MOORE SPACES, SEMI-METRIC SPACES AND CONTINUOUS MAPPINGS CONNECTED WITH THEM

C. M. PAREEK

1. Introduction. In [1] Arhangel'skiĭ announced that any σ -paracompact p-space could be mapped onto a Moore space by a perfect map. However Burke [3] recently showed that this is not true in general and he gave an example of a T_2 , locally compact, σ -paracompact space which cannot be mapped onto a Moore space by a perfect map. Therefore the following question is suggested:

Question 1. How can the perfect preimages of Moore spaces be characterized?

In [7] Ponomarev established: "In order that a regular space X be paracompact, it is necessary and sufficient that for every open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto some metric space Y". This suggests further questions.

Question 2. How can the spaces which admit ω -mappings onto Moore spaces be characterized?

Question 3. How can the spaces which admit ω -mappings onto semi-metric spaces be characterized?

The main aim of this note is to answer the questions raised above.

Definitions of terms not given here can be found in [1]. A regular space in this paper is assumed to be T_1 .

Acknowledgment. I am grateful to Dr. Kaul and Dr. Weston for reading the first draft of the manuscript.

2. ω -mappings and s-paracompact spaces.

Definition 2.1. Let ω be an open cover of a space X. A continuous mapping f from the space X onto some space Y is called an ω -mapping if for each point y in Y, there exists a neighbourhood O_y such that $f^{-1}O_y$ is contained in an element of the cover ω .

Definition 2.2. A topological space X is called s-paracompact if for each open cover \mathscr{U} of X there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X such that the following conditions are satisfied:

Received May 21, 1971 and in revised form, September 12, 1972. This research was partially supported by a research associateship at the University of Saskatchewan.

- (a) $\mathcal{V}_1 = \mathcal{U}$ and \mathcal{V}_{i+1} refines \mathcal{V}_i for each i;
- (b) for each x in X there is i_x such that x is in exactly one member of \mathscr{V}_i for all $i > i_x$;
 - (c) for each x in X, $A_x = \bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathcal{V}_i)$ is closed in X.

Definition 2.3. A T_1 -space X is a semi-metric space provided that there exists a distance function (or semi-metric) d such that for each (x, y) in $X \times X$, (1) d(x, y) = d(y, x); (2) $d(x, y) \ge 0$ and d(x, y) = 0 only if x = y; and (3) for every $M \subset X$, $\inf\{d(x, y)|y \in M\} = 0$ if and only if x is in the closure of M.

Lemma 2.1. If for every open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto a s-paracompact space Y, then X is a s-paracompact space.

Proof. Let ω be an open cover of the space X. Then by the hypothesis there exists an ω -mapping f of the space X onto some s-paracompact space Y. For each y in Y, let O_y be an open neighbourhood of y such that $f^{-1}O_y$ is contained in some $U \in \omega$. Evidently, $\mathscr{O} = \{O_y | y \in Y\}$ is an open cover of Y. Since Y is s-paracompact, there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of Y such that $(1)\mathscr{V}_1 = \mathscr{O}$ and \mathscr{V}_{i+1} refines \mathscr{V}_i for each i; (2) given y in Y there is i_y such that y i $\geq i_y$, y is exactly in one member of \mathscr{V}_i ; and (3) for each y in Y, $A_y = \bigcap_{i=1}^{\infty} \operatorname{st}(y, \mathscr{V}_i)$ is closed in Y. Let

$$\mathcal{W}_{i+1} = f^{-1}\mathcal{V}_i = \{ f^{-1}V | V \in \mathcal{V}_i \} \text{ for } i = 1, 2, \dots,$$

and $\mathcal{W}_1 = \omega$.

Since \mathcal{V}_{i+1} refines \mathcal{V}_i for each i, \mathcal{W}_{i+1} refines \mathcal{W}_i for each. Given x in X, there is a unique y in Y for which x belongs to $f^{-1}y$. Also for y in Y there is an i_y such that for all $i \geq i_y$, y is exactly one member of \mathcal{V}_i . By the construction of the sequence $\{\mathcal{W}_i\}_{i=1}^\infty$, we can conclude that x belongs to exactly one member of \mathcal{W}_i for all $i \geq i_y + 1$ and for any x in X, $A_x = f^{-1}A_{fx}$ is closed. Hence X is a s-paracompact space.

Lemma 2.2. Let X be a s-paracompact space. Then for each open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto some semi-metric space Y.

Proof. Let $\omega = \{W_s | s \in S\}$ be an open cover of an s-paracompact space X. Then there exists a sequence $\{\mathscr{W}_i\}_{i=1}^{\infty}$ of open covers of X satisfying the condition that for each x in X, there is an i_x such that x is in exactly one member of \mathscr{W}_i for $i \geq i_x$, \mathscr{W}_{i+1} refines \mathscr{W}_i for each i and $A_x = \bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathscr{W}_i)$ for each x in X is closed, where $\mathscr{W}_1 = \omega$.

For each i, define $U_i = \bigcup \{W \times W | W \in \mathcal{W}_i\}$. Clearly $\{U_i\}_{i=1}^{\infty}$ is a symmetric collection of subsets of $X \times X$ containing $\Delta = \{(x,x) | x \in X\}$ and $U_{i+1} \subset U_i$ for each i. Define on X an equivalence relation by setting $x \sim y$ if and only if $y \in \bigcap_{i=1}^{\infty} U_i[x]$ for any pair of points $x, y \in X$. It is easy to verify that \sim is an equivalence relation on X. Note that $A_x = \bigcap_{i=1}^{\infty} U_i[x]$ for each x in X.

Define on X a new topology τ by setting a subset G of X to be open if and only if for each x in G, there is an i such that $U_i[x] \subset G$. Denote by X_τ the set X together with the new topology τ . Denote by $Y = X_\tau/\sim$ the quotient space of X_τ . Let $\psi: X \to X_\tau$ be the identity map and $\Phi: X_\tau \to Y$ be the quotient map. Now define $f = \Phi \circ \psi$. We claim that f is an ω -mapping of X onto Y and that Y is a semi-metric space.

f is an ω -mapping: Since τ is weaker than the original topology of X, ψ is continuous. Because Φ is the quotient map, it is continuous. Therefore $f = \Phi \circ \psi$ is continuous. That Φ is also an open map is seen as follows. Let U be an open subset of X_{τ} . To show that ΦU is open, it is enough to show that

$$U^{\#} = \Phi^{-1}\Phi U = \bigcup \{A_x | A_x \cap U \neq \emptyset, x \in X\}$$

is open in X_{τ} where $A_x = \bigcap_{i=1}^{\infty} U_i[x]$ for all x in X. If y belongs to U^{\sharp} , then $A_y \cap U \neq \emptyset$. Let $z \in A_y \cap U$. Then for some i we have $U_i[z] \subset U$, because U is an open subset of X_{τ} . But $A_y = A_z \subset U_i[z] \subset U$ implies that there is a j such that $y \in U_j[y] \subset U \subset U^{\sharp}$. Hence U^{\sharp} is open and consequently, Φ is an open map. To each y in Y, assign $O_y = \Phi(\operatorname{int}_{\tau}U_{i_x}[x])$ where x is such that fx = y and i_x is an index for which x is in exactly one member of \mathcal{W}_{i_x} ; note that x is in the int $U_{i_x}[x]$. Now it is easy to show that $f^{-1}O_y$ is contained in some member of ω . Since y is arbitrary f is an ω -mapping of X onto Y.

Y is a semi-metric space: Define $\mathcal{W}_{i}' = f \mathcal{W}_{i} = \{ fW | W \in \mathcal{W}_{i} \}$ for each *i*. It is easy to see that for each *y* in *Y*, $\{ st(y, \mathcal{W}_{i}') \}_{j=1}^{\infty}$ is a base for the open sets containing *y*. Also, \mathcal{W}'_{i+1} refines \mathcal{W}_{i}' for all *i*. Since \mathcal{W}_{i+1} refines \mathcal{W}_{i} for each *i*.

For $y_1, y_2 \in Y$, let $\alpha(y_1, y_2)$ denote the smallest integer n such that there is no element of $\mathcal{W}_{n'}$ containing both y_1 and y_2 . If no such integer exists $\alpha(y_1, y_2) = \infty$. Now define $d: Y \times Y \to \mathbf{R}$ by setting $d(y_1, y_2) = 2^{-\alpha(y_1, y_2)}$ for (y_1, y_2) in $Y \times Y$. Then clearly, for each y, y_1, y_2 in Y, d(y, y) = 0 and $d(y_1, y_2) = d(y_2, y_1)$. Also, if $y_1 \neq y_2$, there is an open set U containing one of the points, say y_1 , and not containing y_2 ; since Y is a T_1 -space. Hence there is an n such that $y_1 \in \operatorname{st}(y_1, \mathcal{W}_{n'}) \subset U$. Since $y_2 \notin U$ implies $y_2 \notin \operatorname{st}(y_1, \mathcal{W}_{n'})$, we have $d(y_1, y_2) \geq 1/2^n > 0$.

We note here that

$$\{y|d(y_0, y) < 1/2^n\} = s(y_0; 1/2^n) = st(y_0, \mathcal{W}_n')$$

for each y_0 in Y and each n. For y is in $s(y_0; 1/2^n)$ if and only if $d(y_0, y) < 1/2^n$ if and only if $\alpha(y_0, y) > n$ if and only if there exists W in \mathscr{W}_n' such that $y_0, y \in W$, i.e., if and only if $y \in \operatorname{st}(y_0, \mathscr{W}_n')$. Now let $M \subset Y$. Then $y \in M^-$ if and only if $\operatorname{st}(y, \mathscr{W}_n') \cap M \neq \emptyset$ for each n if and only if $s(y; 1/2^n) \cap M \neq \emptyset$ for each n, i.e., if and only if d(y, M) = 0. Hence Y is a semi-metric space.

Lemma 2.3. Every semi-metric space X is s-paracompact.

Proof. McAuley [5] pointed out that by using a proof analogous to that of Theorem 2 of [2], it follows that given any open cover $\mathscr{U} = \{U_s | s \in S\}$ of a semi-metric space X there exists a σ -discrete closed refinement $\mathscr{V} = \bigcup_{i=1}^{\infty} \mathscr{V}_i$,

where $\mathscr{V}_i = \{\mathscr{V}_{\alpha}{}^i | \alpha \in \Lambda_i\}$ for each i, such that each member of \mathscr{V}_i is contained in some member of \mathscr{V}_{i+1} for each i.

Denote by $U_{\alpha,s}^1$ a member of \mathscr{U} which contains V_{α}^i and let $O_{\alpha}^i = X - \bigcup \{V_{\beta}^i | \beta \in \Lambda_i, \alpha \neq \beta\}$. Define

$$\mathcal{W}_{i+1} = \{O_{\alpha}^{i} \cap U_{\alpha,s}^{i} | \alpha \in \Lambda_{i}\} \cup \{(X - \bigcup \{V_{\alpha}^{i} | \alpha \in \Lambda_{i}\}) \cap U_{s} | s \in S\}$$

for each $i=1,2,\ldots$, and $\mathcal{W}_1=\mathcal{U}$. Now it is easy to see that the sequence $\{\mathcal{W}_i\}_{i=1}^{\infty}$ of open covers of X satisfies (a) $\mathcal{W}_1=\mathcal{U}$ and \mathcal{W}_{i+1} refines \mathcal{W}_i for each i; (b) for each x in X, there is an i_x such that x is in exactly one member of \mathcal{W}_i for all $i \geq i_x$; and (c) for each x in X, $A_x = \bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathcal{W}_i)$ is closed in X. Hence X is s-paracompact.

Theorem 2.4. A topological space X is s-paracompact if and only if for each open cover ω of X there exists an ω -mapping $f: X \to Y$ onto some semi-metric space Y.

The proof follows from Lemmas 2.1, 2.2, and 2.3.

3. ω -mappings and Moore spaces.

Definition 3.1. A topological space X is called d-paracompact if for each open cover \mathscr{U} of X there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X such that the following conditions are satisfied:

- (i) $\mathcal{V}_i = \mathcal{U}$ and \mathcal{V}_{i+1} refines \mathcal{V}_i for each i;
- (ii) given i and x in X, there is j (j depending on i and x) and some V in \mathscr{V}_i such that $\operatorname{st}(x,\mathscr{V}_j)\subset V$;
- (iii) given i and x in X, there is j such that for any y in $\operatorname{st}(x, \mathscr{V}_j)$ there is k_y such that $\operatorname{st}(y, \mathscr{V}_{k_y}) \subset \operatorname{st}(x, \mathscr{V}_i)$.

(One may note that for each x in X, $A_x = \bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathscr{V}_i)$ is closed in X.)

Definition 3.2. A topological space X is called developable if there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying the condition that for each x in X and any open set U containing x, there is i such that $\operatorname{st}(x,\mathscr{V}_i) \subset U$. A regular developable space is called a Moore space.

Lemma 3.1. Every developable space X is a d-paracompact space.

The proof follows immediately from the definition of developable spaces.

LEMMA 3.2. If for each open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto a d-paracompact space Y, then X is a d-paracompact space.

The proof is similar to Lemma 2.1.

Lemma 3.3. Let X be a d-paracompact space. Then for each open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto some T_1 developable space Y.

Proof. Let X be a d-paracompact space. Then for each open cover ω of X, there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying

- (i) $\mathcal{V}_i = \omega$ and \mathcal{V}_{i+1} refines \mathcal{V}_i for each i;
- (ii) given i and x in X there is a j > i (depending on x and i) and some V in \mathscr{V}_i such that $\operatorname{st}(x, \mathscr{V}_j) \subset V$; and
 - (iii) given i and x in X, there is a j such that for any y in $\operatorname{st}(x, \mathcal{V}_j)$, there is a k_y such that $\operatorname{st}(y, \mathcal{V}_{k_y}) \subset \operatorname{st}(x, \mathcal{V}_i)$.

Define a new topology τ on X by taking $\{\operatorname{st}(x,\mathscr{V}_i)\}_{i=1}^{\infty}$ as a base for the neighbourhood system at x in X_{τ} . Denote by X_{τ} the set X with the new topology τ . Define an equivalence relation \sim on X by setting $x \sim y$ if and only if $y \in \bigcap_{i=1}^{\infty} \operatorname{st}(x,\mathscr{V}_i)$. Let $Y = X_{\tau}/\sim$ be the quotient space of X_{τ} , let $\Phi: X_{\tau} \to Y$ be the quotient map, and let $\psi: X \to X$ be the identity map. Define $f = \Phi \circ \psi$. Then we claim that f is an ω -mapping of X onto Y and Y is a T_1 developable space.

Using a proof analogous to Lemma 2.3 one can show that f is an ω -mapping of X onto Y and that Φ is open.

Y is a developable space: First note that $\Phi^{-1}\Phi$ int_{τ} $A = \operatorname{int}_{\tau}A$ where A is any subset of X. Define $\mathcal{W}_1 = \{\Phi \operatorname{int}_{\tau}V | V \in \mathcal{V}_i\}$ for each i. We claim that $\{\mathcal{W}_i\}_{i=1}^{\infty}$ is a development for Y. Let $y \in Y$ and let U be an open set in Y containing y. Then $f^{-1}y \subset f^{-1}U$, i.e.,

$$(\Phi \circ \psi)^{-1}y \subset (\Phi \circ \psi)^{-1}U$$
 implies $\Phi^{-1}y \subset \Phi^{-1}U$.

For some x in X, $\Phi^{-1}y = \bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathscr{V}_i)$. Since $\Phi^{-1}U$ is open and contains $\bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathscr{V}_i)$ we have $\operatorname{st}(\Phi^{-1}y, \mathscr{V}_i) \subset \Phi^{-1}U$ for some i. Also, it follows from Note [2] that Y is T_1 . Hence the lemma is proved.

Theorem 3.4. A topological space X is a d-paracompact space if and only if for each open cover ω of X there exists an ω -mapping of X onto some T_1 developable space.

The proof follows from Lemmas 3.1, 3.2 and 3.3.

Remark. In view of Theorem 9 of Bing [2] and Theorem 3.4, it is easy to show that a space X is d-paracompact if and only if for each open cover \mathscr{U} of X there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying the following properties:

- (a') $\mathscr{V}_1 = \mathscr{U}$ and \mathscr{V}_{i+1} refines \mathscr{V}_i for each i;
- (b') for each x in X there is an i_x such that x is exactly in one member of \mathscr{V}_i for all $i \geq i_x$;
- (c') given i and x in X, there is j such that for any y in $\operatorname{st}(x, \mathscr{V}_j)$ there is a k_y such that $\operatorname{st}(y, \mathscr{V}_{k_y}) \subset \operatorname{st}(x, \mathscr{V}_i)$.

Lemma 3.5. A topological space X is a regular d-paracompact space if and only if for each open cover \mathcal{U} of X there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X such that the following conditions are satisfied:

- (1) $\mathcal{V}_1 = \mathcal{U}$ and \mathcal{V}_{i+1} refines \mathcal{V}_i for each i;
- (2) given i and x in X, there is j (j depending on i and x) and some V in \mathscr{V}_i such that $\operatorname{st}(x,\mathscr{V}_i)^- \subset V$;

- (3) given i and x in X, there is j such that for any y in $\operatorname{st}(x, \mathscr{V}_j)$ there is a k_y such that $\operatorname{st}(y, \mathscr{V}_{k_y}) \subset \operatorname{st}(x, \mathscr{V}_i)$.
- *Proof.* Let \mathscr{U} be an open cover of a regular d-paracompact space X. Then there exists a sequence $\{\mathscr{W}_i\}_{i=1}^{\infty}$ of open covers of X satisfying the following properties:
- (1') $\mathcal{W}_1 = \mathcal{U}$, for each *i* the closure of each member of \mathcal{W}_{i+1} is contained in some member of *U*, and \mathcal{W}_{i+1} refines \mathcal{W}_i for each *i*;
- (2') given i and x in X, there is j (j depending on i and x) and some W in \mathcal{W}_i such that $\operatorname{st}(x,\mathcal{W}_j) \subset W$; and
- (3') given i and x in X, there is a j such that for any y in $\operatorname{st}(x, \mathcal{W}_j)$ there is a k_y such that $\operatorname{st}(y, \mathcal{W}_{k_y}) \subset \operatorname{st}(x, \mathcal{W}_j)$.

Now given an integer i_0 assume we can construct a sequence $\{\mathscr{V}_i\}_{i=1}^\infty$ of open covers of X satisfying (i) $\mathscr{V}_1 = \mathscr{W}_1 = \mathscr{U}$ and \mathscr{V}_{j+1} refines \mathscr{V}_j for each j; (ii) given $i < i_0$ and x in X, there is a j (depending on i and x) and some V in \mathscr{V}_i such that $\operatorname{st}(x,\mathscr{V}_j)^- \subset V$; (iii) given j and x in X, there is a l such that for any y in $\operatorname{st}(x,\mathscr{V}_l)$ there is a k_y such that $\operatorname{st}(y,\mathscr{V}_{k_y}) \subset \operatorname{st}(x,\mathscr{V}_j)$. Now define $\{\mathscr{V}_i'\}_{i=1}^\infty$, a sequence of open covers of X such that $\mathscr{V}_i' = \mathscr{V}_i$ for $i=1,\ldots,i_0$ and $\mathscr{V}_{i_0+j}' = \mathscr{W}_{i_0j+1}$ for $j=1,2,\ldots$ where $\{\mathscr{W}_{i_0j}\}_{j=1}^\infty$ is a sequence of open covers of X satisfying (a') $\mathscr{W}_{i_01} = \mathscr{V}_{i_0+1}$ for each i, the closure of members of \mathscr{W}_{i_0j+1} is contained in some member of \mathscr{V}_{i_0+1} , and \mathscr{W}_{i_0j+1} refines \mathscr{W}_{i_0j} ; (b') given i and x in X, there is j (j depending on i and x) and some V in \mathscr{V}_i' such that $\operatorname{st}(x,\mathscr{V}_j) \subset V$; (c') given i and $x \in X$, there is a j such that for any y in $\operatorname{st}(x,\mathscr{V}_j')$ there is k_y such that $\operatorname{st}(y,\mathscr{V}_{k_y}') \subset \operatorname{st}(x,\mathscr{V}_i')$. Hence by the induction there exists a sequence $\{\mathscr{W}_i\}_{i=1}^\infty$ of open covers of X satisfying conditions 1, 2 and 3. This proves the lemma.

The converse is trivial.

Lemma 3.6. Let X be a regular d-paracompact space. Then for each open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto some Moore space Y.

Proof. Let X be a regular d-paracompact space. Then by Lemma 3.5 for each open cover ω of X, there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying (i) $\mathscr{V}_1 = \omega$ and \mathscr{V}_{i+1} refines \mathscr{V}_i for each i; (ii) given i and x in X there is j > i (j depending on x and i) and some V in \mathscr{V}_i such that $\operatorname{st}(x,\mathscr{V}_j)^- \subset V$; and (iii) given i and x in X, there is a j such that for any y in $\operatorname{st}(x,\mathscr{V}_j)$, there is k_y such that $\operatorname{st}(y,\mathscr{V}_{k_y}) \subset \operatorname{st}(x,\mathscr{V}_i)$.

Define a new topology τ on X by setting $\{\operatorname{st}(x,\mathscr{N}_i)\}_{i=1}^\infty$ as a base for the neighbourhood system at x in X. Denote by X_τ the set X with the new topology τ . Define an equivalence relation \sim on X by setting $x \sim y$ if and only if $y \in \bigcap_{i=1}^\infty \operatorname{st}(x,\mathscr{N}_i)$. Let $Y = X_\tau/\sim$ be the quotient space of X_τ , $\Phi: X_\tau \to Y$ be the quotient map, and $\psi: X \to X_\tau$ be the identity map. Now define $f = \Phi \circ \psi$. Then as in Lemma 3.3 we can show that f is an ω -mapping of X onto Y and Y is a developable space. It remains to show that Y is regular.

For this, it is enough to show that $\{\operatorname{st}(x, \mathcal{V}_i)^-\}_{i=1}^{\infty}$ is a base for the neighbourhood system at x in X in the topology τ .

Let U be an open subset of X relative to τ and let x be in U. Then for some i we have $x \in \operatorname{st}(x, \mathscr{V}_i) \subset U$. By condition (ii) on the sequence of covers $\{\mathscr{V}_i\}_{i=1}^{\infty}$ we have

$$x \in \operatorname{st}(x, \mathscr{V}_k)^- \subset V \subset \operatorname{st}(x, \mathscr{V}_i) \subset U$$

for some k and V in \mathscr{V}_i . Hence $\{\operatorname{st}(x,\mathscr{V}_i)^-\}_{i=1}^{\infty}$ is a base at x in X in the topology τ . Y is obviously T_1 (by the remark in Definition 3.1).

Lemma 3.7. If for each open cover ω of the space X there exists an ω -mapping $f: X \to Y$ onto a regular d-paracompact space Y, then X is a regular d-paracompact space.

We leave the proof of Lemma 3.7 to the reader.

Theorem 3.8. A topological space X is regular and d-paracompact if and only if for each open cover ω of X there exists an ω -mapping $f:X \to Y$ onto some Moore space.

The proof follows from Lemmas 3.5, 3.6 and 3.7.

4. Perfect mappings and Moore spaces.

Definition 4.1. Let X be a topological space. A decomposition of X is a collection $\mathscr A$ of nonempty subsets of X such that $X = \bigcup \{A \mid A \in \mathscr A\}$. A compact decomposition of X is a decomposition $\mathscr A$ of X such that every member of $\mathscr A$ is a compact subset of X.

Definition 4.2. Let X be a topological space, let $\mathscr A$ be a decomposition of X and let $\mathscr U$ be an open cover of X. Then $\mathscr U$ is called *cover modulo the decomposition* $\mathscr A$ of X if for A in $\mathscr A$ and U in $\mathscr U$, $A \cap U \neq \emptyset$ implies $A \subset U$.

Definition 4.3. Let X be a topological space and let \mathscr{A} be a decomposition of X. Then X is said to have development modulo a decomposition provided that there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying the following properties:

- (a) \mathcal{V}_{i+1} refines \mathcal{V}_i for each i;
- (b) \mathscr{V}_i is a cover modulo the decomposition \mathscr{A} of X for each i;
- (c) for each A in $\mathscr A$ and any open set U of X containing A there is an i such that $\operatorname{st}(A,\mathscr V_i)\subset U$.

Definition 4.4. A topological space X is said to be developable modulo a decomposition provided that for some decomposition \mathscr{A} of X there exists a development modulo a decomposition \mathscr{A} .

Definition 4.5. A mapping $f: X \to Y$ of a space X onto Y is called *perfect* if f is closed, continuous and $f^{-1}y$ is compact for y in Y.

Lemma 4.1. If a topological space X is a perfect preimage of a developable space Y, then X is developable modulo a compact decomposition.

Proof. Let f be a perfect mapping of a space X onto a developable space Y. Since Y is developable there exists a sequence $\{\mathscr{V}_i\}_{i=1}^\infty$ of open covers of Y such that for each y in Y, $\{\operatorname{st}(y,\mathscr{V}_i)\}_{i=1}^\infty$ is a base for the neighbourhood system at y. Without loss of generality, assume that \mathscr{V}_{i+1} refines \mathscr{V}_i for each i. Then it is easy to see that $\mathscr{A}=\{f^{-1}y|y\in Y\}$ is a compact decomposition of X and $\{\mathscr{W}_i\}_{i=1}^\infty$ is a development modulo the compact decomposition \mathscr{A} for X, where $\mathscr{W}_i=\{f^{-1}V|V\in\mathscr{V}_i\}$ for each i. Hence X is developable modulo a compact decomposition.

Lemma 4.2. If a regular space X is developable modulo compact decomposition, then there exists a perfect mapping of X onto some Moore space Y.

Proof. Suppose X is a regular developable modulo compact decomposition space. Then there exists a compact decomposition $\mathscr{A}=\{A_{\alpha}|\alpha\in\Lambda\}$ of X and there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X such that it is a development modulo compact decomposition \mathscr{A} . Define on X an equivalence relation by setting $x\sim y$ if and only if $x,y\in A_{\alpha}$ for some α in Λ . Let $Y=X/\sim$ be the quotient space of X with the quotient topology and let $f:X\to Y$ be the quotient map. It is easy to see that f is continuous and compact; i.e., $f^{-1}y$ is compact for each y in Y. Let C be a closed subset of X. Then

$$C^{\#} = \bigcup \{A_{\alpha} | A_{\alpha} \cap C \neq \emptyset; \alpha \in \Lambda\}$$

is a subset of X. We shall show that $C^{\#}$ is closed. Suppose $y \notin C^{\#}$. Then there is an A_{α_y} for some $\alpha_y \in \Lambda$ such that $y \in A_{\alpha_y}$ and $A_{\alpha_y} \cap C = \emptyset$. Therefore for some i we have $C \cap \operatorname{st}(y, \mathscr{V}_i) = \emptyset$. But then $\operatorname{st}(y, \mathscr{V}_i) \cap C^{\#} = \emptyset$, for otherwise some A_{α} will be contained in $\operatorname{st}(y, \mathscr{V}_i)$ and will intersect C. Hence $y \notin C^{\#}$ implies y is not a limit point of $C^{\#}$. Consequently, $C^{\#}$ is a closed subset of X. Now $f^{-1}fC = C^{\#}$ and Y carries the quotient topology, so that fC is closed. Hence f is a perfect mapping of X onto Y. Now we show that Y is a Moore space.

For each i define $\mathcal{W}_i = \{\inf fV | V \in \mathcal{V}_i\}$. We claim that $\{\mathcal{W}_i\}_{i=1}^\infty$ is a development for Y. Let $y \in Y$ and U be any open set containing y. Since f is continuous $f^{-1}U$ is open. Now there is i such that $\operatorname{st}(f^{-1}y, \mathcal{V}_i) \subset f^{-1}U$ and therefore $\operatorname{st}(y, \mathcal{W}_i) \subset U$. By the fact that $V \operatorname{in} \mathcal{V}_i$ which intersects $f^{-1}y$ contains $f^{-1}y$ and the fact that f is continuous and closed, $\operatorname{int} fV \neq \emptyset$ for $V \operatorname{in} \mathcal{V}_i$ and each i. That Y is regular follows trivially. Hence Y is a Moore space and the lemma is proved.

Theorem 4.3. A regular space X is developable modulo compact decomposition if and only if there exists a perfect mapping of X onto some Moore space Y.

The proof follows from Lemmas 4.1 and 4.2.

In view of Theorem 3.1 in [6] we take the definition of p-space as follows:

Definition 4.6. A topological space X is called a p-space if there exists a sequence $\{\mathscr{V}_i\}_{i=1}$ of open covers of X satisfying the properties: if $\{F_s|s\in S\}$ is a family of closed sets with finite intersection property and there is x in X such that for each i there is V in \mathscr{V}_i containing x and F_{si} for some $s_i \in S$, then $\bigcap \{F_s|s\in S\} \neq \emptyset$.

Theorem 4.4. A topological space X is a regular d-paracompact p-space if and only if for each open cover ω of X there exists a perfect ω -mapping $f:X \to Y$ onto some Moore space Y.

Proof. If X is a regular d-paracompact p-space, by using the techniques of Lemma 3.5, for each open cover ω of X there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying (a) $\mathscr{V}_1 = \omega$ and \mathscr{V}_{i+1} refines \mathscr{V}_i for each i; (b) given i and x in X, there is j (j depending on i and x) and some V in \mathscr{V}_i such that $\operatorname{st}(x,\mathscr{V}_j)^- \subset V$; (c) given i and x in X, there is a j such that for any y in $\operatorname{st}(x,\mathscr{V}_j)$ there is k_y such that $\operatorname{st}(y,\mathscr{V}_{k_y}) \subset \operatorname{st}(x,\mathscr{V}_i)$; and (d) if $\{F|F \in \mathscr{F}\}$ is a family of closed sets with finite intersection property and there is x in X such that for each i some F in \mathscr{F} is contained in $\operatorname{st}(x,\mathscr{V}_i)$ then $\cap \{F|F \in \mathscr{F}\} \neq \emptyset$. Now using a proof analogous to Theorem 3.4, one can show that there exists a perfect mapping of X onto a Moore space Y.

The converse follows from Lemma 3.7 and [1].

Remark. Theorem 4.4 in view of Theorem 4.3 suggests that a regular d-paracompact p-space is developable modulo compact decomposition. We conjecture that a regular developable modulo compact decomposition space is a d-paracompact space.

5. One-to-one continuous mappings.

PROPOSITION 5.1. Let X be a d-paracompact space with the diagonal a G_{δ} -set in $X \times X$. Then there exists a T_1 developable space Y and a one-to-one continuous map f from X onto Y.

Proof. If X is a d-paracompact space with the diagonal a G_{δ} -set in $X \times X$, then in view of [4, p. 112, Lemma 5.4], there exists a sequence $\{\mathscr{V}_i\}_{i=1}^{\infty}$ of open covers of X satisfying the conditions: (a) \mathscr{V}_{i+1} refines \mathscr{V}_i for each i and for any x in X we have $\{x\} = \bigcap_{i=1}^{\infty} \operatorname{st}(x, \mathscr{V}_i)$; (b) given i and x in X, there is j (j depending on i and x) and some V in \mathscr{V}_i such that $\operatorname{st}(x, \mathscr{V}_j) \subset V$; and (c) given i and x in X, there is a j such that for any y in $\operatorname{st}(x, \mathscr{V}_j)$ there is a k_y such that $\operatorname{st}(y, \mathscr{V}_{k_y}) \subset \operatorname{st}(x, \mathscr{V}_i)$.

Let Y = X and define a topology on Y by taking $\{\operatorname{st}(x, \mathscr{V}_i)\}_{i=1}^{\infty}$ as a base for the neighbourhood system at x in X. Denote by τ the topology defined above. Now it is easy to see that the sequence $\{\mathscr{W}_i\}_{i=1}^{\infty}$, where

$$\mathcal{W}_i = \{ \operatorname{int}_{\tau} V | V \in \mathcal{V}_i \}$$

for each i, is a development for Y. Also, for each y in Y, $\{y\} = \bigcap_{i=1}^{\infty} \operatorname{st}(y, \mathcal{W}_i)$

1042 C. M. PAREEK

implies Y is a T_1 -space. Now define $f: X \to Y$ by setting fx = x. Clearly f is a one-to-one continuous map. Hence the proposition is proved.

Proposition 5.2. Let X be a s-paracompact space with the diagonal a G_{δ} -set in $X \times X$. Then there exists a semi-metric space Y and a one-to-one continuous map f from X onto Y.

We leave the proof of the above proposition to the reader.

6. Problems.

- 6.1. Is it true that a normal d-paracompact p-space always admits a perfect mapping onto a normal Moore space?
 - 6.2. Is a normal *d*-paracompact space metacompact?
 - 6.3. Is a normal metacompact space d-paracompact?
- 6.4. Find necessary and sufficient conditions for an s-paracompact space to be d-paracompact.

REFERENCES

- 1. A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
- 2. R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186.
- **3.** D. K. Burke, *Subparacompact spaces*, Proc. of the Washington State University conference on general topology (March 1970), 39–49.
- 4. J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125.
- 5. L. F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796-799.
- 6. C. M. Pareek, Characterization of p-spaces, Can. Math. Bull. 14 (1971), 459-460.
- 7. V. I. Ponomarev, On paracompact and finally compact spaces, Soviet Math. Dokl. 2 (1961), 1510-1512.

University of Saskatchewan, Regina, Saskatchewan