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MOORE SPACES, SEMI-METRIC SPACES AND

CONTINUOUS MAPPINGS CONNECTED WITH THEM

C. M. PAREEK

1. Introduction. In [1] Arhangel’skii announced that any ¢-paracompact
p-space could be mapped onto a Moore space by a perfect map. However
Burke [3] recently showed that this is not true in general and he gave an
example of a T%, locally compact, o-paracompact space which cannot be
mapped onto a Moore space by a perfect map. Therefore the following question

is suggested:

Question 1. How can the perfect preimages of Moore spaces be characterized?

In [7] Ponomarev established: ““In order that a regular space X be para-
compact, it is necessary and sufficient that for every open cover w of the space
X there exists an w-mapping f:X — Y onto some metric space Y. This

suggests further questions.

Question 2. How can the spaces which admit w-mappings onto Moore spaces

be characterized?

Question 3. How can the spaces which admit w-mappings onto semi-metric

spaces be characterized?

The main aim of this note is to answer the questions raised above.

Definitions of terms not given here can be found in [1]. A regular space in

this paper is assumed to be 7.
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2. w-mappings and s-paracompact spaces.

Definition 2.1. Let w be an open cover of a space X. A continuous mapping f
from the space X onto some space Y is called an w-mapping if for each point v
in Y, there exists a neighbourhood O, such that f~'0, is contained in an

element of the cover w.

Definition 2.2. A topological space X is called s-paracompact if for each
open cover % of X there exists a sequence { ¥ ;} % of open covers of X such

that the following conditions are satisfied:
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(a) ¥y = U and ¥ ;41 refines ¥, for each ¢;

(b) for each x in X there is 7, such that x is in exactly one member of ¥ ;
for all ¢ > 1,;

(c) for each x in X, 4, = NS st(x,”?”;) is closed in X.

Definition 2.3. A Ti-space X is a semi-metric space provided that there exists
a distance function (or semi-metric) d such that for each (x,y) in X X X,
(1) d(x,y) = d(y,x); (2)d(x,y) = 0and d(x,y) = 0 only if x = y; and (3)
for every M C X, inf{d(x,y)|y € M} = 0 if and only if x is in the closure
of M.

LeEMMA 2.1, If for every open cover w of the space X there exists an w-mapping
f:X — Y onto a s-paracompact space Y, then X is a s-paracompact space.

Proof. Let w be an open cover of the space X. Then by the hypothesis there
exists an w-mapping f of the space X onto some s-paracompact space V. For
each y in Y, let O, be an open neighbourhood of ¥ such that f 710, is contained
in some U € w. Evidently, & = {O,|y € Y} is an open cover of Y. Since ¥
is s-paracompact, there exists a sequence { ¥ ;}5.1 of open covers of ¥ such
that (1) %1 = € and ¥ ;1 refines ¥, for each ¢; (2) given y in ¥ there is 4,
such thaty ¢ = 4,, y is exactly in one member of ¥ ;; and (3) for each y in Y,

A, = Nist(y,? ;) is closed in Y. Let
W@'+1 =f—1/Vi = {f—IVIV S ’V,} fori=1,2,...,

and ¥ = w.

Since ¥ ;41 refines ¥, for each 4, ¥ .1 refines W ; for each. Given x in X,
there is a unique y in ¥ for which x belongs to f —'y. Also for y in Y there is
an 1, such that for all 2 = 1,, v is exactly one member of ¥”;. By the construc-
tion of the sequence { % ,}7., we can conclude that x belongs to exactly one
member of #'; for all 1 = 4, + 1 and for any x in X, A, = f ~'4,, is closed.

Hence X is a s-paracompact space.

LeEMMA 2.2. Let X be a s-paracompact space. Then for each open cover w of
the space X there exists an w-mapping f: X — Y onto some semi-metric space Y.

Proof. Let w = {W|s € S} be an open cover of an s-paracompact space X.
Then there exists a sequence { ¥ ;}%.1 of open covers of X satisfying the con-
dition that for each x in X, there is an ¢, such that x is in exactly one member
of W fori = i,, W 11 refines? ; for each i and 4, = NSust(x, #';) for each
x in X is closed, where | = w.

For each 1, define U, = U {W X W|W ¢ #,}. Clearly {U,}%; is a sym-
metric collection of subsets of X X X containing A = {(x, x)|x € X} and
U1 C U, for each 1. Define on X an equivalence relation by setting x ~ ¥y
if and only if y € NEaU;lx] for any pair of points x,y € X. It is easy to
verify that ~ is an equivalence relation on X. Note that 4, = N1 U,[x]
for each x in X.
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Define on X a new topology 7 by setting a subset G of X to be open if and
only if for each x in G, there is an 7 such that U,[x] C G. Denote by X, the
set X together with the new topology 7. Denote by V = X,/~ the quotient
space of X,. Let¢: X — X, be the identity map and ®:X, — Y be the quotient
map. Now define f = ® oy. We claim that f is an w-mapping of X onto ¥
and that Y is a semi-metric space.

f s an w-mapping: Since 7 is weaker than the original topology of X, ¢ is
continuous. Because & is the quotient map, it is continuous. Therefore
f = ® oy is continuous. That ® is also an open map is seen as follows. Let U
be an open subset of X,. To show that ®U is open, it is enough to show that

Ut = 10U = Uf4,J4, N\ U # 0, x € X}

is open in X, where 4, = N%1U.[x] for all x in X. If y belongs to U*, then
A, N U # 0. Letz € A, M U. Then for some ¢ we have U,[z] C U, because
U is an open subset of X,. But 4, = 4, C U,[z] C U implies that there is
a j such that y € U,;[y] C U C U*. Hence U? is open and consequently,
® is an open map. To each y in Y, assign O, = ®(int,U,[x]) where x is such
that fx = y and ¢, is an index for which x is in exactly one member of % ,,;
note that x is in the int U,,[x]. Now it is easy to show that f —!0, is contained
in some member of w. Since y is arbitrary f is an w-mapping of X onto Y.

Y is a semi-metric space: Define W'/ = fW = { fW|]W € #;} for each 1.
It is easy to see that for each y in ¥V, {st(y,# /)}5-1 is a base for the open sets
containing y. Also, #" ;1 refines? ,/ for all i. Since ¥ ;1 refines’?’; for each 1.

For y1,y: € Y, let a(y1, y2) denote the smallest integer # such that there
is no element of #,’ containing both y; and y,. If no such integer exists
a(y, y:) = ». Now define d:Y X ¥V— R by setting d(yy, y2) = 2-eWr¥d
for (y1,y2) in ¥ X Y. Then clearly, for each y, y1,y. in ¥, d(y,y) = 0 and
d(y1, y2) = d(y2, ¥1). Also, if y1 # y., there is an open set U containing one
of the points, say ¥1, and not containing y.; since YV is a 7'i-space. Hence
there is an # such that y; € st(y,,%,’) C U. Since y, ¢ U implies
vy € st(y,#,'), we have d(y1, y:) = 1/2" > 0.

We note here that

ld o, y) < 1/2%) = s(yo; 1/2%) = st(yo, )

for each yo in ¥ and each n. For y is in s(yo; 1/2*) if and only if d(y,, y) < 1/2"
if and only if a(ve,y) > % if and only if there exists W in ¥,/ such that
v0,y € W, i.e., if and only if y € st(yo,#’). Now let M C V. Theny € M~
if and only if st(y,%,’) M M 5 @ for each  if and only if s(y; 1/2*) N\ M = @
for each #, i.e., if and only if d(y, M) = 0. Hence Y is a semi-metric space.

LEMMA 2.3. Every semi-metric space X is s-paracompact.

Proof. McAuley [5] pointed out that by using a proof analogous to that of
Theorem 2 of [2], it follows that given any open cover % = {U,|s € S} of a
semi-metric space X there exists a o-discrete closed refinement?” = U%{¥ ,,
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where ¥, = {# .!la € A,} for each i, such that each member of ¥”; is con-
tained in some member of ¥ ;;, for each 1.

Denote by U, ,! a member of % which contains V,* and let O,' = X —
U{ V5B € Ay a # B}. Define

Wi = {0 N Uasila € A U {(X — U{Voila € A}) N Uyls € S}

foreach i = 1,2,...,and ¥ = %. Now it is easy to see that the sequence
{# )51 of open covers of X satisfies (a) W1 = % and W ;41 refines W', for
each 7; (b) for each x in X, there is an 7, such that x is in exactly one member
of W, for all 4 = 4,; and (c) for each x in X, 4, = N1 st(x,? ;) is closed
in X. Hence X is s-paracompact.

THEOREM 2.4. A topological space X is s-paracompact if and only if for each
open cover w of X there exists an w-mapping f:X — ¥V onto some semi-metric
space V.

The proof follows from Lemmas 2.1, 2.2, and 2.3.

3. «-mappings and Moore spaces.

Definition 3.1. A topological space X is called d-paracompact if for each
open cover % of X there exists a sequence { ¥ ;} %1 of open covers of X such
that the following conditions are satisfied:

() ¥ = U and ¥ 441 refines ¥, for each 1;
(ii) given ¢ and x in X, there is j (j depending on ¢ and x) and some V
in?”; such that st(x,7";,) C V;
(iii) given ¢ and x in X, there is j such that for any v in st(x,”?”,) there
is k, such that st(y,?";,) C st(x, 7 ).
(One may note that for each x in X, 4, = N%1st(x,?”;) is closed in X.)

Definition 3.2. A topological space X is called developable if there exists a
sequence | ¥ ;}%.1 of open covers of X satisfying the condition that for each
x in X and any open set U containing x, there is ¢ such that st(x,”? ;) C U.

A regular developable space is called a Moore space.

LeMmwMA 3.1. Every developable space X is a d-paracompact space.
The proof follows immediately from the definition of developable spaces.

LemMA 3.2. If for each open cover w of the space X there exists an w-mapping
X — Y onto a d-paracompact space Y, then X is a d-paracompact space.

The proof is similar to Lemma 2.1.

LeEmMA 3.3. Let X be a d-paracompact space. Then for each open cover w of the
space X there exists an w-mapping f:X — YV onto some Ty developable space Y.

Proof. Let X be a d-paracompact space. Then for each open cover w of X,
there exists a sequence { ¥ ;}%-1 of open covers of X satisfying
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(i) ¥"; = wand ¥ .41 refines ¥, for each i;
(ii) given ¢ and x in X there is a 7 > ¢ (depending on x and 7) and some
Vin?”, such that st(x,?”;) C V; and
(iii) given i and x in X, there is a j such that for any y in st(x,?”,), there is
a k, such that st(y,?"s,) C st(x,?",).

Define a new topology = on X by taking {st(x,? ;)}%. as a base for the
neighbourhood system at x in X,. Denote by X, the set X with the new
topology 7. Define an equivalence relation ~ on X by setting x ~ v if and
only if y € NEast(x,? ;). Let ¥ = X,/~ be the quotient space of X, let
®:X,— Y be the quotient map, and let ¥:X — X be the identity map.
Define f = ® o ¢. Then we claim that f is an w-mapping of X onto ¥ and ¥
is a 71 developable space.

Using a proof analogous to Lemma 2.3 one can show that f is an w-mapping
of X onto YV and that & is open.

Y is a developable space: First note that &'® int,4 = int,4 where 4 is
any subset of X. Define #; = {®int, V|V € ¥} for each i. We claim that
{#W 51 is a development for V. Let y € ¥ and let U be an open set in ¥
containing y. Then f~y C f U, i.e.,

(Poy)ly C (Poy) U implies &y C & 1U.

For some x in X, &'y = N5 st(x,? ;). Since & 1U is open and contains
Ny st(x,?” ;) we have st(®~1y, 7" ;) C & U for some 4. Also, it follows from
Note [2] that ¥ is 7;. Hence the lemma is proved.

TurOREM 3.4. 4 topological space X 1s a d-paracompact space if and only if
for each open cover w of X there exists an w-mapping of X onto some 1"y developable
space.

The proof follows from Lemmas 3.1, 3.2 and 3.3.

Remark. In view of Theorem 9 of Bing [2] and Theorem 3.4, it is easy to
show that a space X is d-paracompact if and only if for each open cover  of
X there exists a sequence {¥”,;}%.; of open covers of X satisfying the following
properties:

@) ¥ 1= U and ¥ ;41 refines ¥, for each ¢;

(b’) for each x in X there is an 7, such that x is exactly in one member of
¢ forall i = 4,

(c) given ¢ and x in X, there is j such that for any y in st(x,?”;) there is
a k, such that st(y,?,) C st(x,? ).

Lemma 3.5. A topological space X is a regular d-paracompact space if and
only if for each open cover U of X there exists a sequence { ¥ ;}%1 of open covers
of X such that the following conditions are satisfied:

W)V 1= U and ¥ 11 vefines ¥ ; for each i;

(2) given i and x in X, there is j (j depending on 1 and x) and some V in¥",
such that st(x,? ;)= C V;
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(3) given 1 and x in X, there is j such that for any y in st(x,?” ;) there is a
ky such that st(y,?"x,) C st(x,?" ;).

Proof. Let % be an open cover of a regular d-paracompact space X. Then
there exists a sequence { % ;}5.1 of open covers of X satisfying the following
properties:

(1Y #'y = U, for each i the closure of each member of # ., is contained in
some member of U, and ¥ ;1 refines ? ; for each 7;

(2") given 7 and x in X, there is j (j depending on ¢ and x) and some W in
W ; such that st(x,% ;) C W; and

(3") given i and x in X, there is a j such that for any v in st(x,? ;) there is
a k, such that st(y, #,) C st(x,?,).

Now given an integer 7, assume we can construct a sequence { % ,}5-, of
open covers of X satisfying (i)%"1 = #1 = % and?” ;;1 refines?” ; for each 7;
(ii) given 7 < 79 and x in X, there is a j (depending on 7 and x) and some
V in¥"; such that st(x,?” ;)= C V; (iii) given j and x in X, there is a [ such
that for any y in st(x,”%”,;) there is a k, such that st(y,¥";,) C st(x,?”;).
Now define { % /}%.1, a sequence of open covers of X such that 7"/ =%,
for i =1,...,% and ¥ sp; =W s;41 for j = 1,2, ... where {# ;157 is
a sequence of open covers of X satisfying (') # ;1 = ¥ 441 for each i, the
closure of members of WWH is contained in some member of ¥ ;,,1, and
W 1041 refines? ,;; (b') given 7 and x in X, there is j (j depending on 7 and x)
and someV in?";/ such that st(x,? ;) C V; (¢/) giveniand x € X, thereisaj
such that for any y in st(x, 7" /) there is k, such that st(y,?";,’) C st(x, 7" /).
Hence by the induction there exists a sequence { % ;}%, of open covers of X
satisfying conditions 1, 2 and 3. This proves the lemma.

The converse is trivial.

LemMmAa 3.6. Let X be a regular d-paracompact space. Then for each open
cover w of the space X there exists an w-mapping f:X — YV onto some Moore
space Y.

Proof. Let X be a regular d-paracompact space. Then by Lemma 3.5 for
each open cover w of X, there exists a sequence { ¥ ;}5; of open covers of X
satisfying (i) ¥"1 = w and ¥ ;4 refines ¥, for each 4; (ii) given 7 and x in X
there is j > 7 (j depending on x and 7) and some V in ¥ ; such that
st(x,? ;)~ C V; and (iii) given 7 and x in X, there is a j such that for any y
in st(x,?”;), there is k, such that st(y,¥",) C st(x,? ,).

Define a new topology 7 on X by setting {st(x,?” ;)}%: as a base for the
neighbourhood system at x in X. Denote by X, the set X with the new top-
ology 7. Define an equivalence relation ~ on X by setting x ~ y if and only
ify € N1st(x, 7). Let Y = X,/~ be the quotient space of X,, ®:X,— ¥V
be the quotient map, and ¢:X — X, be the identity map. Now define
f = ®oy. Then as in Lemma 3.3 we can show that f is an w-mapping of X
onto ¥V and Y is a developable space. It remains to show that ¥ is regular.
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For this, it is enough to show that {st(x,% ;)~}%. is a base for the neighbour-
hood system at x in X in the topology 7.
Let U be an open subset of X relative to 7 and let x be in U. Then for some ¢

we have x € st(x,%";) C U. By condition (ii) on the sequence of covers
{7 %1 we have

x € stlx,” )" CVCstx,7 ) CU

for some k and V in ¥,. Hence {st(x,% ;)"}%1 is a base at x in X in the
topology 7. Y is obviously 71 (by the remark in Definition 3.1).

Lemma 3.7. If for each open cover w of the space X there exists an w-mapping
fiX = Y onto a regular d-paracompact space YV, then X is a regular d-para-
compact space.

We leave the proof of Lemma 3.7 to the reader.

THEOREM 3.8. 4 topological space X is regular and d-paracompact if and only
if for each open cover w of X there exists an w-mapping f:X — YV onto some
Moore space.

The proof follows from Lemmas 3.5, 3.6 and 3.7.

4. Perfect mappings and Moore spaces.

Definition 4.1. Let X be a topological space. A decomposition of X is a
collection &7 of nonempty subsets of X such that X = U{A4]4 €¢ &/ }. A
compact decomposition of X is a decomposition.&/ of X such that every member
of &/ is a compact subset of X.

Definition 4.2. Let X be a topological space, let.2/ be a decomposition of X
and let % be an open cover of X. Then % is called cover modulo the decom-
position &/ of X if for A in/ and Uin %, A N U # @ implies 4 C U.

Definition 4.3. Let X be a topological space and let %/ be a decomposition
of X. Then X is said to have development modulo « decomposition provided that
there exists a sequence { ¥ ,}%1 of open covers of X satisfying the following
properties:

(a) ¥ 141 refines?”, for each 1;

(b) ¥”; is a cover modulo the decomposition.&/ of X for each i;

(c) for each 4 in % and any open set U of X containing 4 there is an ¢ such
that st(4,7";) C U.

Definition 4.4. A topological space X is said to be developable modulo a
decomposition provided that for some decomposition & of X there exists a
development modulo a decomposition .%.

Definition 4.5. A mapping f:X — ¥ of a space X onto Y is called perfect
if f is closed, continuous and f ~'y is compact for y in Y.
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LeEmMA 4.1. If a topological space X is a perfect preimage of a developable
space Y, then X 1s developable modulo a compact decomposition.

Proof. Let f be a perfect mapping of a space X onto a developable space V.,
Since Y is developable there exists a sequence { ¥ ,}%1 of open covers of ¥
such that for each y in V, {st(y,%;)}%: is a base for the neighbourhood
system at y. Without loss of generality, assume that ¥ ,;; refines ¥, for
each i. Then it is easy to see that &/ = { f~ly|y € ¥V} is a compact decom-
position of X and { % ;}7.:1 is a development modulo the compact decomposi-
tionZ for X, where ', = { f V|V € ¥"} for each 7. Hence X is developable
modulo a compact decomposition.

LemmA 4.2. If a regular space X is developable modulo compact decomposition,
then there exists a perfect mapping of X onto some Moore space Y.

Proof. Suppose X is a regular developable modulo compact decomposition
space. Then there exists a compact decomposition & = {4,|e € A} of X and
there exists a sequence {7 ;}5-1 of open covers of X such that it is a develop-
ment modulo compact decomposition 2. Define on X an equivalence relation
by setting x ~ y if and only if x,y € 4, for some a in A. Let ¥ = X/~ be
the quotient space of X with the quotient topology and let f: X — ¥ be the
quotient map. It is easy to see that f is continuous and compact; i.e., f ~ly
is compact for each y in V. Let C be a closed subset of X. Then

Ct = Ufdu|da N C 5 ;0 € A}

is a subset of X. We shall show that C* is closed. Suppose y ¢ C*. Then there
is an A, for some «, € A such that y € 4,, and 4., N C = @. Therefore for
some ¢ we have CNst(y,? ;) = 0. But then st(y,? ;) N\ C* = @, for
otherwise some 4, will be contained in st(y,? ;) and will intersect C. Hence
y ¢ Ct implies v is not a limit point of C*. Consequently, C* is a closed subset
of X. Now f~1fC = C* and Y carries the quotient topology, so that fC is
closed. Hence f is a perfect mapping of X onto Y. Now we show that ¥ is a
Moore space.

For each 7 define #'; = {intfV|V € ¥",}. We claim that {# 7, is a
development for Y. Let y € ¥V and U be any open set containing y. Since f
is continuous f ~'U is open. Now there is 1 such that st(f~y, 7 ;) C f—1U
and therefore st(y,” ;) C U. By the fact that V in?”; which intersects f —ly
contains f~'y and the fact that f is continuous and closed, int f1” 5 @ for
V in ¥, and each 4. That Y is regular follows trivially. Hence ¥ is a Moore
space and the lemma is proved.

THEOREM 4.3. 4 regular space X is developable modulo compact decomposition
if and only if there exists a perfect mapping of X onto some Moore space Y.

The proof follows from Lemmas 4.1 and 4.2.

In view of Theorem 3.1 in [6] we take the definition of p-space as follows:
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Definition 4.6. A topological space X is called a p-space if there exists a
sequence { ¥ ;} ;1 of open covers of X satisfying the properties: if { Fy|s € S}
is a family of closed sets with finite intersection property and there is x in X
such that for each 7 there is V in ¥, containing x and F,; for some s; € S,
then N{F,s € S} = 0.

THEOREM 4.4. A topological space X is a regular d-paracompact p-space if
and only if for each open cover w of X there exists a perfect w-mapping f:X — ¥V
onto some Moore space Y.

Proof. If X is a regular d-paracompact p-space, by using the techniques of
Lemma 3.5, for each open cover w of X there exists a sequence {7 ,}%; of
open covers of X satisfying (a) ¥y = w and ¥ ;41 refines ¥, for each i; (b)
given 7 and x in X, there is j (j depending on 7 and x) and some V in¥”; such
that st(x, ;)= C V; (c) given ¢ and x in X, there is a j such that for any y
in st(x,?”;) there is k, such that st(y,¥"s,) C st(x,? :);and (d) if { F|F € F}
is a family of closed sets with finite intersection property and there is x in X
such that for each ¢ some F in % is contained in st(x,% ;) then
N{F|F € #} # . Now using a proof analogous to Theorem 3.4, one can
show that there exists a perfect mapping of X onto a Moore space Y.

The converse follows from Lemma 3.7 and [1].

Remark. Theorem 4.4 in view of Theorem 4.3 suggests that a regular
d-paracompact p-space is developable modulo compact decomposition. We
conjecture that a regular developable modulo compact decomposition space
is a d-paracompact space.

5. One-to-one continuous mappings.

ProrosiTiON 5.1. Let X be a d-paracompact space with the diagonal a Gs-set
in X X X. Then there exists a T'1 developable space Y and a one-to-one continuous
map f from X onto V. .

Proof. If X is a d-paracompact space with the diagonal a Gs-set in X X X,
then in view of [4, p. 112, Lemma 5.4], there exists a sequence {¥ ;)% of
open covers of X satisfying the conditions: (a) ¥ ;41 refines ¥, for each i
and for any x in X we have {x} = N%ist(x,”?";); (b) given 7 and x in X,
there is j (j depending on 7 and x) and some V in%#”, such thatst(x,?”;) C V;
and (c) given 7 and «x in X, there is a j such that for any y in st(x,?”;) there
is a k, such that st(y,?";,) C st(x ¥7,).

Let ¥ = X and define a topology on Y by taking {st(x,% ;)}%: as a base
for the neighbourhood system at x in X. Denote by 7 the topology defined
above. Now it is easy to see that the sequence { ¥ ,}%1, where

Wi = {mt,V[V E /V‘L}
for each 1, is a development for Y. Also, for each y in ¥, {y} = NF1st(y,?,)
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implies ¥V is a 7'1-space. Now define f: X — ¥ by setting fx = x. Clearly f is
a one-to-one continuous map. Hence the proposition is proved.

ProrosiTioN 5.2. Let X be a s-paracompact space with the diagonal o Gs-set
in X X X. Then there exists a semi-metric space ¥V and a one-to-one continuous
map f from X onto V.

We leave the proof of the above proposition to the reader.

6. Problems.

6.1. Is it true that a normal d-paracompact p-space always admits a perfect
mapping onto a normal Moore space?

6.2. Is a normal d-paracompact space metacompact?
6.3. Is a normal metacompact space d-paracompact?

6.4. Find necessary and sufficient conditions for an s-paracompact space to
be d-paracompact.
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