.71e-5 1.12e-5 6.85e-5 3.58e-5 1.23e-5 1.72e-5 1.00e-6 8.28e-6 3.67e-6
32 9.22e-7 1.01e-6 9.45e-7 8.87e-7 1.20e-6 4.50e-7 3.84e-8 8.82e-7 1.37e-7
128 2.74e-8 1.02e-7 2.89e-8 3.42e-8 1.32e-7 1.85e-8 1.89e-9 1.01e-7 6.72e-9
512 1.20e-9 1.21e-8 1.29e-9 1.72e-9 1.53e-8 9.7e-10 1.0e-10 1.18e-8 3.8e-10

k=2000

8 2.56e-5 5.41e-6 2.58e-5 1.50e-5 6.01e-6 7.19e-6 4.34e-7 3.93e-6 1.54e-6
32 4.19e-7 4.99e-7 4.29e-7 4.24e-7 5.76e-7 2.15e-7 1.76e-8 4.18e-7 6.03e-8
128 1.33e-8 5.18e-8 1.40e-8 1.68e-8 6.42e-8 9.08e-9 8.6e-10 4.86e-8 2.94e-9
512 6.0e-10 5.89e-9 6.4e-10 8.7e-10 7.69e-9 4.8e-10 4.8e-11 6.03e-9 1.6e-10

zero as k increases because, unlike the approximation bias, the finite sample bias
disappears. The relative variances in the bottom half of the table give the relative
efficiency of MLE with respect to QAML. They are for all parameters in the range
of 70 to 86 percent at the highest sample size.

4. CONCLUSIONS

This paper considered weak diffusion limits of two conditional correlation
GARCH specifications, namely the cDCC model of Aielli (2006) and the CCC
model of Bollerslev (1990). For the cDCC-GARCH model, the diffusion limit
is degenerate in the sense that the diffusion of the variances and that of the di-
agonal elements of the correlation driving process are pairwise governed by the
same Brownian motion. We show that this result is due to the particular structure

https://doi.org/10.1017/S0266466616000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000128


WEAK DIFFUSION LIMITS OF DCC MODELS 707

TABLE 3. MLE bias and variance of discrete time cDCC models simulated at
time interval h = 1/512, divided by corresponding QAML bias and variances of
continuous time approximation, in percent

k ĉ1,h Â11,h �̂11,h ĉ2,h Â22,h �̂22,h
ˆ̄Q12,h ϑ̂h φ̂h

Relative bias

250 82.7 2.4 86.4 79.4 2.3 79.8 74.3 11.6 86.7
500 77.3 0.6 84.0 74.7 0.6 74.5 71.3 6.1 84.1
1000 65.5 0.5 73.9 59.7 0.3 59.8 63.3 2.5 78.6
2000 39.9 0.5 45.7 39.6 0.2 37.7 45.9 0.3 57.5

Relative variance

250 99.0 95.1 98.1 91.5 88.5 89.5 83.0 79.2 80.1
500 100.9 68.8 102.2 103.7 83.8 100.3 87.5 66.7 83.8
1000 96.9 93.2 96.4 90.3 90.1 88.9 106.4 68.1 103.9
2000 86.3 83.6 84.8 75.5 81.1 73.0 81.6 72.5 84.7

of the noise propagation system of the variances and of the correlation driving
process. The CCC model, which can be obtained from cDCC under suitable pa-
rameter restrictions, admits a nondegenerate diffusion. Under an alternative set of
conditions regarding the convergence rates of the parameters, we obtain diffusion
limits characterized by a stochastic price process where either the variances, the
correlations, or both, are time-varying but deterministic. Our Monte Carlo study
confirms that estimation of the diffusion parameters by QAML is inconsistent for
any fixed frequency, but may provide good approximations if the frequency and
sample size are sufficiently large.

There are several possible extensions of this work. First of all, the assumption
of Gaussian innovations may be relaxed. One may also extend the results to allow
for volatility spillover. Furthermore, similar to Nelson (1990) it may be possible to
derive the stationary distribution of the continuous time limit of returns, variances
and correlations. Also, different GARCH specifications for the dynamics of the
variances of the marginal processes could be used, which would potentially solve
the redundancy problem in the sense of Theorem 1. Finally, it would be useful to
extend the results of this paper to jump-diffusion processes, based on the results
of Ethier and Kurtz (1986).

NOTES

1. Examples for N = 3: I+ =
⎡
⎣1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎦

′
and I− =

⎡
⎣0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎤
⎦ .

2. The same transformation can be carried out for the intercept of the V (h)
(k+1)h process, i.e.,

ch = (IN − Ah − Bh)c̄. The vector c̄ is frequency invariant and contains the (rescaled) unconditional
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variances of the return process
(
Y (h)
(k+1)h − Y (h)

kh

)
, i.e., c̄ = E

[(
Y (h)
(k+1)h − Y (h)

kh

) � (
Y (h)
(k+1)h −

Y (h)
kh

)]
/h = E

[
V (h)

(k+1)h

]
, for all h > 0.

3. In the univariate setting, the cases � = 0 (integrated variance) and � < 0 (strictly stationary
but not covariance stationary GARCH process) are also discussed in Nelson (1990). In this paper we
restrict the analysis to the covariance stationary case.

4. We thank the editor and an anonymous referee for making this suggestion.
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APPENDIX A: Weak convergence of stochastic systems

Based on the work of Stroock and Varadhan (1979), Kushner (1984), Ethier and Kurtz
(1986) and Nelson (1990), we introduce a set of conditions for the weak convergence of
a system of discrete time stochastic difference equations towards a system of stochastic
differential equations.

Let Prh be a fixed probability measure for each h > 0. Let Fkh be the σ -field generated

by (kh, X (h)
0 , X (h)

h , X (h)
2h , . . . , X (h)

(k−1)h), where X (h)
kh is an N -dimensional discrete time

Markov chain indexed by h > 0, k ∈ IN, with νh a probability measure on
(
IRN ,B(IRN )

)
,

where B(
IRN )

are the Borel sets on IRN , such that Prh[X (h)
0 ∈ �] = νh(�) for any � ∈

B(
IRN )

defines the distribution of the starting point X (h)
0 , and with transition probabilities
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Prh
[
X (h)

kh ∈ �
∣∣Fkh

] = �h,kh
(
X (h)

(k−1)h,�
)
, ∀ k ∈ IN, � ∈ B(

IRN )
. Let us now define X (h)

t

a continuous time process, formed from the discrete time process X (h)
kh as a càdlàg step

function with jumps at h,2h,3h, . . . , such that Prh
[
X (h)

t = X (h)
kh ,kh < t < (k +1)h

] = 1.

Finally, let Xt be a continuous time process obtained from X (h)
t by shrinking h towards

zero. Xt represents the limiting diffusion process to which, under Assumptions A.1 to A.4

given below, the discrete time process X (h)
t weakly converges as h → 0.

For the convergence results, we need the following assumptions.

Assumption A.1. There exist a continuous, measurable function a(x, t) : IRN ×
[0,∞) → �′ and a continuous, measurable function b(x, t) : IRN × [0,∞) → IRN such
that for all r > 0 and (k −1)h < t < kh

a) lim
h→0

sup
‖x‖�r

∥∥∥h−1E
[

X (h)
(k+1)h −X (h)

kh

∣∣∣X (h)
kh = x

]
−b(x, t)

∥∥∥ = 0, (A.1)

b) lim
h→0

sup
‖x‖�r

∥∥∥∥h−1E

[(
X (h)

(k+1)h −X (h)
kh

)(
X (h)

(k+1)h −X (h)
kh

)′∣∣∣∣X (h)
kh = x

]
−a(x, t)

∥∥∥∥ = 0,

(A.2)

c) ∃δ > 0 : lim
h→0

sup
‖x‖�r

∥∥∥∥h−1E

[ ∣∣∣(X (h)
(k+1)h − X (h)

kh )i

∣∣∣2+δ
∣∣∣∣X (h)

kh = x

]∥∥∥∥ = 0, where (.)i is

the i th element of the vector
(
X (h)

(k+1)h − X (h)
kh

)
.

Assumption A.2. There exists a continuous function σ(x, t) : IRN × [0,∞) → � such
that for all x ∈ IRN and t ≥ 0, a(x, t) = σ(x, t)σ (x, t)′.

Assumption A.3. X (h)
0 converges in distribution, as h → 0, to a random variable X0

with probability measure ν0 on (IRN ,B(IRN )).

Assumption A.4. ν0,b(x, t),a(x, t) uniquely specify the distribution of a diffusion pro-
cess Xt with initial distribution ν0, drift vector b(x, t) and diffusion matrix a(x, t).

We can now state the following theorem for the weak convergence of discrete time
stochastic sequences.

Theorem of weak convergence (Nelson, 1990). Under Assumptions A.1 to A.4, the se-

quence of discrete time process X (h)
kh indexed by h > 0, k ∈ IN, converges in distribution, as

h → 0, to the diffusion process Xt , i.e., the solution of the system of stochastic differential
equations

dXt = b(Xt , t)dt +σ(Xt , t)dWt , (A.3)

where Wt is an N-dimensional vector of mutually independent standard Brownian motions,
independent from X0, and with initial distribution ν0. The process Xt exists, it is finite in
finite time intervals almost surely, it is distributionally unique and its distribution does not
depend on the choice of σ(x, t).

For the proof, we refer to Nelson (1990). Conditions under which ν0, b(x, t), and a(x, t)
ensure finiteness of the process in finite time intervals and uniqueness of the limiting dif-
fusion are extensively discussed in Stroock and Varadhan (1979), Ethier and Kurtz (1986),
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and Nelson (1990). To ensure weak existence, uniqueness, and nonexplosion of the diffu-
sion process Xt on compact sets we rely on ‘Condition A’ of Nelson (1990), i.e.,

Condition A.1 (weak existence and uniqueness). Let a(x, t) and b(x, t) be continuous
in both x and t with two partial derivatives with respect to x.

Following Theorem 10.2.2 of Stroock and Varadhan (1979), we impose the following
conditions of nonexplosiveness of Xt .

Condition A.2 (nonexplosiveness). For each T > 0, there is a CT < ∞ such that

sup
0≤t≤T

‖a(x, t)‖ ≤ CT

(
1+|x |2

)
, x ∈ RN

and

sup
0≤t≤T

〈x,b(x, t)〉 ≤ CT

(
1+|x |2

)
, x ∈ RN .

These are not the weakest possible conditions, but they are easy to check and will suffice
in our model framework.

APPENDIX B: Proofs

Proof of Theorem 1. The process (1)–(5) is Markovian with drift and second moment
per unit of time given by (B.1)–(B.3) (drift) and (B.4), (B.6), and (B.8)–(B.11) (second
moments), respectively. The theorem of weak convergence applies if Assumptions A.1 to
A.4 hold. Assumption 3 has been assumed directly, so that it remains to verify Assumptions
A.1, A.2, and A.4.

We first show that the parameter convergence conditions (B.12)–(B.17) satisfy the re-
quirements of Assumption A.1. The first step is to compute the increments of the process
(1)–(3), that is

Y (h)
kh −Y (h)

(k−1)h = S(h)
kh η

(h)
kh ,

V (h)
(k+1)h − V (h)

kh = ch + Ah S(h)2
kh h−1

(
η
(h)
kh �η

(h)
kh

)
+ (Bh − IN )V (h)

kh ,

q(h)
(k+1)h −q(h)

kh = (1−ϑh −γh)q̄ +ϑhh−1vech
(

P(h)
kh η

(h)
kh η

(h)′
kh P(h)

kh

)
+ (γh −1)q(h)

kh ,

where we have used that q̄h = q̄(1−ϑh −γh).
Second, we compute the conditional moments to define suitable convergence conditions

as required by Assumption A.1. To simplify the notation, let us define the difference opera-

tor over an interval of size h as 	 : 	X (h)
kh = X (h)

kh − X (h)
(k−1)h . The first conditional moment

per unit of time of the increments of (1)–(3) is given by

h−1E
[
	Y (h)

kh

∣∣Fkh

]
= S(h)

kh E
[
η
(h)
kh

∣∣Fkh

]
= 0, (B.1)

h−1E
[
	V (h)

(k+1)h

∣∣Fkh

]
= h−1ch + Ahh−2S(h)2

kh E
[
η
(h)
kh �η

(h)
kh

∣∣Fkh

]
+h−1(Bh − IN )V (h)

kh

= h−1ch +h−1(Ah + Bh − IN )V (h)
kh , (B.2)
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h−1E
[
	q(h)

(k+1)h

∣∣Fkh

]
= h−1(1−ϑh −γh)q̄ +h−2ϑhvech

(
E

[
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

∣∣Fkh

])

+h−1(γh −1)q(h)
kh

= h−1(1−ϑh −γh)q̄ +h−1(ϑh +γh −1)q(h)
kh , (B.3)

where E
[
η
(h)
kh �η

(h)
kh

∣∣Fkh

]
= h 1N and vech

(
P(h)

kh E[η(h)
kh η

(h)′
kh

∣∣Fkh]P(h)
kh

)
=

hvech
(

P(h)
kh R(h)

kh P(h)
kh

)
= hq(h)

kh .

To compute the second moments per unit of time, consider the following partition

vech

(
Var

([
	Y (h)′

kh ,	V (h)′
(k+1)h,	q(h)′

(k+1)h

]′ ∣∣∣Fkh

))
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Var
(
	Y (h)

kh

∣∣Fkh

)
Cov

(
	Y (h)

kh ,	V (h)
(k+1)h

∣∣Fkh

)′

Cov
(
	Y (h)

kh ,	q(h)
(k+1)h

∣∣Fkh

)′

Var
(
	V (h)

(k+1)h

∣∣Fkh

)
Cov

(
	V (h)

(k+1)h,	q(h)
(k+1)h

∣∣Fkh

)′

Var
(
	q(h)

(k+1)h

∣∣Fkh

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The conditional variance of 	Y (h)
kh standardized by h is given by

h−1Var
[
	Y (h)

kh

∣∣Fkh

]
= h−1S(h)

kh E
(
η
(h)
kh η

(h)′
kh

∣∣Fkh

)
S(h)

kh = S(h)
kh R(h)

kh S(h)
kh . (B.4)

Similarly the conditional variance of 	V (h)
(k+1)h is given by

h−1Var
[
	V (h)

(k+1)h

∣∣Fkh

]
= Ah S(h)2

kh h−3
[

E

[(
η

(h)
kh �η

(h)
kh

)(
η

(h)
kh �η

(h)
kh

)′ ∣∣Fkh

]

−E
[(

η
(h)
kh �η

(h)
kh

)∣∣Fkh

]
E

[(
η

(h)
kh �η

(h)
kh

)∣∣Fkh

]′]
S(h)2

kh A′
h . (B.5)

= 2h−1 Ah S(h)2
kh

(
R(h)

kh � R(h)
kh

)
S(h)2

kh A′
h, (B.6)

where the second equality uses that, under the conditional normality assump-

tion, E
[
η
(h)
kh,i η

(h)
kh, j

∣∣Fkh
] = h2(

1 + 2R(h)2
kh,i j

)
, i, j ∈ {1, . . . , N }. Moreover, E

[(
η
(h)
kh �

η
(h)
kh

)∣∣Fkh
] = h1N .

The variance of 	q(h)
(k+1)h is given by

h−1Var
[
	q(h)

(k+1)h

∣∣Fkh

]

= ϑ2
h h−3E

[
vech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

)
vech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

)′ ∣∣Fkh

]

−ϑ2
h h−3E

[
vech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

)∣∣Fkh

]
E

[
vech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

)∣∣Fkh

]′
(B.7)

= h−1ϑ2
h

[
D+

N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N K (h)
kh D+

N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N −q(h)
kh q(h)′

kh

]
, (B.8)
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where the second equality uses that E
[
vech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

)∣∣Fkh
] = hq(h)

kh , and where

K (h)
kh = h−2E

[
η
(h)
kh η

(h)′
kh ⊗ η

(h)
kh η

(h)′
kh

∣∣Fkh
]

is the (N (N + 1)/2 × N (N + 1)/2) matrix of

conditional fourth moments of η
(h)
kh which, given the normality assumption of the innova-

tions, is given by

K (h)
kh = 2D+

N

(
R(h)

kh ⊗ R(h)
kh

)
D+′

N +vech
(

R(h)
kh

)
vech

(
R(h)

kh

)′
,

which is a consequence of Theorem 10.2 of Magnus (1988), see the proof of Theorem 1 of
Hafner (2003).

Finally, the conditional covariances are

h−1Cov
[
	Y (h)

kh ,	V (h)
(k+1)h

)∣∣Fkh

]
= h−1E

[(
S(h)

kh η
(h)
kh

)(
Ah S(h)2

kh h−1
(
η

(h)
kh �η

(h)
kh

))′ ∣∣Fkh

]

= h−2S(h)
kh E

[
η

(h)
kh

(
η

(h)
kh �η

(h)
kh

)′∣∣Fkh

]
S(h)2

kh Ah = 0, (B.9)

because all conditional third moments of η
(h)
kh are equal to zero given the normality

assumption. Furthermore, we have

h−1Cov
[
	Y (h)

kh ,	q(h)
(k+1)h

∣∣Fkh

]

= h−2E

[(
S(h)

kh η
(h)
kh

)(
ϑhvech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

))′ ∣∣Fkh

]

= h−2ϑh S(h)
kh E

[
η
(h)
kh vech

(
η
(h)
kh η

(h)′
kh

)′ ∣∣Fkh

](
D+

N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N

)
= 0 (B.10)

and

h−1Cov
[
	V (h)

(k+1)h ,	q(h)
(k+1)h

∣∣Fkh

]
=

= h−3E

[(
Ah S(h)2

kh

(
η
(h)
kh �η

(h)
kh

))(
ϑhvech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

))′ ∣∣Fkh

]

−h−3E
[

Ah S(h)2
kh

(
η
(h)
kh �η

(h)
kh

)∣∣Fkh

]
E

[
ϑhvech

(
P(h)

kh η
(h)
kh η

(h)′
kh P(h)

kh

)∣∣Fkh

]′

= h−1ϑh Ah S(h)2
kh

[
I∗K (h)

kh D+
N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N −1N q(h)′
kh

]
, (B.11)

where the second equality uses η
(h)
kh �η

(h)
kh = diag

(
η
(h)
kh η

(h)′
kh

) = I∗vech
(
η
(h)
kh η

(h)′
kh

)
.

For the conditional moments (B.1)–(B.3) (drift) and (B.4), (B.6), and (B.8)–(B.11) (sec-
ond moments) to converge to well behaved functions as h → 0, as required by Assump-
tion 1 a) and b), the following limits must exist and be finite

lim
h→0

h−1ch = c, (B.12)

lim
h→0

h−1(IN − Ah − Bh) = �, (B.13)

lim
h→0

h−1/2 Ah = A, (B.14)

lim
h→0

h−1 Q̄h = Q̄φ, (B.15)
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lim
h→0

h−1(1−ϑh −γh) = φ, (B.16)

lim
h→0

h−1/2ϑh = ϑ, (B.17)

where c is a (N ×1) vector, A and � are (N × N ) diagonal matrices and φ and ϑ are scalars
with all elements positive and finite, such that c > 0 (elementwise) ensures positivity of
the variance process, A > 0 and ϑ > 0 ensure that the rescaled second conditional moment

of V (h)
kh and q(h)

kh does not vanish as h → 0, while � > 0 and φ > 0 ensure covariance
stationarity of the return process. Finally, by straightforward computation as in Nelson
(1990), under (B.12)–(B.17), Assumption A.1 c) holds for δ = 2, i.e.,

h−1 lim
h→0

E

[∣∣∣(	Y (h)
kh

)
i

∣∣∣4 ∣∣∣Fkh

]
= 0, i, i = 1, . . . , N ,

h−1 lim
h→0

E

[∣∣∣(	V (h)
(k+1)h

)
i

∣∣∣4 ∣∣∣Fkh

]
= 0, i, i = 1, . . . , N ,

h−1 lim
h→0

E

[∣∣∣(	q(h)
(k+1)h

)
i

∣∣∣4 ∣∣∣Fkh

]
= 0, i, i = 1, . . . , N (N +1)/2,

which shows that Assumption A.1 holds under our convergence conditions (6) to (11), and
the drift and diffusion matrix for the system of stochastic differential equations are defined,
which completes the first part of the proof.

Substituting (B.12)–(B.17) into (B.1)–(B.3) (first moments) and (B.4), (B.6), and (B.8)–
(B.11) (second moments), we obtain

h−1E
[
	Y (h)

kh

∣∣Fkh

]
= 0

h−1E
[
	V (h)

(k+1)h

∣∣Fkh

]
= c −�V (h)

kh +o(1)

h−1E
[
	q(h)

(k+1)h

∣∣Fkh

]
= φ

(
q̄ +q(h)

kh

)
+o(1)

for the drift, while for the moments of second order we have

h−1Var
[
	Y (h)

kh

∣∣Fkh

]
= S(h)

kh R(h)
kh S(h)

kh ,

h−1Var
[
	V (h)

(k+1)h

∣∣Fkh

]
= 2Ah S(h)2

kh

(
R(h)

kh � R(h)
kh

)
S(h)2

kh Ah +o(1),

h−1Var
[
	q(h)

(k+1)h

∣∣Fkh

]

= ϑ2
[(

D+
N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N

)
K (h)

kh

(
D+

N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N

)
−q(h)

kh q(h)′
kh

]
+o(1),

h−1Cov
[
	Y (h)

kh ,	V (h)
(k+1)h

]∣∣Fkh

)
= 0,

h−1Cov
[
	Y (h)

kh ,	q(h)
(k+1)h

]∣∣Fkh

)
= 0,

h−1Cov
[
	V (h)

(k+1)h ,	q(h)
(k+1)h

]∣∣Fkh

)

= ϑ AS(h)2
kh

[
I∗K (h)

kh D+
N

(
P(h)

kh ⊗ P(h)
kh

)
D+′

N −1N q(h)′
kh

]
+o(1).

Hence, as h → 0, the functions (13) and (14) are solutions of (A.1) and (A.2) and
represent the drift and the diffusion matrix of the diffusion process Xt = [Y ′

t ,V ′
t ,q ′

t ]′.
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From the representation (16), we have that the columns N +1, . . . ,2N and 2N +1, . . . ,3N
are collinear. Thus, the diffusion matrix is singular with rank(a([Y ′

t ,V ′
t ,q ′

t ]′)) = N (N +
3)/2 < dim(Xt )) = N (N +5)/2.

The matrix a(Xt ) is positive semidefinite so that its matrix square root σ(Xt ) can be ob-
tained via Cholesky or spectral decomposition of (14), which shows that Assumption A.2
holds. Condition A.1 is satisfied: The drift term b(x) is linear in x such that its second or-
der derivatives are zero. The diffusion term a(x) consists of components aY Y , aV V , aV q ,
and aqq , all of which are matrix products, Kronecker of Hadamard products of St , Rt , Pt ,
and qt . By the chain rule and the continuous differentiability of Kronecker and Hadamard
products, the diffusion term a(x) is also twice continuously differentiable.

Condition A.2 holds since the diffusion matrix and the inner product of the drift
and the state variable X are at most of order two in X : ||a(x)|| = Tr1/2(

a2
Y Y +

a2
V V + a2

qq + 2a′
V q aV q

) ≤ ||aY Y || + ||aV V || + ||aqq || + 2||aV q ||, where ||aY Y || =
||St Rt St || ≤ ||S2

t ||||Rt || ≤ N ||V || ≤ N
(
1 + ||V ||2)

, ||aV V || = 2||AS2
t (Rt � Rt )S2

t A|| ≤
2N ||A||2||S2

t ||2 = 2N ||A||2||Vt ||2, ||aqq || ≤ ϑ2(||D+
N (Pt ⊗ Pt )D+′

N Kt D+
N (Pt ⊗

Pt )D+′
N ||+||qt q ′

t ||). The first term can be bounded by ϑ2||D+
N ||4||Kt ||||Pt ⊗ Pt ||2, where

||Kt || ≤ 2||D+
N ||2||Rt ⊗ Rt ||+||vech(Rt )vech(Rt )

′|| ≤ 2N 2||D+
N ||2 + N (N +1)/2 =: CN

and ||Pt ⊗ Pt ||2 = Tr
(
P2

t ⊗ P2
t
) = Tr

(
P2

t
)2 = Tr(Qt )

2. By the cr -inequality, there

is a constant cr such that Tr(Qt )
2 ≤ cr Tr(Q2

t ), and Tr
(
Q2

t
) ≤ 2||qt ||2. Hence,

||aqq || ≤ ϑ2(2||D+
N ||4cr CN + 1)||qt ||2. By the Cauchy–Schwarz inequality, ||aV q || ≤√||aV V ||||aqq || ≤ ||aV V || ∨ ||aqq ||. Finally, 〈x,b(x)〉 = cVt − �V 2

t + φq̄qt − φq2
t and

each of the terms can be bounded by CT (1 +|x |2). This proves that Condition A.2 holds
and together with Condition A.1 ensures weak existence, uniqueness and nonexplosion of
the diffusion process Xt on compact sets. Thus Assumption A.4 holds, which completes
the proof. n

Proof of Theorem 2. We first show that under the new conditions, Assumption A.1
holds. Assumption 1a) holds trivially. To show Assumption A.1b), consider the limit, as
h → 0, of the moments of interests (B.6), (B.8), and (B.11). The case δ1 = δ2 = 0 is covered

by Theorem 1. If δ1 > 0, then lim
h→0

h−1Var[	V (h)
(k+1)h |Fkh] = 0 provided that

lim
h→0

h−1/2 Ah = 0 (B.18)

that is, Ah is of order h1/2+δ1 , δ1 > 0.

Similarly, if δ2 > 0, then lim
h→0

h−1Var[	q(h)
(k+1)h |Fkh] = 0 provided that

lim
h→0

h−1/2ϑh = 0 (B.19)

that is, ϑh is of order h1/2+δ2 , δ2 > 0.
Either δ1 > 0 or δ2 > 0, or both, also ensure that

lim
h→0

h−1Cov
[
	V (h)

(k+1)h ,	q(h)
(k+1)h

∣∣Fkh

]
= 0.

Hence, under (B.18) and (B.19) Assumption A.1b) holds. Finally, Assumption A.1c) can
be shown similar to the case δ1 = δ2 = 0 (Theorem 1).
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The theorem of weak convergence applies by analogy to Theorem 1. Furthermore,
depending on the combination of convergence conditions for Ah and ϑh , we either obtain
a diffusion with deterministic variances and stochastic correlations (i.e., δ1 > 0 and δ2 = 0),
or stochastic variances and deterministic correlations (i.e., δ1 = 0 and δ2 > 0), or determin-
istic variances and correlations (i.e., δ1 > 0 and δ2 > 0). The drift and diffusion matrices
can be derived from those of Theorem 1. n
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